留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂岛礁地形下类海啸波在复合式岸礁上的传播演变特性及其对海墙的冲击作用

王梓峻 屈科 王旭 王超 王傲宇

王梓峻,屈科,王旭,等. 复杂岛礁地形下类海啸波在复合式岸礁上的传播演变特性及其对海墙的冲击作用[J]. 海洋学报,2024,46(12):87–99 doi: 10.12284/hyxb2024117
引用本文: 王梓峻,屈科,王旭,等. 复杂岛礁地形下类海啸波在复合式岸礁上的传播演变特性及其对海墙的冲击作用[J]. 海洋学报,2024,46(12):87–99 doi: 10.12284/hyxb2024117
Wang Zijun,Qu Ke,Wang Xu, et al. The propagation and evolution characteristics of tsunami-like waves over complex reefs topography and their impact on sea walls[J]. Haiyang Xuebao,2024, 46(12):87–99 doi: 10.12284/hyxb2024117
Citation: Wang Zijun,Qu Ke,Wang Xu, et al. The propagation and evolution characteristics of tsunami-like waves over complex reefs topography and their impact on sea walls[J]. Haiyang Xuebao,2024, 46(12):87–99 doi: 10.12284/hyxb2024117

复杂岛礁地形下类海啸波在复合式岸礁上的传播演变特性及其对海墙的冲击作用

doi: 10.12284/hyxb2024117
基金项目: 国家重点研发计划(2022YFC3103601)。
详细信息
    作者简介:

    王梓峻(1998—),男,云南省保山市人,主要从事波浪水动力方面的研究。E-mail:1522458469@qq.com

    通讯作者:

    屈科,副教授,主要从事计算流体力学、全尺度海洋水动力研究。E-mail:kqu@csust.edu.cn

  • 中图分类号: P75

The propagation and evolution characteristics of tsunami-like waves over complex reefs topography and their impact on sea walls

  • 摘要: 真实海洋环境中的岛礁通常具有复合式地貌,礁坪往往呈现出非平整的特征。以往大量的研究工作主要关注简化的台阶式岛礁模型,并未对复合式岸礁非平整礁坪对波浪传播演变特性的影响开展深入的研究工作。为了弥补前人研究的不足,本文开展了物理模型试验,系统研究了类海啸波在复合式岸礁上的传播演变特性,以往的研究并没有考虑礁坪地形的非平整性对孤立波带来的影响,因此本文分析了入射波高、礁坪水深的影响。为了研究不同入射波条件下非平整礁坪几何特征对类海啸波传播演变以及海墙载荷特性的影响,本文进一步开展了一系列的高分辨率数值计算。先通过物理试验来验证数值模拟方法的准确性,再用数值计算研究了孤立波的入射波高和礁坪淹没水深2种波浪要素以及第二礁坪高度、礁坪台阶位置和礁前斜坡坡度3种复杂岛礁地形因素影响下孤立波的沿程最大波高、反射系数、最大爬高、海墙的最大冲击压强分布、海墙的最大总力与总力矩的变化规律。研究结果表明:孤立波的反射系数随入射波高的增大而减小,随礁坪水深的增大而增大,最大爬高随入射波高的增大而增大,随礁前斜坡的cot α增大而减小。海墙的最大总力与最大总力矩随入射波高和礁坪水深的增大而增大,随第二礁坪的高度增大而降低。海墙上最大冲击压强出现的位置会随入射波高的增大、礁坪水深的增大、礁坪台阶距离海墙距离的减小而上升。研究结果可为进一步保护沿海设施免受极端海洋环境的影响提供一定的参考。
  • 图  1  试验水槽布置图(单位:m)

    Fig.  1  Layout of the experimental water tank (unit: m)

    图  2  试验所求不同波浪要素下孤立波的反射系数与最大爬高

    Fig.  2  The reflection coefficients and maximum run-up of solitary waves under different wave elements as required by the experiment

    图  3  流速和爬高的时间序列对比(左为流速,右为爬高)

    Fig.  3  Time series comparison of flow velocity and run-up (left for flow velocity, right for run-up)

    图  4  自由表面时间序列对比

    Fig.  4  Comparison of time series of free surfaces

    图  5  不同时刻水体的速度云图

    Fig.  5  Velocity cloud charts of water body at different moments

    图  6  不同入射波高下孤立波的沿程最大波高分布

    Fig.  6  Distribution of maximum wave height along the path of solitary waves under different incident wave heights

    图  7  不同入射波高下海墙所受最大压强的沿墙分布(左侧:含静水压强,右侧:动水压强)

    Fig.  7  Distribution of maximum pressure along the seawall under different incident wave heights (left: including static water pressure, right: dynamic water pressure)

    图  8  不同入射波高下海墙所受最大总力与最大总力矩

    Fig.  8  The maximum total force and torque received by the sea wall under different incident wave heights

    图  9  不同礁坪水深下孤立波的沿程最大波高分布

    Fig.  9  Distribution of maximum wave height along the path of solitary waves under different reef flat water depths

    图  10  不同礁坪水深下海墙所受最大压强的沿墙分布(左侧:含静水压强,右侧:动水压强)

    Fig.  10  Distribution of maximum pressure along the seawall under different reef flat water depths(left: including static water pressure, right: dynamic water pressure)

    图  11  不同礁坪水深下海墙所受最大总力与最大总力矩

    Fig.  11  Maximum total force and maximum total moment on the seawall under different reef flat water depths

    图  12  不同第二礁坪高度下孤立波的沿程最大波高分布

    Fig.  12  Distribution of maximum wave height along the path of solitary waves under different second reef flat heights

    图  13  不同第二礁坪高度条件下孤立波的反射系数、最大爬高、海墙所受最大总力与最大总力矩

    Fig.  13  Reflection coefficients, maximum run-up, maximum total force, and maximum total moment on the seawall for solitary waves under different second reef flat height conditions

    图  14  不同第二礁坪高度下海墙所受最大压强的沿墙分布(左侧:含静水压强,右侧:动水压强)

    Fig.  14  Distribution of maximum pressure along the seawall under different second reef flat heights(left: including static water pressure, right: dynamic water pressure)

    图  15  不同礁坪台阶位置下孤立波的沿程最大波高分布

    Fig.  15  Distribution of maximum wave height along the path of solitary waves under different reef flat step positions

    图  16  不同礁坪台阶位置条件下孤立波的反射系数、最大爬高、海墙所受最大总力与最大总力矩

    Fig.  16  Reflection coefficients, maximum run-up, maximum total force, and maximum maximum total moment on the seawall for solitary waves under different reef flat step position conditions

    图  17  不同礁坪台阶位置下海墙所受最大压强的沿墙分布(左侧:含静水压强,右侧:动水压强)

    Fig.  17  Distribution of maximum pressure along the seawall under different reef flat step positions (left: including static water pressure, right: dynamic water pressure)

    图  18  不同礁前斜坡坡度下孤立波的沿程最大波高分布

    Fig.  18  Distribution of maximum wave height along the path of solitary waves under different front reef slope gradients

    图  19  不同礁前斜坡坡度条件下孤立波的反射系数、最大爬高、海墙所受最大总力与最大总力矩

    Fig.  19  Reflection coefficients, maximum run-up, maximum total force, and maximum total moment on the seawall for solitary waves under different front reef slope gradient conditions

    图  20  不同礁前斜坡坡度下海墙所受最大压强的沿墙分布(左侧:含静水压强,右侧:动水压强)

    Fig.  20  Distribution of maximum pressure along the seawall under different front reef slope gradients (left: including static water pressure, right: dynamic water pressure)

    表  1  浪高仪位置

    Tab.  1  Position of the wave height gauge

    浪高仪编号 WG1 WG2 WG3 WG4 WG5 WG6 WG7
    位置/m12.813.12113.67919.37223.8524.64225.535
    浪高仪编号WG8WG9WG10WG11WG12WG13WG14
    位置/m26.46826.96327.43427.61227.88328.74730.224
    下载: 导出CSV

    表  2  孤立波试验工况

    Tab.  2  Solitary wave test conditions

    H0 / m hr / m Hp / m Lp / m cot α
    0.02,0.04,0.06,0.08,0.1 0,0.025,0.05,0.075 0.125 0.974 8.271
    下载: 导出CSV

    表  3  孤立波的数值模拟验证工况

    Tab.  3  Numerical simulation verification conditions for solitary waves

    H0 / m h / m Hp / m Lp / m cot α
    0.06 0.655 0.125 0.974 8.271
    下载: 导出CSV

    表  4  不同入射波高下孤立波的数值模拟工况

    Tab.  4  Numerical simulation working conditions for solitary waves under different incident wave heights

    H0 / m h / m Hp / m Lp / m cot α
    0.02,0.04,0.06,0.08,0.1 0.655 0.125 0.974 8.271
    下载: 导出CSV

    表  5  不同礁坪水深下孤立波的数值模拟工况

    Tab.  5  Numerical simulation working conditions for solitary waves on reef flats at different water depths

    $h_r^{*} $ H0 / m Hp / m Lp / m cot α
    0,0.03970.0763,0.110 0.06 0.125 0.974 8.271
    下载: 导出CSV

    表  6  不同第二礁坪高度下孤立波的数值模拟工况

    Tab.  6  Numerical simulation working conditions for solitary waves at different heights of the second reef

    Hp / m H0 / m h / m Lp / m cot α
    0.075,0.1,0.125,0.15,0.175 0.06 0.655 1 8
    下载: 导出CSV

    表  7  不同礁坪台阶位置下孤立波的数值模拟工况

    Tab.  7  Numerical simulation working conditions for solitary waves at different reef platform step positions

    Lp / m H0 / m h / m Hp / m cot α
    0,0.5,1,1.5,2 0.06 0.655 0.125 8
    下载: 导出CSV

    表  8  不同礁前斜坡角度下孤立波的数值模拟工况

    Tab.  8  Numerical simulation working conditions for solitary waves under different reef-front slope angles

    cot α H0 / m h / m Hp / m Lp / m
    4,6,8,10,12 0.06 0.655 0.125 1
    下载: 导出CSV
  • [1] Cho Y S, Park K Y, Lin T H. Run-up heights of nearshore tsunamis based on quadtree grid system[J]. Ocean Engineering, 2004, 31(8/9): 1093−1109.
    [2] Synolakis C E, Bernard E N. Tsunami science before and beyond Boxing Day 2004[J]. Philosophical Transactions of the Royal Society. Mathematical, Physical, and Engineering Sciences, 2006, 364(1845): 2231−2265. doi: 10.1098/rsta.2006.1824
    [3] 姚远, 蔡树群, 王盛安. 海啸波数值模拟的研究现状[J]. 海洋科学进展, 2007, 25(4): 487−494. doi: 10.3969/j.issn.1671-6647.2007.04.016

    Yao Yuan, Cai Shuqun, Wang Sheng’an. Present status of study on numerical simulation of tsunami wave[J]. Advances in Marine Science, 2007, 25(4): 487−494. doi: 10.3969/j.issn.1671-6647.2007.04.016
    [4] Ferrario F, Beck M W, Storlazzi C D, et al. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation[J]. Nature Communications, 2014, 5: 3794. doi: 10.1038/ncomms4794
    [5] Qu K, Ren X Y, Kraatz S. Numerical investigation of tsunami-like wave hydrodynamic characteristics and its comparison with solitary wave[J]. Applied Ocean Research, 2017, 63: 36−48. doi: 10.1016/j.apor.2017.01.003
    [6] Sato S, Okayasu A, Yeh H, et al. Delayed survey of the 2011 Tohoku tsunami in the former exclusion zone in Minami-Soma, Fukushima Prefecture[J]. Pure and Applied Geophysics, 2014, 171(12): 3229−3240. doi: 10.1007/s00024-014-0809-8
    [7] Harinarayana T, Hirata N. Destructive earthquake and disastrous tsunami in the Indian Ocean, what next?[J]. Gondwana Research, 2005, 8(2): 246−257. doi: 10.1016/S1342-937X(05)71123-0
    [8] Mori N, Takahashi T. Nationwide post event survey and analysis of the 2011 Tohoku earthquake tsunami[J]. Coastal Engineering Journal, 2012, 54(1): 1250001.
    [9] 黎满球, 朱良生, 隋世峰. 珊瑚礁坪波浪的衰减特性分析[J]. 海洋工程, 2003, 21(2): 71−75. doi: 10.3969/j.issn.1005-9865.2003.02.012

    Li Manqiu, Zhu Liangsheng, Sui Shifeng. Characteristics of wave attenuation on the coral reef[J]. The Ocean Engineering, 2003, 21(2): 71−75. doi: 10.3969/j.issn.1005-9865.2003.02.012
    [10] 姚宇, 何文润, 李宇, 等. 基于 Navier-Stokes 方程珊瑚岛礁附近孤立波传播变形数值模拟[J]. 哈尔滨工程大学学报, 2018, 39(2): 392−398.

    Yao Yu, He Wenrun, Li Yu, et al. Numerical investigation of solitary wave transformation over reef islands based on Naiver-Stokes equations[J]. Journal of Harbin Engineering University, 2018, 39(2): 392−398.
    [11] 孙志林, 方若舟, 刘维杰. 孤立波在岸礁地形上传播与爬坡数值模拟研究[J]. 海洋工程, 2018, 36(6): 10−16, doi: 10.16483/j.issn.1005-9865.2018.06.002

    Sun Zhilin, Fang Ruozhou, Liu Weijie. Numerical modelling of solitary wave propagation and runup over fringing reefs[J]. The Ocean Engineering, 2018, 36(6): 10−16, doi: 10.16483/j.issn.1005-9865.2018.06.002
    [12] Roeber V, Cheung K F. Boussinesq-type model for energetic breaking waves in fringing reef environments[J]. Coastal Engineering, 2012, 70: 1−20. doi: 10.1016/j.coastaleng.2012.06.001
    [13] 卢坤, 屈科, 姚宇, 等. 基于类海啸波型的岛礁水动力特性数值模拟研究[J]. 海洋通报, 2021, 40(2): 121−132.

    Lu Kun, Qu Ke, Yao Yu, et al. Numerical investigation of hydrodynamic characteristics of fringing reef under the impact of tsunami-like wave[J]. Marine Science Bulletin, 2021, 40(2): 121−132.
    [14] 肖理, 房克照, 孙家文, 等. 孤立波对礁坪上直墙冲击试验和RANS数值模拟[J]. 海洋工程, 2021, 39(4): 86−95, doi: 10.16483/j.issn.1005-9865.2021.04.010

    Xiao Li, Fang Kezhao, Sun Jiawen, et al. Experiment and RANS simulation of the impact of solitary wave on a straight wall mounted on reef flat[J]. The Ocean Engineering, 2021, 39(4): 86−95, doi: 10.16483/j.issn.1005-9865.2021.04.010
    [15] Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598−1605. doi: 10.2514/3.12149
  • 加载中
图(20) / 表(8)
计量
  • 文章访问数:  180
  • HTML全文浏览量:  46
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-09
  • 修回日期:  2024-10-08
  • 网络出版日期:  2024-08-14
  • 刊出日期:  2024-12-06

目录

    /

    返回文章
    返回