留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西北太平洋副热带模态水形成区声传播特性分析

张旭 程琛 刘艳

张旭, 程琛, 刘艳. 西北太平洋副热带模态水形成区声传播特性分析[J]. 海洋学报, 2014, 36(9): 94-102. doi: 10.3969.issn.0253-4193.2014.09.011
引用本文: 张旭, 程琛, 刘艳. 西北太平洋副热带模态水形成区声传播特性分析[J]. 海洋学报, 2014, 36(9): 94-102. doi: 10.3969.issn.0253-4193.2014.09.011
Zhang Xu, Cheng Chen, Liu Yan. Acoustic propagation effect caused by subtropical mode water of northwestern Pacific[J]. Haiyang Xuebao, 2014, 36(9): 94-102. doi: 10.3969.issn.0253-4193.2014.09.011
Citation: Zhang Xu, Cheng Chen, Liu Yan. Acoustic propagation effect caused by subtropical mode water of northwestern Pacific[J]. Haiyang Xuebao, 2014, 36(9): 94-102. doi: 10.3969.issn.0253-4193.2014.09.011

西北太平洋副热带模态水形成区声传播特性分析

doi: 10.3969.issn.0253-4193.2014.09.011

Acoustic propagation effect caused by subtropical mode water of northwestern Pacific

  • 摘要: 利用Argo剖面数据和水声学数值模型,分析了西北太平洋副热带模态水(STMW)形成区因季节性环境差异所引起的水声传播变化特征。声场计算结果表明,STMW形成区域的声传播为近表层波导与会聚区的复合形式,其中会聚区终年存在,表面波导在秋、冬两季混合层加深的环境条件下出现,次表层波导在夏季STMW潜沉的环境条件下出现。上层海洋中两类不同形式的波导使表层和次表层的声能分布呈反相变化,波导内与波导外的声能差异可达10~15 dB(声波频率为1 000 Hz)。STMW的季节性变化还会引起会聚区的位置差异,具体情况与声源深度有关。声源在20 m时,夏季会聚区距离最远,秋季、春季次之,冬季最近,夏季和冬季相差6.6 km;声源在150 m时,夏季会聚区距离缩短了3.1 km,其他季节变化不大。
  • Suga T, Hanawa K. The mixed layer climatology in the northwestern part of the North Pacific subtropical gyre and the formation area of subtropical mode water[J]. J Mar Res, 1990, 48(3): 543-566.
    Bingham F M, Suga T. Distributions of mixed layer properties in North Pacific water mass formation areas: comparison of Argo floats and World Ocean Atlas 2001[J]. Ocean Sci, 2006, 2(1): 61-70.
    Ohno Y, Iwasaka N, Kobashi F, et al. Mixed layer depth climatology of the North Pacific based on Argo observations[J]. J Oceanogr, 2009, 65(1): 1-16.
    张旭, 张永刚, 张胜军, 等. 菲律宾海温跃层的区域性特征及其季节性变化[J]. 海洋通报, 2009, 28(4): 17-26.
    Munk W H, Forbes A M G. Global ocean warmin: an acoustic measure[J]. J Phys Oceanogr, 1989, 19: 1765-1778.
    孙琪田, 张恩夫, 韩军. 西北太平洋深海声道的初步分析[J]. 海洋学报, 1995, 17(3): 110-117.
    张旭, 张永刚, 张胜军, 等. 菲律宾海的声速剖面结构特征及季节性变化[J]. 热带海洋学报, 2009, 28(6): 23-34.
    Henrick R F, Seigmann W L, Jacobson M J. General analysis of ocean eddy effects for sound transmission applications[J]. J Acoust Soc Am, 1977, 62(4): 860-870.
    Henrick R F, Burkom H S. The effect of range dependence on acoustic propagation in a convergence zone environment[J]. J Acoust Soc Am, 1983, 73(1): 173-182.
    菅永军, 张杰, 贾永君. 海洋锋区的一种声速计算模式及其在声传播影响研究中的应用[J]. 海洋科学进展, 2006, 24(2): 166-172.
    张旭, 张健雪, 张永刚, 等. 南海西部中尺度暖涡环境下汇聚区声传播效应分析[J]. 海洋工程, 2011, 29(2): 83-91.
    Masuzawa J. Subtropical mode water[J]. Deep-Sea Res, 1969, 16: 463-472.
    Bingham F M. Formation and spreading of subtropical mode water in the North Pacific[J]. J Geophys Res, 1992, 97(C7): 11177-11189.
    Suga T, Hanawa K. The subtropical mode water circulation in the North Pacific[J]. J Phys Oceanogr, 1995, 25: 958-970.
    黄瑞新. 大洋环流: 风生与热盐过程[M]. 乐肯堂, 史久新,译. 北京: 高等教育出版社, 2012.
    Qiu B, Chen S. Decadal variability in the formation of the North Pacific subtropical mode water: oceanic versus atmospheric control[J]. J Phys Oceanogr, 2006, 36(7): 1365-1380.
    Liu Q, Hu H. A subsurface pathway for low potential vorticity transport from the central North Pacific toward Taiwan Island[J]. Geophys Res Lett, 2007, 34: L12710.
    Oka E, Toyama K, Suga T. Subduction of North Pacific central mode water associated with subsurface mesoscale eddy[J]. Geophys Res Lett, 2009, 36: L08607.
    Hanawa K, Talley L D. Mode waters[M]// Siedler G, Church J, Gould J. Ocean Circulation and Climate. London: Academic Press, 2001: 373-386.
    Oka E, Qiu B. Progress of North Pacific mode water research in the past decade[J]. J Oceanogr, 2012, 68(1): 5-20.
    Operational Oceanography Group: Global Argo Data Repository. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Oceanographic Data Center, Silver Spring, Maryland, 20910. Date of Access, 2007. http://www.nodc.noaa.gov/argo
    The Argo Science Team. Report of the Argo Science Team 2nd Meeting (AST-2). 2000:1-18.
    Locarnini R A, Mishonov A V, Antonov J I, et al. World Ocean Atlas 2009 Volume 1: Temperature. NOAA Atlas NESDIS 68, US Government Printing Office, Washington DC, 2010.
    Antonov J I, Seidov D, Boyer T P, et al. World Ocean Atlas 2009 Volume 2: Salinity. NOAA Atlas NESDIS 69, US Government Printing Office, Washington DC, 2010.
    Mackenzie K V. Nine term equation for sound speed in the oceans[J]. J Acoust Soc Am, 1981, 70(3): 807-812.
    Porter M B, Bucher H P. Gaussian beam tracing for computing ocean acoustic fields[J]. J Acoust Soc Am, 1987, 82(4): 1349-1359.
    Bucker H P. A simple 3-D Gaussian beam sound propagation model for shallow water[J]. J Acoust Soc Am, 1994, 95(5): 2437-2440.
    Weinberg H, Keenan R E. Gaussian ray bundles for modeling high-frequency propagation loss under shallow-water conditions[J]. J Acoust Soc Am, 1996, 100(3): 1421-1996.
    Bongiovanni K P, Siegmann W L. Convergence zone feature dependence on ocean temperature structure[J]. J Acoust Soc Am, 1996, 100(5): 3033-3041.
    张旭, 张永刚, 董楠, 等. 声跃层结构变化对深海汇聚区声传播的影响[J]. 台湾海峡, 2011, 30(1): 114-121.
    Fitzgerald R M, Guthrie A N, Nutile D A, et al. Influence of the subsurface sound channel on long-range propagation paths and travel times[J]. J Acoust Soc Am, 1974, 55: 47-53.
    Dosso S E, Chapman N R. Acoustic propagation in a shallow sound channel in the Northeast Pacific Ocean[J]. J Acoust Soc Am, 1984, 75: 413-418.
    Ladd C, Thompson L. Formation mechanisms for North Pacific central and eastern subtropical mode waters[J]. J Phys Oceanogr, 2000, 30: 868-887.
    Qiu B, Huang R X. Ventilation of the North Atlantic and North Pacific: subduction versus obduction[J]. J Phys Oceanogr, 1995, 25(10): 2374-2390.
    Joyce T M. New perspectives on Eighteen Degree Water formation in the North Atlantic[J]. J Oceanogr, 2012, 68(1): 45-52.
  • 加载中
计量
  • 文章访问数:  1482
  • HTML全文浏览量:  18
  • PDF下载量:  906
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-15
  • 修回日期:  2013-12-14

目录

    /

    返回文章
    返回