Differences and trade-off strategies of leaf functional traits between old and young forests of the mangrove Aegiceras corniculatum
-
摘要: 桐花树(Aegiceras corniculatum)是我国常见的红树林先锋物种,在河口高等植物群落构成、海岸防风消浪方面具有重要作用。为了了解桐花树不同发育阶段叶功能性状的变异规律,本研究以桐花树为研究对象,分析了叶功能性状在老林与幼林之间的差异及权衡关系。结果表明:(1)叶面积、叶氮含量、叶厚度、叶绿素含量和叶干物质含量均表现为老林显著低于幼林,而比叶面积则表现为老林显著大于幼林。(2)老林与幼林的比叶面积与叶绿素含量、叶氮含量、叶干物质含量和叶厚度均呈显著负相关,且老林中相关性强度大于幼林;而老林与幼林的叶绿素含量、叶氮含量和叶厚度两两性状之间均呈显著正相关,且幼林中相关性强度大于老林。(3)主成分分析结果表明,比叶面积是影响桐花树老林的关键性状,叶绿素含量和叶氮含量是影响桐花树幼林的关键性状。(4)在叶功能性状的权衡关系中,幼林叶功能性状之间的权衡关系普遍大于老林。Abstract: Aegiceras corniculatum is a common pioneer species in China’s mangroves. It plays an important role in the composition of estuarine higher plant communities and in preventing wind and waves along the coast in southern China. To gain a deeper understanding of the variation patterns of leaf functional traits in different developmental stages (old and young forests) of A. corniculatum, this study used A. corniculatum as the research object and analyzed the differences and trade-offs of leaf functional traits between old and young forests. The results show that: (1)leaf area (LA), leaf nitrogen content (LN), leaf thickness (LT), chlorophyll content (Chl) and leaf dry matter content (LDMC) of the old forest were significantly lower than that of the young forest, while the specific leaf area (SLA) shows that the old forest was significantly larger than that of the young forest; (2)the SLA of old and young forests of A. corniculatum was significantly negatively correlated with Chl, LN, LDMC and LT, but the negative correlation was stronger in the old forests and weaker in young forests. There was a significant positive correlation between the Chl, LN and LT in the old forests and the young forests, but the correlation ship was stronger in the young forests and weaker in the old forests; (3)the results of principal component analysis showed that SLA was the key trait affecting the stability of the old forests, while Chl and LN were the key traits affecting the growth and development of the young forests; (4)the trade-offs relationship between leaf functional traits in young forests is generally greater than that in the old forests.
-
Key words:
- mangrove /
- Aegiceras corniculatum /
- old forests /
- young forests /
- leaf functional traits /
- trade-offs
-
图 2 老林与幼林叶功能性状的比较
LA: 叶面积 leaf area; LN: 叶氮含量 leaf nitrogen content; LT: 叶厚度 leaf thickness; Chl: 叶绿素含量chlorophyll content; LDMC: 叶干物质含量 leaf dry matter content; SLA: 比叶面积 specific leaf area。OF: 老林 old forest; YF: 幼林 young forest
Fig. 2 Comparison of leaf functional traits between old and young forests
图 3 不同方位老林与幼林叶功能性状比较
LA: 叶面积 leaf area; LN: 叶氮含量 leaf nitrogen; LT: 叶厚度 leaf thickness; Chl: 叶绿素含量chlorophyll content; LDMC: 叶干物质含量 leaf dry matter content; SLA: 比叶面积 specific leaf area。E: 东 east; S: 南 south; W: 西 west; N: 北 north
Fig. 3 Comparison of leaf functional traits between old and young forests at different locations
图 4 老林与幼林叶功能性状关联
LA: 叶面积 leaf area; LN: 叶氮含量 leaf nitrogen content; LT: 叶厚度 leaf thickness; Chl: 叶绿素含量chlorophyll content; LDMC: 叶干物质含量 leaf dry matter content; SLA: 比叶面积 specific leaf area。a: 老林; b: 幼林。*: p<0.05; **: p<0.01;***: p<0.001
Fig. 4 Correlation between leaf functional traits in old and young forests
-
[1] Duke N C, Meynecke J O, Dittmann S, et al. A world without mangroves?[J]. Science, 2007, 317(5834): 41−42. [2] Dasgupta R, Shaw R. Participatory mangrove management in a changing climate[M]. Tokyo: Springer, 2017: 229−245. [3] 范航清, 王文卿. 中国红树林保育的若干重要问题[J]. 厦门大学学报(自然科学版), 2017, 56(3): 323−330.Fan Hangqing, Wang Wenqing. Some thematic issues for mangrove conservation in China[J]. Journal of Xiamen University (Natural Science), 2017, 56(3): 323−330. [4] 阚志毅, 陈光程, 陈彬, 等. 热带气旋对红树林的影响研究进展——基于文献计量分析[J]. 生态学报, 2023, 43(18): 7796−7806.Kan Zhiyi, Chen Guangcheng, Chen Bin, et al. Research progress on effects of tropical cyclones on mangroves based on CiteSpace[J]. Acta Ecologica Sinica, 2023, 43(18): 7796−7806. [5] 王友绍. 全球气候变化对红树林生态系统的影响、挑战与机遇[J]. 热带海洋学报, 2021, 40(3): 1−14. doi: 10.11978/YG2020006Wang Youshao. Impacts, challenges and opportunities of global climate change on mangrove ecosystems[J]. Journal of Tropical Oceanography, 2021, 40(3): 1−14. doi: 10.11978/YG2020006 [6] 张乔民, 隋淑珍, 张叶春, 等. 红树林宜林海洋环境指标研究[J]. 生态学报, 2001, 21(9): 1427−1437. doi: 10.3321/j.issn:1000-0933.2001.09.005Zhang Qiaomin, Sui Shuzhen, Zhang Yechun, et al. Marine environmental indexes related to mangrove growth[J]. Acta Ecologica Sinica, 2001, 21(9): 1427−1437. doi: 10.3321/j.issn:1000-0933.2001.09.005 [7] 张宜辉. 几种红树植物繁殖体发育和幼苗成长过程的生理生态学研究[D]. 厦门: 厦门大学, 2003.Zhang Yihui. The study of propagule development and seedling growth in some mangrove species[D]. Xiamen: Xiamen University, 2003. [8] 王冰清, 丁岳炼, 谭家得, 等. 淡水淹水胁迫对桐花树幼苗生长及生理特征的影响[J]. 热带农业科学, 2021, 41(3): 23−29.Wang Bingqing, Ding Yuelian, Tan Jiade, et al. Effects of fresh water flooding stress on growth and physiological characteristics of Aegiceras corniculatum Seedlings[J]. Chinese Journal of Tropical Agriculture, 2021, 41(3): 23−29. [9] 冯立辉, 徐扬帆, 陈文峰, 等. 盐胁迫对桐花树生长及生理的响应[J]. 湖北农业科学, 2022, 61(22): 34−36.Feng Lihui, Xu Yangfan, Chen Wenfeng, et al. Growth and physiological response of Aegiceras corniculata to salinity stress[J]. Hubei Agricultural Sciences, 2022, 61(22): 34−36. [10] 何斌源, 赖廷和, 陈剑锋, 等. 两种红树植物白骨壤(Avicennia marina)和桐花树(Aegiceras corniculatum)的耐淹性[J]. 生态学报, 2007, 27(3): 1130−1138. doi: 10.3321/j.issn:1000-0933.2007.03.038He Binyuan, Lai Tinghe, Chen Jianfeng, et al. Studies of the tolerance of Avicennia marina and Aegiceras corniculatum to seawater immersion in Guangxi, China[J]. Acta Ecologica Sinica, 2007, 27(3): 1130−1138. doi: 10.3321/j.issn:1000-0933.2007.03.038 [11] 刘亚云, 孙红斌, 陈桂珠. 多氯联苯对桐花树幼苗生长及膜保护酶系统的影响[J]. 应用生态学报, 2007, 18(1): 123−128. doi: 10.3321/j.issn:1001-9332.2007.01.021Liu Yayun, Sun Hongbin, Chen Guizhu. Effects of PCBs on Aegiceras corniculatum seedlings growth and membrane protective enzyme system[J]. Chinese Journal of Applied Ecology, 2007, 18(1): 123−128. doi: 10.3321/j.issn:1001-9332.2007.01.021 [12] Deng Jun, Guo Peiyong, Zhang Xiaoyan, et al. An evaluation on the bioavailability of heavy metals in the sediments from a restored mangrove forest in the Jinjiang Estuary, Fujian, China[J]. Ecotoxicology and Environmental Safety, 2019, 180: 501−508. doi: 10.1016/j.ecoenv.2019.05.044 [13] 廖宝文, 郑德璋, 郑松发, 等. 红树植物桐花树育苗造林技术的研究[J]. 林业科学研究, 1998, 11(5): 474−480. doi: 10.3321/j.issn:1001-1498.1998.05.004Liao Baowen, Zheng Dezhang, Zheng Songfa, et al. The studies on seedling nursery and afforestation techniques of Aegiceras corniculatum of mangroves[J]. Forest Research, 1998, 11(5): 474−480. doi: 10.3321/j.issn:1001-1498.1998.05.004 [14] 覃杰, 杨景竣, 田红灯, 等. 不同播种处理对桐花树胚轴萌发和生长的影响[J]. 广西林业科学, 2024, 53(1): 62−70Qin Jie, Yang Jingjun, Tian Hongdeng, et al. Effects of different sowing treatments on germination and growths of Aegiceras corniculatum hypocotyls[J]. Guangxi Forestry Science, 2024, 53(1): 62−70. [15] 陈思意, 李军建, 殷雅欣, 等. 低温胁迫抑制桐花树幼苗光合作用的生理机制[J/OL]. 生态学杂志, 2024[2024-08-27]. http://kns.cnki.net/kcms/detail/21.1148.q.20240509.1835.006.html.Chen Siyi, Li Junjian, Yin Yaxin, et al. The physiological mechanism of low temperature stress inhibiting photosynthesis in seedlings of Aegiceras corniculatum[J]. Chinese Journal of Ecology, 2024[2024-08-27]. http://kns.cnki.net/kcms/detail/21.1148.q.20240509.1835.006.html. [16] Wang Shumin, Wang Youshao, Su Boyu, et al. Ecophysiological responses of five mangrove species (Bruguiera gymnorrhiza, Rhizophora stylosa, Aegiceras corniculatum, Avicennia marina, and Kandelia obovata) to chilling stress[J]. Frontiers in Marine Science, 2022, 9: 846566. doi: 10.3389/fmars.2022.846566 [17] 宁世江, 蒋运生, 邓泽龙. 广西龙门岛群桐花树天然林生物量的初步研究[J]. 植物生态学报, 1996, 20(1): 57−64.Ning Shijiang, Jiang Yunsheng, Deng Zelong. A preliminary study on biomass of Aegiceras corniculatum natural forest in Longmen Islets of Guangxi[J]. Chinese Journal of Plant Ecology, 1996, 20(1): 57−64. [18] Garnier E, Laurent G, Bellmann A, et al. Consistency of species ranking based on functional leaf traits[J]. New Phytologist, 2001, 152(1): 69−83. doi: 10.1046/j.0028-646x.2001.00239.x [19] Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985): 821−827. doi: 10.1038/nature02403 [20] Ackerly D, Knight C, Weiss S, et al. Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses[J]. Oecologia, 2002, 130(3): 449−457. doi: 10.1007/s004420100805 [21] Messier J, McGill B J, Lechowicz M J. How do traits vary across ecological scales? A case for trait-based ecology[J]. Ecology Letters, 2010, 13(7): 838−848. doi: 10.1111/j.1461-0248.2010.01476.x [22] Klipel J, Bergamin R S, Seger G D D S, et al. Plant functional traits explain species abundance patterns and strategies shifts among saplings and adult trees in Araucaria forests[J]. Austral Ecology, 2021, 46(7): 1084−1096. doi: 10.1111/aec.13044 [23] 王英鲲, 吕坤, 吴宇, 等. 蛛网萼叶功能性状随植物生长发育进程的变化[J]. 植物科学学报, 2021, 39(5): 526−534. doi: 10.11913/PSJ.2095-0837.2021.50526Wang Yingkun, Lü Kun, Wu Yu, et al. Changes in the functional traits of Platycrater arguta Sieb. et Zucc. leaves with plant growth and development[J]. Plant Science Journal, 2021, 39(5): 526−534. doi: 10.11913/PSJ.2095-0837.2021.50526 [24] 邹旭阁, 王寅, 王健铭, 等. 胡杨叶功能性状的协同与权衡及对树龄、土壤因子的响应[J]. 北京林业大学学报, 2024, 46(5): 82−92. doi: 10.12171/j.1000-1522.20220522Zou Xuge, Wang Yin, Wang Jianming, et al. Coordination and trade-off of leaf functional traits in Populus euphratica and their response to tree age and soil factors[J]. Journal of Beijing Forestry University, 2024, 46(5): 82−92. doi: 10.12171/j.1000-1522.20220522 [25] Reich P B, Wright I J, Cavender-Bares J, et al. The evolution of plant functional variation: traits, spectra, and strategies[J]. International Journal of Plant Sciences, 2003, 164(S3): S143−S164. doi: 10.1086/374368 [26] Baraloto C, Timothy C E, Poorter L, et al. Decoupled leaf and stem economics in rain forest trees[J]. Ecology letters, 2010, 13(11): 1338−1347. doi: 10.1111/j.1461-0248.2010.01517.x [27] Webb C T, Hoeting J A, Ames G M, et al. A structured and dynamic framework to advance traits-based theory and prediction in ecology[J]. Ecology Letters, 2010, 13(3): 267−283. doi: 10.1111/j.1461-0248.2010.01444.x [28] Violle C, Navas M L, Vile D, et al. Let the concept of trait be functional![J]. Oikos, 2007, 116(5): 882−892. doi: 10.1111/j.0030-1299.2007.15559.x [29] 王日明, 戴志军, 黄鹄, 等. 南流江河口桐花树生物动力地貌过程研究[J]. 海洋学报, 2021, 43(9): 102−114.Wang Riming, Dai Zhijun, Huang Hu, et al. Research on bio-morphodynamic processes of Aegiceras corniculatum in the Nanliu River Estuary[J]. Haiyang Xuebao, 2021, 43(9): 102−114. [30] 黄鹄, 戴志军, 盛凯. 广西北海银滩侵蚀及其与海平面上升的关系[J]. 台湾海峡, 2011, 30(2): 275−279.Huang Hu, Dai Zhijun, Sheng Kai. Coastal erosion and associated response to the sea-level rise of Yintan, Beihai, Guangxi Province[J]. Journal of Oceanography in Taiwan Strait, 2011, 30(2): 275−279. [31] 蔡锋, 苏贤泽, 曹惠美, 等. 华南砂质海滩的动力地貌分析[J]. 海洋学报, 2005, 27(2): 106−114Cai Feng, Su Xianze, Cao Huimei, et al. Analysis on morphodynamics of sandy beaches in South China[J]. Haiyang Xuebao, 2005, 27(2): 106−114 [32] Bradford J B, D’Amato A W. Recognizing trade-offs in multi-objective land management[J]. Frontiers in Ecology and the Environment, 2012, 10(4): 210−216. doi: 10.1890/110031 [33] Lu Nan, Fu Bojie, Jin Tiantian, et al. Trade-off analyses of multiple ecosystem services by plantations along a precipitation gradient across Loess Plateau landscapes[J]. Landscape Ecology, 2014, 29(10): 1697−1708. doi: 10.1007/s10980-014-0101-4 [34] Khan M N I, Suwa R, Hagihara A. Allometric relationships for estimating the aboveground phytomass and leaf area of mangrove Kandelia candel (L. ) Druce trees in the Manko Wetland, Okinawa Island, Japan[J]. Trees, 2005, 19(3): 266−272. doi: 10.1007/s00468-004-0377-0 [35] Alongi D M. Impact of global change on nutrient dynamics in mangrove forests[J]. Forests, 2018, 9(10): 596. doi: 10.3390/f9100596 [36] Rovai A S, Barufi J B, Pagliosa P R, et al. Photosynthetic performance of restored and natural mangroves under different environmental constraints[J]. Environmental pollution, 2013, 181: 233−241. doi: 10.1016/j.envpol.2013.06.023 [37] Wei L, Lin F, Gao J, et al. Complexity of leaf trait covariation for mangrove species[J]. npj Biodiversity[2025-05-07]. [38] Kodikara K A S, Pathmasiri R, Irfan A, et al. Oxidative stress, leaf photosynthetic capacity and dry matter content in young mangrove plant Rhizophora mucronata Lam. under prolonged submergence and soil water stress[J]. Physiology and Molecular Biology of Plants, 2020, 26(8): 1609−1622. doi: 10.1007/s12298-020-00843-w [39] 耿梦娅, 陈芳清, 吕坤, 等. 濒危植物长柄双花木(Disanthus cercidifolius var. longipes) 叶功能性状随生长发育阶段的变化[J]. 植物科学学报, 2018, 36(6): 851−858. doi: 10.11913/PSJ.2095-0837.2018.60851Geng Mengya, Chen Fangqing, Lü Kun, et al. Effects of developmental stage on the leaf functional traits of the endangered shrub species Disanthus cercidifolius var. longipes[J]. Plant Science Journal, 2018, 36(6): 851−858. doi: 10.11913/PSJ.2095-0837.2018.60851 [40] De La Riva E G, Tosto A, Pérez-Ramos I M, et al. A plant economics spectrum in Mediterranean forests along environmental gradients: Is there coordination among leaf, stem and root traits?[J]. Journal of vegetation science, 2016, 27(1): 187−199. doi: 10.1111/jvs.12341 [41] 盘远方, 陈兴彬, 姜勇, 等. 桂林岩溶石山灌丛植物叶功能性状和土壤因子对坡向的响应[J]. 生态学报, 2018, 38(5): 1581−1589.Pna Yuanfang, Chen Xingbin, Jiang Yong, et al. Changes in leaf functional traits and soil environmental factors in response to slope gradient in Karst hills of Guilin[J]. Acta Ecologica Sinica, 2018, 38(5): 1581−1589. [42] Albert C H, Thuiller W, Yoccoz N G, et al. Intraspecific functional variability: extent, structure and sources of variation[J]. Journal of ecology, 2010, 98(3): 604−613. doi: 10.1111/j.1365-2745.2010.01651.x [43] Albert C H, Grassein F, Schurr F M, et al. When and how should intraspecific variability be considered in trait-based plant ecology?[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2011, 13(3): 217−225. doi: 10.1016/j.ppees.2011.04.003 [44] Reich P B, Walters M B, Kloeppel B D, et al. Different photosynthesis-nitrogen relations in deciduous hardwood and evergreen coniferous tree species[J]. Oecologia, 1995, 104(1): 24−30. doi: 10.1007/BF00365558 [45] 王飞, 郭树江, 纪永福, 等. 不同演替阶段白刺灌丛沙堆土壤因子与叶功能性状关系研究[J]. 干旱区地理, 2022, 45(1): 176−184. doi: 10.12118/j.issn.10006060.2021.141Wang Fei, Guo Shujiang, Ji Yongfu, et al. Relationship between soil factors and leaf functional traits of Nitraria tangutorum shrub at different succession stages[J]. Arid Land Geography, 2022, 45(1): 176−184. doi: 10.12118/j.issn.10006060.2021.141 [46] 张碧嘉, 于淼, 徐晴, 等. 性别和发育阶段对绒毛白蜡光合特征及叶功能性状的影响[J]. 生态学报, 2024, 44(1): 295−305.Zhang Bijia, Yu Miao, Xu Qing, et al. Effects of gender and development stages on photosynthetic characteristics and leaf functional traits of Fraxinus velutina Torr[J]. Acta Ecologica Sinica, 2024, 44(1): 295−305. -