留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Swin-Transformer和时空融合注意力机制的ENSO预测

张霄智 方巍 王淏西

张霄智,方巍,王淏西. 基于Swin-Transformer和时空融合注意力机制的ENSO预测[J]. 海洋学报,2024,46(12):111–121 doi: 10.12284/hyxb2024127
引用本文: 张霄智,方巍,王淏西. 基于Swin-Transformer和时空融合注意力机制的ENSO预测[J]. 海洋学报,2024,46(12):111–121 doi: 10.12284/hyxb2024127
Zhang Xiaozhi,Fang Wei,Wang Haoxi. ENSO prediction based on Swin-Transformer and spatio-temporal fusion attention mechanism[J]. Haiyang Xuebao,2024, 46(12):111–121 doi: 10.12284/hyxb2024127
Citation: Zhang Xiaozhi,Fang Wei,Wang Haoxi. ENSO prediction based on Swin-Transformer and spatio-temporal fusion attention mechanism[J]. Haiyang Xuebao,2024, 46(12):111–121 doi: 10.12284/hyxb2024127

基于Swin-Transformer和时空融合注意力机制的ENSO预测

doi: 10.12284/hyxb2024127
基金项目: 国家自然科学基金面上项目(No.42475149);中国气象局流域强降水重点开放实验室开放研究基金(No.2023BHR−Y14);南京气象科技创新研究院北极阁开放研究基金(BJG202306);灾害天气国家重点实验室开放课题(2024LASW-B19);江苏省研究生科研与实践创新计划项目(NO.KYCX24_1533)。
详细信息
    作者简介:

    张霄智(1998—),男,江苏省南通市人,研究方向为深度学习、ENSO预测。E-mail:2201083714@qq.com

    通讯作者:

    方巍,教授,博士生导师,研究方向为人工智能、大数据分析、机器学习和计算机视觉。E-mail:fangwei@nuist.edu.cn

  • 中图分类号: P467

ENSO prediction based on Swin-Transformer and spatio-temporal fusion attention mechanism

  • 摘要: 厄尔尼诺−南方涛动预测是气候变化研究的热点问题之一。本文将Swin-Transformer模型与时空融合注意力机制相结合,采用1850−2014年CMIP6多模式模拟历史数据、1871−1979年SODA同化数据和1980−2023年GODAS同化数据,构建厄尔尼诺−南方涛动预测模型,即ENSO-STformer。该模型通过在CMIP6和SODA数据集上进行充分的训练,并在GODAS数据上进行评估,结果表明:本文模型在提前11个月的Niño3.4指数相关技巧的平均值上分别比CanCM4、CCSM3、GFDLaer04动力预报系统高出5.1%、21.6%和12.4%,同时,在中长期的Niño3.4指数相关技巧上显著优于其他深度学习模型,并可以进行长达24个月的有效ENSO预测,此外,在对2015−2016年厄尔尼诺事件模拟中表现出较强的应对春季预报障碍能力。
  • 图  1  本文模型结构

    Fig.  1  Model structure of this paper

    图  2  气候数据下采样与映射

    Fig.  2  Climate data downsampling and mapping

    图  3  Niño3.4指数预测器模块

    Fig.  3  Niño3.4 Index Predictor module

    图  4  ENSO-STformer、CNN[23]、ENSOTR[26]、GCNTR[33]和动力预报系统CanCM4[32]、CCSM3[32]、GFDL-aer04[32]与SINTEX-F[33]的ONI相关技巧情况

    Fig.  4  ONI related skills of ENSO-STformer, CNN[23], ENSOTR[26], GCNTR[33], CanCM4[32], CCSM3[32], GFDL-aer04[32] and SINTEX-F[33]

    图  5  ENSO-STformer模型在GODAS数据集上不同提前期的预测效果以及对应的相关系数

    Fig.  5  Prediction effect of ENSO-STformer model in different lead times and corresponding correlation coefficient on GODAS data set

    图  6  ENSO-STformer和CMC1-CanCM3在不同时期下ONI的预测值与真实值比较

    实线和虚线分别表示本文模型和CMC1-CanCM3的预测结果,不同颜色表示不同提前时期的情况

    Fig.  6  ONI predicted values of ENSO-STformer and CMC1-CanCM3 in different periods are compared with the real values

    Solid and dashed lines represent the predicted results of the model in this paper and CMC1-CanCM3 respectively, and different colors represent the situations in different advance periods

    表  1  CMIP6数据信息

    Tab.  1  CMIP6 data information

    序号模式名称所属国家研发机构
    1ACCESS-CM2澳大利亚CSIRO-ARCCSS
    2ACCESS-ESM1-5澳大利亚CSIRO
    3CAMS-CSM1-O中国CAMS
    4CanESM5-CanOE加拿大CCCma
    5E3SM-1-O美国E3SM-Project LLNL UCI
    6BCC-CSM2-HR中国BCC
    7FGOALS-f3-L中国CAS
    8FGOALS-g3中国CAS
    9FIO-ESM-2-0中国FIO-QLNM
    10AWI-CM-1-1-MR德国AWI
    11IPSL-CM6A-LR法国IPSL
    12MIROC6日本MIROC
    13MIROC-ES2L日本MIROC
    14MRI-ESM2-0日本MRI
    15NESM3中国NUIST
    16NorESM2-MM挪威NCC
    下载: 导出CSV

    表  2  SODA和GODAS数据信息

    Tab.  2  Data information of SODA and GODAS

    序号再分析数据所属国家研发机构
    1SODA美国UMD
    2GODAS美国NCEP
    下载: 导出CSV

    表  3  CMIP6和SODA数据划分

    Tab.  3  Data division between CMIP6 and SODA

    数据集训练样本数验证样本数
    CMIP6253216331
    SODA1302325
    下载: 导出CSV

    表  4  各模型评价指标对比结果

    Tab.  4  Comparison results of evaluation indicators of each model

    模型 RMSE ↓ MAE↓ PCC↑
    Swin-Transformer 1.11 0.95 0.52
    Swin(w/下采样) 0.91 0.77 0.64
    ENSO-STformer 0.76 0.63 0.73
    本文(w/时空融合注意力机制) 0.83 0.68 0.69
    本文(w/Niño3.4指数预测器) 0.88 0.72 0.66
      注:表中RMSE、MAE和PCC数据为验证集中所有样本在相应模型预测下的平均值,向下的箭头表示指标值越低模型性能越好,向上的箭头表示指标值越高模型性能越好,所加粗的数据是该指标下最优的情况。
    下载: 导出CSV
  • [1] 石世玮, 智海, 林鹏飞, 等. 热带太平洋盐度年际变化对海表温度异常作用比较: 1997/1998、2014/2015和2015/2016年El Niño事件[J]. 大气科学, 2020, 44(5): 1057−1075.

    Shi Shiwei, Zhi Hai, Lin Pengfei, et al. Contrasting salinity interannual variations in the tropical pacific and their effects on recent El Niño events: 1997/1998, 2014/2015, and 2015/2016[J]. Chinese Journal of Atmospheric Sciences, 2020, 44(5): 1057−1075.
    [2] 祁莉, 毛欣, 张文君. 北太平洋海温Victoria模态与ENSO年际关系的非对称特征[J]. 大气科学学报, 2022, 45(2): 280−291.

    Qi Li, Mao Xin, Zhang Wenjun. Asymmetric characteristics of interannual relationship between Victoria mode of North Pacific SST and ENSO[J]. Transactions of Atmospheric Sciences, 2022, 45(2): 280−291.
    [3] 万云霞, 晏红明, 金燕, 等. 两次不同ENSO背景下云南冬季极端冷事件的成因分析[J]. 大气科学学报, 2023, 46(4): 575−586.

    Wan Yunxia, Yan Hongming, Jin Yan, et al. Causes of two extremely cold events in Yunnan during different ENSO events[J]. Transactions of Atmospheric Sciences, 2023, 46(4): 575−586.
    [4] Zhang Ronghua, Zhou Lu, Gao Chuan, et al. A transformer-based coupled ocean-atmosphere model for ENSO studies[J]. Science Bulletin, 2024, 69(15): 2323−2327. doi: 10.1016/j.scib.2024.04.048
    [5] Wang Gaige, Cheng Honglei, Zhang Yiming, et al. ENSO analysis and prediction using deep learning: a review[J]. Neurocomputing, 2023, 520: 216−229. doi: 10.1016/j.neucom.2022.11.078
    [6] Cai Wenju, Santoso A, Gollins M, et al. Changing El Niño-Southern Oscillation in a warming climate[J]. Nature Reviews Earth & Environment, 2021, 2(9): 628−644.
    [7] Anttila-Hughes J K, Jina A S, Mccord G C. ENSO impacts child undernutrition in the global tropics[J]. Nature Communications, 2021, 12(1): 5785. doi: 10.1038/s41467-021-26048-7
    [8] Cai Wenju, Ng B, Geng Tao, et al. Anthropogenic impacts on twentieth-century ENSO variability changes[J]. Nature Reviews Earth & Environment, 2023, 4(6): 407−418.
    [9] 任宏利, 郑飞, 罗京佳, 等. 中国热带海−气相互作用与ENSO动力学及预测研究进展[J]. 气象学报, 2020, 78(3): 351−369. doi: 10.11676/qxxb2020.023

    Ren Hongli, Zheng Fei, Luo Jingjia, et al. A review of research on tropical air-sea interaction, ENSO dynamics, and ENSO prediction in China[J]. Acta Meteorologica Sinica, 2020, 78(3): 351−369. doi: 10.11676/qxxb2020.023
    [10] Dong Changming, Xu Guangjun, Han Guoqing, et al. Recent developments in artificial intelligence in oceanography[J]. Ocean-Land-Atmosphere Research, 2022, 2022: 9870950.
    [11] Zhu Yuchao, Zhang Ronghua, Moum J N, et al. Physics-informed deep-learning parameterization of ocean vertical mixing improves climate simulations[J]. National Science Review, 2022, 9(8): nwac044.
    [12] Zheng Gang, Li Xiaofeng, Zhang Ronghua, et al. Purely satellite data-driven deep learning forecast of complicated tropical instability waves[J]. Science Advances, 2020, 6(29): eaba1482. doi: 10.1126/sciadv.aba1482
    [13] Ling Fenghua, Luo Jingjia, Li Yue, et al. Multi-task machine learning improves multi-seasonal prediction of the Indian Ocean Dipole[J]. Nature Communications, 2022, 13(1): 7681.
    [14] Zhao Sen, Jin Feifei, Stuecker M F, et al. Explainable El Niño predictability from climate mode interactions[J]. Nature, 2024, 630(8018): 891−898. doi: 10.1038/s41586-024-07534-6
    [15] 黄刚, 胡开明, 唐颢苏, 等. 从能量学角度理解气候背景场对ENSO热带和热带外遥相关的影响[J]. 大气科学, 2024, 48(1): 218−227

    Huang Gang, Hu Kaiming, Tang Haosu, et al. Understanding the influence of background mean-state field on ENSO tropical and extratropical teleconnection from an energetic perspective[J]. Chinese Journal of Atmospheric Sciences, 2024, 48(1): 218−227
    [16] Liu Ze, Lin Yutong, Cao Yue, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 9992−10002.
    [17] Fekadu K. Ethiopian seasonal rainfall variability and prediction using canonical correlation analysis (CCA)[J]. Earth Sciences, 2015, 4(3): 112−119. doi: 10.11648/j.earth.20150403.14
    [18] Biabanaki M, Eslamian S S, Koupai J A, et al. A principal components/singular spectrum analysis approach to ENSO and PDO influences on rainfall in western Iran[J]. Hydrology Research, 2014, 45(2): 250−262.
    [19] Zhou Lu, Zhang Ronghua. A hybrid neural network model for ENSO prediction in combination with principal oscillation pattern analyses[J]. Advances in Atmospheric Sciences, 2022, 39(6): 889−902. doi: 10.1007/s00376-021-1368-4
    [20] Kido S, Richter I, Tozuka T, et al. Understanding the interplay between ENSO and related tropical SST variability using linear inverse models[J]. Climate Dynamics, 2023, 61(3/4): 1029−1048.
    [21] 杨淑贤, 零丰华, 应武杉, 等. 人工智能技术气候预测应用简介[J]. 大气科学学报, 2022, 45(5): 641−659.

    Yang Shuxian, Ling Fenghua, Ying Wushan, et al. A brief overview of the application of artificial intelligence to climate pre-diction[J]. Transactions of Atmospheric Sciences, 2022, 45(5): 641−659.
    [22] Fang Wei, Sha Yu, Sheng V S. Survey on the application of artificial intelligence in ENSO forecasting[J]. Mathematics, 2022, 10(20): 3793. doi: 10.3390/math10203793
    [23] Ham Y G, Kim J H, Luo Jingjia. Deep learning for multi-year ENSO forecasts[J]. Nature, 2019, 573(7775): 568−572. doi: 10.1038/s41586-019-1559-7
    [24] 周佩, 黄颖婕, 胡冰逸, 等. 基于LSTM深度学习的ENSO预测及其春季预报障碍研究[J]. 北京大学学报(自然科学版), 2021, 57(6): 1071−1078.

    Zhou Pei, Huang Yingjie, Hu Bingyi, et al. Spring predictability barrier phenomenon in ENSO prediction model based on LSTM Deep learning algorithm[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57(6): 1071−1078.
    [25] Geng Huantong, Wang Tianlei. Spatiotemporal model based on deep learning for ENSO forecasts[J]. Atmosphere, 2021, 12(7): 810. doi: 10.3390/atmos12070810
    [26] Ye Min, Nie Jie, Liu Anan, et al. Multi-year ENSO forecasts using parallel convolutional neural networks with heterogeneous architecture[J]. Frontiers in Marine Science, 2021, 8: 717184.
    [27] Rui Chuang, Sun Zhengya, Zhang Wensheng, et al. Enhancing ENSO predictions with self-attention ConvLSTM and temporal embeddings[J]. Frontiers in Marine Science, 2024, 11: 1334210. doi: 10.3389/fmars.2024.1334210
    [28] Lu Yunlong, FENG Junqiao, HU Dunxin. CMIP6 models simulation of the connection between North/South Pacific Meridional Mode and ENSO[J]. Journal of Oceanology and Limnology, 2024, 42(2): 439−453. doi: 10.1007/s00343-023-3024-6
    [29] Lyu Pumeng, Tang Tao, Ling Fenghua, et al. ResoNet: robust and explainable ENSO forecasts with hybrid convolution and transformer networks[J]. Advances in Atmospheric Sciences, 2024, 41(7): 1289−1298. doi: 10.1007/s00376-024-3316-6
    [30] Behringer D, Xue Yan. Evaluation of the global ocean data assimilation system at NCEP: the Pacific Ocean[C]//Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and LandSurface, AMS 84th Annual Meeting. Seattle, 2004.
    [31] Ouyang Daliang, He Su, Zhang Guozhong, et al. Efficient multi-scale attention module with cross-spatial learning[C]//ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Rhodes Island: IEEE, 2023: 1−5.
    [32] Kirtman B P, Min D, Infanti J M, et al. The North American multimodel ensemble: phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction[J]. Bulletin of the American Meteorological Society, 2014, 95(4): 585−601.
    [33] 杜先君, 李河. 基于集成GCN-Transformer网络的ENSO预测模型[J]. 海洋学报, 2023, 45(12): 156−165.

    Du Xianjun, Li He. ENSO prediction model based on integrated GCN-Transformer network[J]. Haiyang Xuebao, 2023, 45(12): 156−165.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  11
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-24
  • 修回日期:  2024-10-30
  • 刊出日期:  2024-12-06

目录

    /

    返回文章
    返回