留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

茅尾海红树林沉积物碳埋藏与铁硫相互作用研究

范惠琳 张芬芬 张帮剑 廖日权 杜金洲

范惠琳,张芬芬,张帮剑,等. 茅尾海红树林沉积物碳埋藏与铁硫相互作用研究[J]. 海洋学报,2025,47(9):1–14 doi: 10.12284/hyxb2025090
引用本文: 范惠琳,张芬芬,张帮剑,等. 茅尾海红树林沉积物碳埋藏与铁硫相互作用研究[J]. 海洋学报,2025,47(9):1–14 doi: 10.12284/hyxb2025090
Fan Huilin,Zhang Fenfen,Zhang Bangjian, et al. Carbon burial and iron-sulfur interactions in mangrove sediments of the Maowei Sea[J]. Haiyang Xuebao,2025, 47(9):1–14 doi: 10.12284/hyxb2025090
Citation: Fan Huilin,Zhang Fenfen,Zhang Bangjian, et al. Carbon burial and iron-sulfur interactions in mangrove sediments of the Maowei Sea[J]. Haiyang Xuebao,2025, 47(9):1–14 doi: 10.12284/hyxb2025090

茅尾海红树林沉积物碳埋藏与铁硫相互作用研究

doi: 10.12284/hyxb2025090
基金项目: 国家重点研发计划战略性科技创新合作专项: 气候变化和人类活动对海上丝路沿线国家滨海蓝碳生态系统的耦合影响机制与合作研究(2022YFE0209300)。
详细信息
    作者简介:

    范惠琳(1999—),女,广西壮族自治区玉林市人,主要从事海洋沉积地球化学研究。E-mail:51253904033@stu.ecnu.edu.cn

    通讯作者:

    张芬芬, 研究员, 主要研究碳的生物地球化学循环, 环境记录与全球变化。E-mail: ffzhang@sklec.ecnu.edu.cn

Carbon burial and iron-sulfur interactions in mangrove sediments of the Maowei Sea

  • 摘要: 红树林生态系统具有很高的碳埋藏效率,在河口地区由于受到河流输入与潮汐等多重因素影响,使其碳的保存过程更为复杂。本文以钦江入海口茅尾海红树林和光滩柱状沉积物为研究对象,运用薄膜扩散梯度技术(DGT)原位在线获取了孔隙水中Fe(Ⅱ)和S(-Ⅱ)浓度分布,并结合有机碳参数(DOC、TOC和δ13C),探讨沉积物中碳埋藏与铁和硫元素的生物地球化学过程及其相互作用关系。结果表明:从高潮滩到中潮滩,沉积物碳储量增加了63.1%;红树林沉积物中存在明显的氧化还原分层现象,氧化区与还原区的过渡带在约5 cm的深度。TOC与Fe(Ⅱ)和S(-Ⅱ)呈现显著正相关,反映更高的TOC埋藏含量促进了铁异化还原(MIR)和硫酸盐还原(MSR),同时生成的S(-Ⅱ)通过化学还原释放Fe(Ⅱ)。但在高TOC高Fe(Ⅱ)和S(-Ⅱ)浓度的中潮滩,MIR与MSR局部竞争尤为强烈,因此中潮滩是研究红树林生态系统碳埋藏的关键区域,潮汐驱动的氧化还原变化对碳铁硫耦合产生了关键调控作用。本研究揭示的红树林沉积物中碳埋藏及其与铁、硫相互作用机制,可为深入理解红树林湿地的碳汇功能及生源要素循环提供重要依据。
  • 图  1  茅尾海采样站位图:高潮滩红树林(H),中潮滩红树林(M1和M2),低潮滩光滩(G)

    Fig.  1  Location of sampling stations in Maowei Sea: Mangrove of the upper tidal flat(H), Mangrove of the middle tidal flat(M1 and M2), and mutflat of lower tidal flat(G)

    图  2  茅尾海沉积物柱样中参数的垂向分布:黏土、粉砂、砂(a)、含水率(b)和容重(c)

    Fig.  2  Vertical distribution parameters in sediment columns of Maowei Sea:clay, silt, sand proportion (a), moisture content (b), and bulk density (c).

    图  3  茅尾海沉积物TOC、TN、TOC/TN比值和δ13C的垂向分布

    Fig.  3  Vertical distribution of TOC, TN, TOC/TN ratio and δ13C in sediments of Maowei Sea

    图  4  茅尾海沉积物孔隙水DOC(a),Fe(Ⅱ)(b),S(-Ⅱ)浓度(c)的垂向分布(深度>0、=0和<0 cm 分别表示沉积物上覆水,沉积物-水界面和沉积物环境)

    Fig.  4  Vertical distribution of DOC concentration(a), Fe (Ⅱ) (b) and S (Ⅱ) concentration (c) in the pore water of Maowei Sea sediments (Depth >0, =0 and <0 cm represent the overlying water layer, the sediment-water interface and the sediment)

    图  5  茅尾海沉积物孔隙水中DOC三维荧光参数垂向分布(深度=0 cm为上覆水样品):荧光组分光谱特征(a)和荧光各组分占比(b)

    Fig.  5  Three-Fluorescent spectral characteristics of the pore water DOC of Maowei Sea sediments (Depth=0 cm represents the overlying water layer): fluorescent components (a) and their proportions (b)

    图  6  沉积物及其间隙水中各参数间的相关性分析:H(a)、M1(b)、M2(c)、G(d)以及各氧化还原分区的Fe(Ⅱ)与TOC(e)、S(-Ⅱ)与TOC(f)

    Fig.  6  Correlation analysis of parameters at sediment cores: H (a), M1 (b), M2 (c), and G (d), and Fe(Ⅱ) vs TOC (e) and S(-Ⅱ) vs TOC (f) in each redox zone

    图  7  沉积物间隙水中Fe(Ⅱ)和S(-Ⅱ)的摩尔比随深度的分布:散点图、紫色直线和面积图分别代表Fe(Ⅱ)/S(-Ⅱ)、(Fe(Ⅱ)/S(-Ⅱ)=2)和ΔFe(Ⅱ)/ΔS(-Ⅱ)变化率

    Fig.  7  Vertical distributions of molar ratio of Fe(Ⅱ) to S(-Ⅱ) in sediment pore water: The scatter plot, the purple straight line, and the area chart correspond to Fe(Ⅱ)/S(-Ⅱ), Fe(Ⅱ)/S(-Ⅱ)=2 and change rate ratio ΔFe(Ⅱ)/ΔS(-Ⅱ), respectively.

  • [1] Bouillon S, Borges A V, Castañeda-Moya E, et al. Mangrove production and carbon sinks: a revision of global budget estimates[J]. Global Biogeochemical Cycles, 2008, 22(2): GB2013.
    [2] Alongi D M. Carbon cycling and storage in mangrove forests[J]. Annual Review of Marine Science, 2014, 6: 195−219. doi: 10.1146/annurev-marine-010213-135020
    [3] Alongi D M. Carbon cycling in the world’s mangrove ecosystems revisited: significance of non-steady state diagenesis and subsurface linkages between the forest floor and the coastal ocean[J]. Forests, 2020, 11(9): 977. doi: 10.3390/f11090977
    [4] 吕聪聪, 马亚东, 水柏年, 等. 瓯江口红树林沉积物有机碳埋藏及来源特征和影响因素[J]. 应用生态学报, 2024, 35(10): 2688−2696.

    Lyu Congcong, Ma Yadong, Shui Bonian, et al. Burial, source characteristics and influencing factors of organic carbon in mangrove sediments at the mouth of the Oujiang River Estuary, China[J]. Chinese Journal of Applied Ecology, 2024, 35(10): 2688−2696.
    [5] Alongi D M. Global significance of mangrove blue carbon in climate change mitigation[J]. Sci, 2020, 2(3): 67. doi: 10.3390/sci2030067
    [6] Kristensen E, Bouillon S, Dittmar T, et al. Organic carbon dynamics in mangrove ecosystems: a review[J]. Aquatic Botany, 2008, 89(2): 201−219. doi: 10.1016/j.aquabot.2007.12.005
    [7] Rue E L, Bruland K W. Complexation of iron(ⅡI) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method[J]. Marine Chemistry, 1995, 50(1/4): 117−138.
    [8] Wagai R, Mayer L M. Sorptive stabilization of organic matter in soils by hydrous iron oxides[J]. Geochimica et Cosmochimica Acta, 2007, 71(1): 25−35. doi: 10.1016/j.gca.2006.08.047
    [9] Lalonde K, Mucci A, Ouellet A, et al. Preservation of organic matter in sediments promoted by iron[J]. Nature, 2012, 483(7388): 198−200. doi: 10.1038/nature10855
    [10] Hyun J H, Smith A C, Kostka J E. Relative contributions of sulfate- and iron(ⅡI) reduction to organic matter mineralization and process controls in contrasting habitats of the Georgia saltmarsh[J]. Applied Geochemistry, 2007, 22(12): 2637−2651. doi: 10.1016/j.apgeochem.2007.06.005
    [11] Andreote F D, Jiménez D J, Chaves D, et al. The microbiome of Brazilian mangrove sediments as revealed by metagenomics[J]. PLoS One, 2012, 7(6): e38600. doi: 10.1371/journal.pone.0038600
    [12] Einsiedl F, Pilloni G, Ruth-Anneser B, et al. Spatial distributions of sulphur species and sulphate-reducing bacteria provide insights into sulphur redox cycling and biodegradation hot-spots in a hydrocarbon-contaminated aquifer[J]. Geochimica et Cosmochimica Acta, 2015, 156: 207−221. doi: 10.1016/j.gca.2015.01.014
    [13] Sasmito S D, Kuzyakov Y, Lubis A A, et al. Organic carbon burial and sources in soils of coastal mudflat and mangrove ecosystems[J]. CATENA, 2020, 187: 104414. doi: 10.1016/j.catena.2019.104414
    [14] Liao Weisen, Hu Jianfang, Zhou Haoda, et al. Sources and distribution of sedimentary organic matter in the Beibu Gulf, China: application of multiple proxies[J]. Marine Chemistry, 2018, 206: 74−83. doi: 10.1016/j.marchem.2018.09.006
    [15] Yu Fengling, Zong Yongqiang, Lloyd J M, et al. Bulk organic δ13C and C/N as indicators for sediment sources in the Pearl River delta and estuary, southern China[J]. Estuarine, Coastal and Shelf Science, 2010, 87(4): 618−630. doi: 10.1016/j.ecss.2010.02.018
    [16] Meyers P A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes[J]. Organic Geochemistry, 1997, 27(5/6): 213−250.
    [17] Dittmar T, Lara R J, Kattner G. River or mangrove? Tracing major organic matter sources in tropical Brazilian coastal waters[J]. Marine Chemistry, 2001, 73(3/4): 253−271.
    [18] Davison W, Zhang H. In situ speciation measurements of trace components in natural waters using thin-film gels[J]. Nature, 1994, 367(6463): 546−548. doi: 10.1038/367546a0
    [19] 潘峰, 郭占荣, 蔡宇, 等. 厦门潮间带沉积物磷、铁和硫的时空分布及磷释放风险研究[J]. 海洋学报, 2021, 43(4): 14−26.

    Pan Feng, Guo Zhanrong, Cai Yu, et al. Spatio-temporal variation of phosphorus, iron and sulfur in intertidal sediments of Xiamen and associated release risk of phosphorus[J]. Haiyang Xuebao, 2021, 43(4): 14−26.
    [20] Ding Siming, Sun Qin, Xu Di, et al. High-resolution simultaneous measurements of dissolved reactive phosphorus and dissolved sulfide: the first observation of their simultaneous release in sediments[J]. Environmental Science & Technology, 2012, 46(15): 8297−8304.
    [21] 龚梦丹, 金增锋, 王燕, 等. 长江中下游典型浅水湖泊沉积物-水界面磷与铁的耦合关系[J]. 湖泊科学, 2017, 29(5): 1103−1111. doi: 10.18307/2017.0508

    Gong Mengdan, Jin Zengfeng, Wang Yan, et al. Coupling between iron and phosphorus in sediments of shallow lakes in the middle and lower reaches of Yangtze River using diffusive gradients in thin films (DGT)[J]. Journal of Lake Sciences, 2017, 29(5): 1103−1111. doi: 10.18307/2017.0508
    [22] Han Chao, Ding Shiming, Yao Lei, et al. Dynamics of phosphorus–iron–sulfur at the sediment–water interface influenced by algae blooms decomposition[J]. Journal of Hazardous Materials, 2015, 300: 329−337. doi: 10.1016/j.jhazmat.2015.07.009
    [23] Ding Shiming, Chen Musong, Gong Mengdan, et al. Internal phosphorus loading from sediments causes seasonal nitrogen limitation for harmful algal blooms[J]. Science of the Total Environment, 2018, 625: 872−884. doi: 10.1016/j.scitotenv.2017.12.348
    [24] 张甜娜, 周石磊, 陈召莹, 等. 白洋淀夏季入淀区沉积物间隙水-上覆水水质特征及交换通量分析[J]. 环境科学, 2021, 42(7): 3176−3185.

    Zhang Tianna, Zhou Shilei, Chen Zhaoying, et al. Analysis of water quality and exchange flux of interstitial water-overlying water in sediments of Baiyangdian entrance area in summer[J]. Environmental Science, 2021, 42(7): 3176−3185.
    [25] Ma Weiwei, Zhu Maoxu, Yang Guipeng, et al. In situ, high-resolution DGT measurements of dissolved sulfide, iron and phosphorus in sediments of the East China Sea: insights into phosphorus mobilization and microbial iron reduction[J]. Marine Pollution Bulletin, 2017, 124(1): 400−410. doi: 10.1016/j.marpolbul.2017.07.056
    [26] Sun Qiyao, Sheng Yanqing, Yang Jian, et al. Dynamic characteristics of sulfur, iron and phosphorus in coastal polluted sediments, North China[J]. Environmental Pollution, 2016, 219: 588−595. doi: 10.1016/j.envpol.2016.06.019
    [27] Xiao Kai, Pan Feng, Santos I R, et al. Crab bioturbation drives coupled iron-phosphate-sulfide cycling in mangrove and salt marsh soils[J]. Geoderma, 2022, 424: 115990. doi: 10.1016/j.geoderma.2022.115990
    [28] Pagès A, Teasdale P R, Robertson D, et al. Representative measurement of two-dimensional reactive phosphate distributions and co-distributed iron(Ⅱ) and sulfide in seagrass sediment porewaters[J]. Chemosphere, 2011, 85(8): 1256−1261. doi: 10.1016/j.chemosphere.2011.07.020
    [29] 蔡宇, 郭占荣, 潘峰, 等. 厦门同安湾红树林及临近光滩沉积物孔隙水中溶解活性磷和亚铁分布特征的对比分析[J]. 海洋科学, 2019, 43(7): 32−40. doi: 10.11759/hykx20190111002

    Cai Yu, Guo Zhanrong, Pan Feng, et al. Difference in dissolved reactive phosphorus and ferrous iron distribution between the porewater of mangrove wetlands and bare mudflats in Tongan Bay[J]. Marine Sciences, 2019, 43(7): 32−40. doi: 10.11759/hykx20190111002
    [30] Pan Feng, Liu Huatai, Guo Zhanrong, et al. Geochemical behavior of phosphorus and iron in porewater in a mangrove tidal flat and associated phosphorus input into the ocean[J]. Continental Shelf Research, 2017, 150: 65−75. doi: 10.1016/j.csr.2017.09.012
    [31] Xiao Kai, Pan Feng, Li Yurui, et al. Coastal aquaculture regulates phosphorus cycling in estuarine wetlands: mobilization, kinetic resupply, and source-sink process[J]. Water Research, 2023, 234: 119832. doi: 10.1016/j.watres.2023.119832
    [32] 宁秋云, 赖廷和, 何斌源, 等. 广西茅尾海海域优势红树种群结构和动态变化特征[J]. 植物资源与环境学报, 2024, 33(5): 90−97. doi: 10.3969/j.issn.1674-7895.2024.05.09

    Ning Qiuyun, Lai Tinghe, He Binyuan, et al. Structure and dynamic variation characteristics of dominant mangrove populations in Maowei Sea area of Guangxi[J]. Journal of Plant Resources and Environment, 2024, 33(5): 90−97. doi: 10.3969/j.issn.1674-7895.2024.05.09
    [33] 郑暖方. 钦州湾水动力条件及悬沙分布变化特征[J]. 海岸工程, 1988, 7(1): 48−54.

    Zheng Nuanfang. Hydrodynamic condifions and distribution characteristics of suspended sand in Qinzhou Bay[J]. Coastal Engineering, 1988, 7(1): 48−54.
    [34] 孙永根, 丰爱平, 王恩康, 等. 钦州湾悬浮泥沙特征[J]. 海洋地质与第四纪地质, 2016, 36(1): 79−86.

    Sun Yonggen, Feng Aiping, Wang Enkang, et al. Characters of the suspended load in Qinzhou Bay[J]. Marine Geology & Quaternary Geology, 2016, 36(1): 79−86.
    [35] 王日明, 梁喜幸, 周晓妍, 等. 钦江河口潮滩红树林群落空间分布[J]. 遥感学报, 2022, 26(6): 1143−1154. doi: 10.11834/j.issn.1007-4619.2022.6.ygxb202206008

    Wang Riming, Liang Xixing, Zhou Xiaoyan, et al. Spatial distribution pattern of mangrove community in tidal flats of the Qinjiang Estuary[J]. National Remote Sensing Bulletin, 2022, 26(6): 1143−1154. doi: 10.11834/j.issn.1007-4619.2022.6.ygxb202206008
    [36] Xu Di, Wu Wei, Ding Shiming, et al. A high-resolution dialysis technique for rapid determination of dissolved reactive phosphate and ferrous iron in pore water of sediments[J]. Science of the Total Environment, 2012, 421-422: 245-252.
    [37] Singh S, D’Sa E J, Swenson E M. Chromophoric dissolved organic matter (CDOM) variability in Barataria Basin using excitation–emission matrix (EEM) fluorescence and parallel factor analysis (PARAFAC)[J]. Science of the Total Environment, 2010, 408(16): 3211−3222. doi: 10.1016/j.scitotenv.2010.03.044
    [38] Stedmon C A, Bro R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial[J]. Limnology and Oceanography: Methods, 2008, 6(11): 572−579. doi: 10.4319/lom.2008.6.572
    [39] Murphy K R, Stedmon C A, Wenig P, et al. OpenFluor– an online spectral library of auto-fluorescence by organic compounds in the environment[J]. Analytical Methods, 2014, 6(3): 658−661. doi: 10.1039/C3AY41935E
    [40] Zhang J, Wu Y, Jennerjahn T C, et al. Distribution of organic matter in the Changjiang (Yangtze River) Estuary and their stable carbon and nitrogen isotopic ratios: implications for source discrimination and sedimentary dynamics[J]. Marine Chemistry, 2007, 106(1/2): 111−126.
    [41] 邓彬彬. 基于210Pb、137Cs和239+240Pu的不同水环境沉积物年代学比较研究[D]. 上海: 华东师范大学, 2020.

    Deng Binbin. Sedimentary chronology comparison of 210Pb, 137Cs and 239+240Pu in different water environment[D]. Shanghai: East China Normal University, 2020.
    [42] Xu Li, Chen Jingfu, Xing Yongze, et al. Multi-factors monitoring enhances comprehension of the species diversity, structure and zonation patterns of Dafengjiang mangrove wetland in Beibu Gulf[J]. Regional Studies in Marine Science, 2025, 81: 103954. doi: 10.1016/j.rsma.2024.103954
    [43] Liu Hongxiao, Ren Hai, Hui Dafeng, et al. Carbon stocks and potential carbon storage in the mangrove forests of China[J]. Journal of Environmental Management, 2014, 133: 86−93.
    [44] Li Juanyong, Qu Wendi, Han Guangxuan, et al. Effects of drying-rewetting frequency on vertical and lateral loss of soil organic carbon in a tidal salt marsh[J]. Wetlands, 2020, 40(5): 1433−1443. doi: 10.1007/s13157-020-01286-5
    [45] 朱茂旭, 史晓宁, 杨桂朋, 等. 海洋沉积物中有机质早期成岩矿化路径及其相对贡献[J]. 地球科学进展, 2011, 26(4): 355−364.

    Zhu Maoxu, Shi Xiaoning, Yang Guipeng, et al. Relative contributions of various early diagenetic pathways to mineralization of organic matter in marine sediments: an overview[J]. Advances in Earth Science, 2011, 26(4): 355−364.
    [46] 董宏坤, 万世明, 刘喜停. 海洋沉积物早期成岩作用研究进展[J]. 沉积学报, 2022, 40(5): 1172−1187.

    Dong Hongkun, Wan Shiming, Liu Xiting. Research progress on geochemical behavior of minerals and elements in early diagenesis of marine sediments[J]. Acta Sedimentologica Sinica, 2022, 40(5): 1172−1187.
    [47] Clark M W, McConchie D, Lewis D W, et al. Redox stratification and heavy metal partitioning in Avicennia-dominated mangrove sediments: a geochemical model[J]. Chemical Geology, 1998, 149(3/4): 147−171.
    [48] Marchand C, Allenbach M, Lallier-Vergès E. Relationships between heavy metals distribution and organic matter cycling in mangrove sediments (Conception Bay, New Caledonia)[J]. Geoderma, 2011, 160(3/4): 444−456.
    [49] Komada T, Reimers C E, Luther ⅡI G W, et al. Factors affecting dissolved organic matter dynamics in mixed-redox to anoxic coastal sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68(20): 4099−4111. doi: 10.1016/j.gca.2004.04.005
    [50] Kida M, Kojima T, Tanabe Y, et al. Origin, distributions, and environmental significance of ubiquitous humic-like fluorophores in Antarctic lakes and streams[J]. Water Research, 2019, 163: 114901. doi: 10.1016/j.watres.2019.114901
    [51] Cory R M, McKnight D M. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter[J]. Environmental Science & Technology, 2005, 39(21): 8142−8149.
    [52] Wang Yixiang, Hu Hanzhe, Zhou Yajie, et al. Evolving characteristics of dissolved organic matter in soil profiles during 56 years of revegetation in Mu Us Sandy Land[J]. Plant and Soil, 2024, 497(1/2): 567−584.
    [53] Huang Xian, Yan Caixia, Nie Minghua, et al. Effect of colloidal fluorescence properties on the complexation of chloramphenicol and carbamazepine to the natural aquatic colloids[J]. Chemosphere, 2022, 286: 131604. doi: 10.1016/j.chemosphere.2021.131604
    [54] D’Andrilli J, Junker J R, Smith H J, et al. DOM composition alters ecosystem function during microbial processing of isolated sources[J]. Biogeochemistry, 2019, 142(2): 281−298. doi: 10.1007/s10533-018-00534-5
    [55] 周治刚, 岳文, 李辉权, 等. 树种类型和潮滩高程对广东湛江高桥红树林碳储量的影响[J]. 热带海洋学报, 2024, 43(2): 108−120.

    Zhou Zhigang, Yue Wen, Li Huiquan, et al. Influence of tree species and intertidal elevations on the carbon storage of the Gaoqiao mangrove area in Zhanjiang, Guangdong Province[J]. Journal of Tropical Oceanography, 2024, 43(2): 108−120.
    [56] 褚梦凡, 肖晓彤, 丁杨, 等. 海南儋州湾红树林区沉积有机质来源及碳储量[J]. 海洋科学, 2021, 45(2): 22−31.

    Chu Mengfan, Xiao Xiaotong, Ding Yang, et al. Sediment organic matter sources and carbon stock associated with a mangrove reserve in Danzhou Bay, Hainan, China[J]. Marine Sciences, 2021, 45(2): 22−31.
    [57] 王飞飞, 吴高杰, 杨盛昌, 等. 河口型红树林湿地土壤有机碳储量与来源特征[J]. 湿地科学, 2024, 22(5): 664−673.

    Wang Feifei, Wu Gaojie, Yang Shengchang, et al. Characterizing storage and sources of soil organic carbon in estuarine mangrove wetlands[J]. Wetland Science, 2024, 22(5): 664−673.
    [58] Gao Yu, Zhou Jian, Wang Liming, et al. Distribution patterns and controlling factors for the soil organic carbon in four mangrove forests of China[J]. Global Ecology and Conservation, 2019, 17: e00575. doi: 10.1016/j.gecco.2019.e00575
    [59] Witzgall K, Vidal A, Schubert D I, et al. Particulate organic matter as a functional soil component for persistent soil organic carbon[J]. Nature Communications, 2021, 12(1): 4115. doi: 10.1038/s41467-021-24192-8
    [60] Hemingway J D, Rothman D H, Grant K E, et al. Mineral protection regulates long-term global preservation of natural organic carbon[J]. Nature, 2019, 570(7760): 228−231. doi: 10.1038/s41586-019-1280-6
    [61] 朱耀军, 赵峰, 郭菊兰, 等. 湛江高桥红树林湿地有机碳分布及埋藏特征[J]. 生态学报, 2016, 36(23): 7841−7849.

    Zhu Yaojun, Zhao Feng, Guo Julan, et al. Below-ground organic carbon distribution and burial characteristics of the Gaoqiao mangrove area in Zhanjiang, Guangdong, Southern China[J]. Acta Ecologica Sinica, 2016, 36(23): 7841−7849.
    [62] 李旭林, 郑康振, 周炎武, 等. 红树林恢复对潮滩表层沉积物氮素的影响[J]. 生态学报, 2010, 30(12): 3163−3172.

    Li Xulin, Zheng Kangzhen, Zhou Yanwu, et al. Effect of mangrove restoration on nitrogen of surface sediment[J]. Acta Ecologica Sinica, 2010, 30(12): 3163−3172.
    [63] Lamb A L, Wilson G P, Leng M J. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material[J]. Earth-Science Reviews, 2006, 75(1/4): 29−57.
    [64] Meng Xianwei, Xia Peng, Li Zhen, et al. Mangrove degradation and response to anthropogenic disturbance in the Maowei Sea (SW China) since 1926 AD: mangrove-derived OM and pollen[J]. Organic Geochemistry, 2016, 98: 166−175. doi: 10.1016/j.orggeochem.2016.06.001
    [65] Haichar F E Z, Santaella C, Heulin T, et al. Root exudates mediated interactions belowground[J]. Soil Biology and Biochemistry, 2014, 77: 69−80. doi: 10.1016/j.soilbio.2014.06.017
    [66] Yamashita Y, Scinto L J, Maie N, et al. Dissolved organic matter characteristics across a subtropical wetland’s landscape: application of optical properties in the assessment of environmental dynamics[J]. Ecosystems, 2010, 13(7): 1006−1019. doi: 10.1007/s10021-010-9370-1
    [67] Yao Xin, Zhang Yunlin, Zhu Guangwei, et al. Resolving the variability of CDOM fluorescence to differentiate the sources and fate of DOM in Lake Taihu and its tributaries[J]. Chemosphere, 2011, 82(2): 145−155. doi: 10.1016/j.chemosphere.2010.10.049
    [68] 俞慎, 历红波. 沉积物再悬浮-重金属释放机制研究进展[J]. 生态环境学报, 2010, 19(7): 1724−1731. doi: 10.3969/j.issn.1674-5906.2010.07.038

    Yu Shen, Li Hongbo. Perspectives on the release of heavy metals via sediment resuspension[J]. Ecology and Environmental Sciences, 2010, 19(7): 1724−1731. doi: 10.3969/j.issn.1674-5906.2010.07.038
    [69] Canfield D E. Reactive iron in marine sediments[J]. Geochimica et Cosmochimica Acta, 1989, 53(3): 619−632. doi: 10.1016/0016-7037(89)90005-7
    [70] Mortimer R J G, Galsworthy A M J, Bottrell S H, et al. Experimental evidence for rapid biotic and abiotic reduction of Fe (Ⅲ) at low temperatures in salt marsh sediments: a possible mechanism for formation of modern sedimentary siderite concretions[J]. Sedimentology, 2011, 58(6): 1514−1529. doi: 10.1111/j.1365-3091.2011.01224.x
    [71] Stockdale A, Davison W, Zhang Hao. Micro-scale biogeochemical heterogeneity in sediments: a review of available technology and observed evidence[J]. Earth-Science Reviews, 2009, 92(1/2): 81−97.
    [72] Pester M, Knorr K H, Friedrich M W, et al. Sulfate-reducing microorganisms in wetlands – fameless actors in carbon cycling and climate change[J]. Frontiers in Microbiology, 2012, 3: 72.
    [73] Pan Feng, Guo Zhanrong, Cai Yu, et al. High-resolution imaging of labile P & S in coastal sediment: insight into the kinetics of P mobilization associated with sulfate reduction[J]. Marine Chemistry, 2020, 225: 103851. doi: 10.1016/j.marchem.2020.103851
    [74] Marchand C, Baltzer F, Lallier-Vergès E, et al. Pore-water chemistry in mangrove sediments: relationship with species composition and developmental stages (French Guiana)[J]. Marine Geology, 2004, 208(2/4): 361−381.
    [75] Oueslati W, van de Velde S, Helali M A, et al. Carbon, iron and sulphur cycling in the sediments of a Mediterranean lagoon (Ghar El Melh, Tunisia)[J]. Estuarine, Coastal and Shelf Science, 2019, 221: 156−169. doi: 10.1016/j.ecss.2019.03.008
    [76] Pan Feng, Guo Zhanrong, Cai Yu, et al. Kinetic exchange of remobilized phosphorus related to phosphorus-iron-sulfur biogeochemical coupling in coastal sediment[J]. Water Resources Research, 2019, 55(12): 10494−10517. doi: 10.1029/2019WR025941
    [77] Thibodeau F R, Nickerson N H. Differential oxidation of mangrove substrate by avicennia germinans and rhizophora mangle[J]. American Journal of Botany, 1986, 73(4): 512−516. doi: 10.1002/j.1537-2197.1986.tb12069.x
    [78] Kristensen E, King G M, Holmer M, et al. Sulfate reduction, acetate turnover and carbon metabolism in sediments of the Ao Nam Bor mangrove, Phuket, Thailand[J]. Marine Ecology Progress Series, 1994, 109(2/3): 245−255.
    [79] Meng Tao, Zhu Maoxu, Ma Weiwei, et al. Sulfur, iron, and phosphorus geochemistry in an intertidal mudflat impacted by shellfish aquaculture[J]. Environmental Science and Pollution Research, 2019, 26(7): 6460−6471. doi: 10.1007/s11356-018-04114-w
    [80] Santos I R, Burdige D J, Jennerjahn T C, et al. The renaissance of Odum’s outwelling hypothesis in ‘Blue Carbon’ science[J]. Estuarine, Coastal and Shelf Science, 2021, 255: 107361. doi: 10.1016/j.ecss.2021.107361
  • 加载中
图(7)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  8
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-24
  • 修回日期:  2025-04-14
  • 网络出版日期:  2025-07-25

目录

    /

    返回文章
    返回