Temporal and spatial variation characteristics of net-collected phytoplankton community structure and its relationship with key environmental factors in the artificial reef area of Xiangyun Bay, Hebei Province
-
摘要: 为探究河北省祥云湾人工鱼礁区浮游植物群落结构特征的时空变化规律,明确人工鱼礁区建设对浮游植物的养护效果及其与环境因子的关系,于2021年5月、8月、11月和2022年1月对祥云湾人工鱼礁区及对照区海域开展了网采浮游植物和关键环境因子季度调查。结果表明,4个季度共发现浮游植物3门39属70种,其中硅藻种类数最多(88.3%);浮游植物丰度呈现显著季节变化,夏、秋季丰度最高,2处人工鱼礁区浮游植物的年平均丰度为313.5 × 104 cells/m3,是对照区浮游植物丰度的1.4倍;除春季外,人工鱼礁区浮游植物的丰富度指数、多样性指数和均匀度指数均高于对照区,且礁区春−夏和夏−秋季节礁区优势种更替率低于对照区,表明人工鱼礁区群落结构相比对照区更稳定;人工鱼礁区浮游植物主要类群的生物增量指数为0.9~3.6,特别是硅藻类群的生物增量指数平均达到1.8;Pearson相关性分析显示,浮游植物丰度主要受TP、TN、NH4-N、NO2-N和DIP的影响,且各季节之间存在显著差异。研究表明,人工鱼礁建设对浮游植物具有良好的养护效果,且养护效果主要与营养盐的时空变化密切相关。Abstract: In order to investigate the characteristics and spatial-temporal variations of the phytoplankton community in artificial reef areas, as well as to elucidate the relationship between phytoplankton abundance and environmental factors associated with artificial reef construction, four surveys were conducted in 2021 (May, August, November) and 2022 (January) at two artificial reef areas and a control area in Xiangyun Bay. A total of 70 phytoplankton taxa belonging to 39 genera and 3 classes were identified in this study. The annual average abundance of phytoplankton in the artificial reef areas was recorded as 313.5 × 104 cells/m3, which were 1.4 times higher than that observed in the control area. Except in spring, the richness index, diversity index and evenness index of phytoplankton in the artificial reef areas were higher than those in the control area. The succession rate of dominant species from spring to summer and from summer to autumu in the reef areas were lower than that in the control area, suggesting greater stability of community structure within artificial reef areas compared to the control area. The biological increment index for each phytoplankton taxon ranged from 0.9 to 3.6; notably, Bacillariophyta displayed an average biological increment index value of 1.8. Pearson correlation analysis revealed that phytoplankton abundance was primarily influenced by TP, TN, NH4-N, NO2-N and DIP; significant seasonal differences were observed among these variables. These findings demonstrate that artificial reef construction has a positive conservation effect on phytoplankton communities closely related to temporal and spatial changes in nutrient availability.
-
图 3 人工鱼礁区和对照区浮游植物细胞丰度的比较
误差线上的不同小写字母表示浮游植物丰度在相同季节不同调查区域之间存在显著差异(P < 0.05)
Fig. 3 Comparison of phytoplankton cell abundance in artificial reef areas and control area
Different lowercase letters on the error bars indicate significant differences in phytoplankton abundance between different survey areas in the same season (P < 0.05)
图 4 人工鱼礁区和对照区浮游植物群落特征指数的比较
误差线上的不同小写字母表示浮游植物群落特征指数在相同季节不同调查区域之间存在显著差异(P < 0.05)
Fig. 4 Comparison of phytoplankton community parameters in artificial reef areas and control area
Different lowercase letters on the error bars indicate significant differences in phytoplankton community parameters between different survey areas in the same season (P < 0.05)
图 5 人工鱼礁区春季(a)、夏季(b)、秋季(c)和冬季(d)生物增量指数
A和B分别代表A礁区和B礁区;*代表生物增量指数在相同季节不同礁区之间存在显著差异(P < 0.05)
Fig. 5 Biological increment index of artificial reef areas in spring (a), summer (b), autumn (c) and winter (d)
A and B represent reef area A and reef area B, respectively; * represents significant difference in biological increment index between reef area A and reef area B in the same season (P < 0.05)
图 6 人工鱼礁区和对照区春季(a)、夏季(b)、秋季(c)和冬季(d)浮游植物丰度与环境因子的相关性分析
AA代表A礁区浮游植物丰度,AB代表B礁区植物丰度,AC代表对照区浮游植物丰度,DO代表溶解氧,TN代表总氮,TP代表总磷,DIP代表溶解无机磷,NH4-N代表氨氮,NO2-N代表亚硝态氮,NO3-N代表硝态氮;*代表在0.05级别(双尾)相关性显著;**代表在0.01级别(双尾)相关性极显著
Fig. 6 Pearson's correlation analysis between phytoplankton abundance and environmental factors of artificial reef areas and control area in spring (a), summer (b), autumn (c) and winter (d)
AA represent phytoplankton abundance in reef area A; AB represent phytoplankton abundance in reef area B; AC represent phytoplankton abundance in control area; DO represent dissolved oxygen; TN represent total nitrogen; TP represent total phosphorus; DIP represent dissolved inorganic phosphorus; NH4-N represent ammonia nitrogen; NO2-N represent nitrous nitrogen; NO3-N represent nitrate nitrogen; * represent significant correlation at 0.05 (two-tailed); ** represent very significant correlation at 0.01 (two-tailed)
表 1 人工鱼礁区和对照区环境因子的时空变化
Tab. 1 Spatio-temporal variations of environmental factors in artificial reef areas and control area
环境指标 区域 春季 夏季 秋季 冬季 水温T/℃ A 16.13 ± 0.25a 26.83 ± 0.13a 13.80 ± 0.20a 1.99 ± 0.01a B 16.05 ± 0.11a 26.80 ± 0.13a 13.60 ± 0.03a 2.00 ± 0.02a C 16.07 ± 0.12a 26.89 ± 0.12a 13.65 ± 0.15a 2.00 ± 0.03a 盐度S A 31.85 ± 0.78a 29.23 ± 0.13a 33.75 ± 0.25a 32.84 ± 0.29a B 32.05 ± 0.13a 29.40 ± 0.10a 33.50 ± 0.02a 32.77 ± 0.05a C 31.95 ± 0.15a 29.47 ± 0.16a 33.00 ± 0.00a 32.77 ± 0.08a 溶解氧DO
质量浓度/
(mg·L−1)A 8.96 ± 0.02a 8.74 ± 0.04b 9.64 ± 0.07a 7.70 ± 0.24b B 8.75 ± 0.03a 9.14 ± 0.04a 9.64 ± 0.07a 8.09 ± 0.03a C 8.97 ± 0.21a 8.61 ± 0.08c 9.62 ± 0.30a 7.56 ± 0.30b 酸碱度pH A 8.12 ± 0.02a 8.10 ± 0.02a 7.40 ± 0.20a 8.04 ± 0.02a B 8.07 ± 0.07a 8.10 ± 0.02a 7.20 ± 0.00a 8.04 ± 0.02a C 8.12 ± 0.02a 8.14 ± 0.02a 8.14 ± 0.03a 8.06 ± 0.01a 总氮TN
质量浓度/
(10−1mg·L−1)A 0.66 ± 0.04b 2.24 ± 0.06a 0.90 ± 0.06b 1.19 ± 0.30b B 0.76 ± 0.06b 2.31 ± 0.11a 1.00 ± 0.09a 1.29 ± 0.17a C 1.13 ± 0.18a 2.11 ± 0.04b 1.09 ± 0.10a 1.18 ± 0.10b 总磷TP
质量浓度/
(10−1mg·L−1)A 0.17 ± 0.03b 0.29 ± 0.06a 0.08 ± 0.01b 0.16 ± 0.01a B 0.17 ± 0.04b 0.22 ± 0.05a 0.09 ± 0.03b 0.14 ± 0.02b C 0.20 ± 0.02a 0.16 ± 0.04b 0.12 ± 0.01a 0.13 ± 0.01b 无机磷DIP
质量浓度/
(10−1mg·L−1)A 0.11 ± 0.02a 0.06 ± 0.01b 0.06 ± 0.01a 0.12 ± 0.01a B 0.09 ± 0.02b 0.08 ± 0.01a 0.08 ± 0.01a 0.10 ± 0.01a C 0.06 ± 0.04c 0.09 ± 0.01a 0.09 ± 0.01a 0.08 ± 0.01b 氨氮NH4-N
质量浓度/
(10−1mg·L−1)A 0.15 ± 0.01a 0.09 ± 0.01c 0.04 ± 0.01b 0.13 ± 0.03a B 0.13 ± 0.02a 0.16 ± 0.06a 0.05 ± 0.01b 0.14 ± 0.03a C 0.17 ± 0.04a 0.12 ± 0.04b 0.06 ± 0.03a 0.11 ± 0.03a 硝态氮
NO3-N
质量浓度/
(10−1mg·L−1)A 0.21 ± 0.20a 0.02 ± 0.02c 0.31 ± 0.01a 0.30 ± 0.01a B 0.06 ± 0.04a 0.10 ± 0.01a 0.32 ± 0.02a 0.33 ± 0.03a C 0.09 ± 0.03b 0.09 ± 0.05a 0.26 ± 0.05b 0.37 ± 0.05a 亚硝态氮
NO2-N
质量浓度/
(10−1mg·L−1)A 0.21 ± 0.01a 0.28 ± 0.01a 0.21 ± 0.01a 0.20 ± 0.05a B 0.18 ± 0.04a 0.32 ± 0.06a 0.20 ± 0.01a 0.21 ± 0.04a C 0.10 ± 0.03b 0.27 ± 0.03a 0.27 ± 0.05a 0.10 ± 0.05b A、B和C分别代表A礁区、B礁区和对照区;数字上角a, b, c表示环境因子在相同季节不同调查区域之间存在显著差异(P < 0.05)。 表 2 人工鱼礁区和对照区浮游植物第1优势种及优势度指数的时空变化
Tab. 2 Spatial-temporal variations of the first dominant species and dominance index of phytoplankton in artificial reef areas and control area
时间 区域 第1优势种 优势度 春季 A 圆筛藻 Coscinodiscus sp. 0.48 B 圆筛藻 Coscinodiscus sp. 0.38 C 圆筛藻 Coscinodiscus sp. 0.45 夏季 A 劳氏角毛藻 Chaetoceros lorenzianus 0.38 B 劳氏角毛藻 Chaetoceros lorenzianus 0.35 C 劳氏角毛藻 Chaetoceros lorenzianus 0.33 秋季 A 窄隙角毛藻 Chaetoceros affinis 0.28 B 旋链角毛藻 Chaetoceros curvisetus 0.28 C 窄隙角毛藻 Chaetoceros affinis 0.21 冬季 A 具槽帕拉藻 Paralia sulcata 0.34 B 具槽帕拉藻 Paralia sulcata 0.39 C 具槽帕拉藻 Paralia sulcata 0.53 A、B和C分别代表A礁区、B礁区和对照区。 表 3 人工鱼礁区和对照区浮游植物优势种的季节更替率
Tab. 3 The seasonal succession rate of the phytoplankton dominant species in artificial reef areas and control area
区域 春−夏 夏−秋 秋−冬 冬−春 A 0.92 0.75 0.88 0.78 B 0.93 0.80 1.00 0.92 C 1.00 0.88 0.91 0.89 A、B和C分别代表A礁区、B礁区和对照区。 表 4 人工鱼礁区和对照区各浮游植物类群丰度的对比
Tab. 4 Comparison of phytoplankton taxa abundance in artificial reef areas and control area
时间 区域 平均丰度/(104 cells·m−3) 硅藻 甲藻 金藻 春季 A 126.95 ± 27.12b 4.95 ± 2.85a 0a B 135.74 ± 8.78a 4.49 ± 2.82a 0a C 127.76 ± 80.63b 2.53 ± 1.17b 0a 夏季 A 623.70 ± 121.05b 19.86 ± 6.64b 0.002 ± 0.00a B 868.52 ± 168.49a 15.16 ± 5.91c 0.003 ± 0.00a C 452.56 ± 158.27c 26.53 ± 3.21a 0a 秋季 A 322.31 ± 73.07a 8.91 ± 2.18a 0b B 343.58 ± 223.42b 10.17 ± 6.33a 0.08 ± 0.08a C 275.26 ± 91.23b 3.02 ± 1.15c 0b 冬季 A 18.53 ± 0.40a 0.07 ± 0.07a 0a B 22.04 ± 1.64a 0.12 ± 0.10a 0a C 20.49 ± 7.15a 0.29 ± 0.21a 0a A、B和C分别代表A礁区、B礁区和对照区;误差线上的不同小写字母表示浮游植物类群丰度在相同季节不同调查区域之间存在显著差异(P < 0.05)。 表 5 人工鱼礁区和对照区常见赤潮种
Tab. 5 Common red tide species in artificial reef areas and control area
序号 学名 拉丁文 1 窄隙角毛藻 Chaetoceros affinis 2 旋链角毛藻 Chaetoceros curvisetus 3 柔弱角毛藻 Chaetoceros debilis 4 劳氏角毛藻 Chaetoceros lorenzianus 5 星脐圆筛藻 Coscinodiscus asteromphalus 6 格氏圆筛藻 Coscinodiscus granii 7 辐射列圆筛藻 Coscinodiscus radiatus 8 威利圆筛藻 Coscinodiscus wailesii 9 布氏双尾藻 Ditylum brightwellii 10 短角弯角藻 Eucampia zodiacus 11 薄壁几内亚藻 Guinardia flaccida 12 具槽帕拉藻 Melosira sulcata/Paralia sulcata 13 中华齿状藻 Odonella sinensis 14 尖刺拟菱形藻 Pseudo-nitzschia pungens 15 刚毛根管藻 Phizosolenia setigera 16 中肋骨条藻 Skeletonema costatum 17 佛氏海线藻 Thalassionema frauenfeldii 18 菱形海线藻 Thalassionema nitzschioides 19 圆海链藻 Thalassiosira rotula 20 叉状角藻 Ceratium furac 21 梭角藻 Ceratium fusus 22 三角角藻 Ceratium tripos -
[1] Bathmann U V. Mass occurrence of Salpa fusiformis in the spring of 1984 off Ireland: implications for sedimentation processes[J]. Marine Biology, 1988, 97(1): 127−135. doi: 10.1007/BF00391252 [2] 李清雪, 陶建华. 应用浮游植物群落结构指数评价海域富营养化[J]. 中国环境科学, 1999, 19(6): 548−551. doi: 10.3321/j.issn:1000-6923.1999.06.017Li Qingxue, Tao Jianhua. Application of phytoplankton community indexes in coastal eutrophication assessment[J]. China Environmental Science, 1999, 19(6): 548−551. doi: 10.3321/j.issn:1000-6923.1999.06.017 [3] Wijeyaratne W M D N, Nanayakkara D B M. Monitoring of water quality variation trends in a tropical urban wetland system located within a Ramsar wetland city: a GIS and phytoplankton based assessment[J]. Environmental Nanotechnology, Monitoring & Management, 2020, 14: 100323. [4] Andrew S M, Strzepek R F, Whitney S M, et al. Divergent physiological and molecular responses of light- and iron-limited Southern Ocean phytoplankton[J]. Limnology and Oceanography Letters, 2022, 7(2): 150−158. doi: 10.1002/lol2.10223 [5] Rodríguez P, Pizarro H. Phytoplankton and periphyton production and its relation to temperature in a humic lagoon[J]. Limnologica, 2015, 55: 9−12. doi: 10.1016/j.limno.2015.10.003 [6] Seaman W. Artificial Reef Evaluation: with Application to Natural Marine Habitats[M]. Boca Raton: CRC Press, 2000: 1−264. [7] Neori A, Ragg N L C, Shpigel M. The integrated culture of seaweed, abalone, fish and clams in modular intensive land-based systems: II. Performance and nitrogen partitioning within an abalone (Haliotis tuberculata) and macroalgae culture system[J]. Aquacultural Engineering, 1998, 17(4): 215−239. doi: 10.1016/S0144-8609(98)00017-X [8] Baine M. Artificial reefs: a review of their design, application, management and performance[J]. Ocean & Coastal Management, 2001, 44(3/4): 241−259. [9] 李海州. 海阳富瀚海洋牧场生态环境效应评价[D]. 烟台: 烟台大学, 2019.Li Haizhou. Evaluation of the ecological and environmental effects of Haiyang Fuhan Marine Ranching[D]. Yantai: Yantai University, 2019. [10] 杨柳, 张硕, 孙满昌, 等. 海州湾人工鱼礁海域春、夏季浮游植物群落结构及其与环境因子的关系[J]. 生物学杂志, 2011, 28(6): 14−18. doi: 10.3969/j.issn.2095-1736.2011.06.014Yang Liu, Zhang Shuo, Sun Manchang, et al. Community structure of phytoplankton and its relationships with environmental factors in artificial reef area of Haizhou Bay in spring and summer[J]. Journal of Biology, 2011, 28(6): 14−18. doi: 10.3969/j.issn.2095-1736.2011.06.014 [11] 李志伟, 崔力拓. 人类活动影响下唐山湾近岸海域营养盐及其结构变化[J]. 应用生态学报, 2016, 27(1): 307−314.Li Zhiwei, Cui Lituo. Nutrient composition changes in coastal waters of Tangshan Bay, Hebei, China under anthropogenic influence[J]. Chinese Journal of Applied Ecology, 2016, 27(1): 307−314. [12] 梁淼, 姜倩, 孙丽艳, 等. 曹妃甸近岸海域大、中型浮游动物优势种空间生态位研究[J]. 生态环境学报, 2018, 27(7): 1241−1250.Liang Miao, Jiang Qian, Sun Liyan, et al. Spatial niches of dominant macro-zooplankton and meso-zooplankton species in the coastal area of Caofeidian[J]. Ecology and Environmental Sciences, 2018, 27(7): 1241−1250. [13] 刘西汉, 石雅君, 姜会超, 等. 曹妃甸邻近海域浮游动物群落时空变化及其影响因素[J]. 海洋科学, 2021, 45(4): 114−125. doi: 10.11759/hykx20200601004Liu Xihan, Shi Yajun, Jiang Huichao, et al. Spatial and temporal variations of zooplankton community and their influential factors in Caofeidian coastal waters[J]. Marine Sciences, 2021, 45(4): 114−125. doi: 10.11759/hykx20200601004 [14] Jakobsen H H, Hansen P J. Prey size selection, grazing and growth response of the small heterotrophic dinoflagellate Gymnodinium sp. and the ciliate Balanion comatum—a comparative study[J]. Marine Ecology Progress Series, 1997, 158: 75−86. [15] Pauly D, Christensen V, Dalsgaard J, et al. Fishing down marine food webs[J]. Science, 1998, 279(5352): 860−863. doi: 10.1126/science.279.5352.860 [16] 胥延钊. 渤海渔业生物群落结构特征研究[D]. 上海: 上海海洋大学, 2021.Xu Yanzhao. Study on the characteristics of structure of community of fishery species in the Bohai Sea[D]. Shanghai: Shanghai Ocean University, 2021. [17] 杨昊陈. 基于Ecopath模型的唐山海洋牧场人工鱼礁区生态效果评估[D]. 大连: 大连海洋大学, 2019.Yang Haochen. Ecological effect evaluation of artificial reef area in Tangshan ocean pasture based on Ecopath model[D]. Dalian: Dalian Ocean University, 2019. [18] 中华人民共和国农业部. SC/T 9417−2015, 人工鱼礁资源养护效果评价技术规范[S]. 北京: 中国农业出版社, 2015.Ministry of Agriculture of the People’s Republic of China. SC/T 9417−2015, Technical specification for evaluation of the effects of artificial fish reef[S]. Beijing: China Agriculture Press, 2015. [19] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 12763−2007, 海洋调查规范[S]. 北京: 中国标准出版社, 2008.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, China National Standardization Administration. GB/T 12763−2007, Specifications for oceanographic survey[S]. Beijing: Standards Press of China, 2008. [20] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB 17378.3−2007, 海洋监测规范第3部分:样品采集、贮存和运输[S]. 北京: 中国标准出版社, 2008.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Administration. GB 17378.3−2007, The specification for marine monitoring-Part 3: sample collection, storage and transportation[S]. Beijing: Standards Press of China, 2008. [21] 杨关铭, 何德华, 王春生, 等. 台湾以北海域浮游桡足类生物海洋学特征的研究Ⅱ. 群落特征[J]. 海洋学报, 1999, 21(6): 72−80.Yang Guanming, He Dehua, Wang Chunsheng, et al. Study on the biological oceanography characteristics of planktonic copepods in the waters north of Taiwan Island Ⅱ. Community characteristics[J]. Haiyang Xuebao, 1999, 21(6): 72−80. [22] 孙军, 刘东艳. 多样性指数在海洋浮游植物研究中的应用[J]. 海洋学报, 2004, 26(1): 62−75. doi: 10.3321/j.issn:0253-4193.2004.01.007Sun Jun, Liu Dongyan. The application of diversity indices in marine phytoplankton studies[J]. Haiyang Xuebao, 2004, 26(1): 62−75. doi: 10.3321/j.issn:0253-4193.2004.01.007 [23] 刘玉明, 马克平. 生物群落多样性的测度方法 Ⅰα多样性的测度方法(下)[J]. 生物多样性, 1994, 2(4): 231-239.Liu Yuming, Ma Kepin. Measurement method for biodiversity of biological communities Ⅰ α methods for measuring diversity (Part 2)[J]. Biodiversity Science, 1994, 2(4): 231-239. [24] 李建都, 赵祺, 刘晋冀, 等. 黄渤海不同人工鱼礁区渔业生物群落结构特征及生物增量影响要素[J]. 中国水产科学, 2023, 30(3): 371−383. doi: 10.12264/JFSC2022-0406Li Jiandu, Zhao Qi, Liu Jinji, et al. Study on the characteristics of fishery biological community structure and factors influencing biomass increments in different artificial reefs in the Yellow Sea and Bohai Sea[J]. Journal of Fishery Sciences of China, 2023, 30(3): 371−383. doi: 10.12264/JFSC2022-0406 [25] 陈楠生, 黄海龙. 中国海洋浮游植物和赤潮物种的生物多样性研究进展(一): 渤海[J]. 海洋与湖沼, 2021, 52(2): 346−362. doi: 10.11693/hyhz20200900245Chen Nansheng, Huang Hailong. Advances in the study of biodiversity of phytoplankton and red tide species in China (I): the Bohai Sea[J]. Oceanologia et Limnologia Sinica, 2021, 52(2): 346−362. doi: 10.11693/hyhz20200900245 [26] 李志伟, 崔力拓. 环境因子对唐山湾海域浮游动物群落结构的驱动作用[J]. 应用生态学报, 2017, 28(11): 3797−3804.Li Zhiwei, Cui Lituo. Environmental control of zooplankton community structure in Tangshan Bay, China[J]. Chinese Journal of Applied Ecology, 2017, 28(11): 3797−3804. [27] 张雪, 徐晓甫, 戴媛媛, 等. 天津近岸人工鱼礁海域浮游植物群落及其变化特征[J]. 渔业科学进展, 2018, 39(6): 1−10.Zhang Xue, Xu Xiaofu, Dai Yuanyuan, et al. Phytoplankton community characteristics and variation at artificial reefs of Tianjin offshore[J]. Progress in Fishery Sciences, 2018, 39(6): 1−10. [28] 刘洪生, 马翔, 章守宇, 等. 人工鱼礁流场效应的模型实验[J]. 水产学报, 2009, 33(2): 229−236.Liu Hongsheng, Ma Xiang, Zhang Shouyu, et al. Research on model experiments of effects of artificial reefs on flow field[J]. Journal of Fisheries of China, 2009, 33(2): 229−236. [29] 杨柳. 海州湾人工鱼礁区浮游生物变动分析[D]. 上海: 上海海洋大学, 2011.Yang Liu. Variations of plankton in artificial reef area of Haizhou Bay[D]. Shanghai: Shanghai Ocean University, 2011. [30] Xiao Wupeng, Liu Xin, Irwin A J, et al. Warming and eutrophication combine to restructure diatoms and dinoflagellates[J]. Water Research, 2018, 128: 206−216. doi: 10.1016/j.watres.2017.10.051 [31] Nishikawa T, Tarutani K, Yamamoto T. Nitrate and phosphate uptake kinetics of the harmful diatom Eucampia zodiacus Ehrenberg, a causative organism in the bleaching of aquacultured Porphyra thalli[J]. Harmful Algae, 2009, 8(3): 513−517. doi: 10.1016/j.hal.2008.10.006 [32] 栾青杉, 康元德, 王俊. 渤海浮游植物群落的长期变化(1959~2015)[J]. 渔业科学进展, 2018, 39(4): 9−18.Luan Qingshan, Kang Yuande, Wang Jun. Long-term changes in the phytoplankton community in the Bohai Sea (1959~2015)[J]. Progress in Fishery Sciences, 2018, 39(4): 9−18. [33] 陈善文, 高亚辉, 杜虹, 等. 双环海链藻(Thalassiosira diporocyclus Hasle)赤潮[J]. 海洋与湖沼, 2004, 35(2): 130−137. doi: 10.3321/j.issn:0029-814X.2004.02.004Chen Shanwen, Gao Yahui, Du Hong, et al. First recording of Thalassiosira diporocyclus bloom in the Southeast China Sea[J]. Oceanologia et Limnologia Sinica, 2004, 35(2): 130−137. doi: 10.3321/j.issn:0029-814X.2004.02.004 [34] 张琪, 孙家伟, 冯延竹, 等. 天津沿海赤潮发生的基本特征研究[J]. 海洋预报, 2020, 37(1): 62−66. doi: 10.11737/j.issn.1003-0239.2020.01.009Zhang Qi, Sun Jiawei, Feng Yanzhu, et al. Research on the basic characteristics of red tide in Tianjin coastal area[J]. Marine Forecasts, 2020, 37(1): 62−66. doi: 10.11737/j.issn.1003-0239.2020.01.009 [35] Paxton A B, Revels L W, Rosemond R C, et al. Convergence of fish community structure between a newly deployed and an established artificial reef along a five-month trajectory[J]. Ecological Engineering, 2018, 123: 185−192. doi: 10.1016/j.ecoleng.2018.09.012 [36] 赵荣荣. 长岛挡浪岛人工鱼礁生态修复效果初步评价[D]. 舟山: 浙江海洋大学, 2019.Zhao Rongrong. Preliminary evaluation on ecological restoration effect of artificial reefs in Danglang Island, ChangDao Island[D]. Zhoushan: Zhejiang Ocean University, 2019. [37] 侯润. 祥云湾海洋牧场牡蛎礁构建效果评估[D]. 秦皇岛: 河北农业大学, 2022.Hou Run. Effect evaluation of oyster reef construction in Xiangyun Bay marine ranching[D]. Qinhuangdao: Hebei Agricultural University, 2022. [38] 崔毅, 陈碧鹃, 马绍赛. 乳山湾浮游植物与环境因子的相关关系研究[J]. 应用生态学报, 2000, 11(6): 935−938. doi: 10.3321/j.issn:1001-9332.2000.06.030Cui Yi, Chen Bijuan, Ma Shaosai. Correlation of photoplankton and its environmental factors in Rushan Bay[J]. Chinese Journal of Applied Ecology, 2000, 11(6): 935−938. doi: 10.3321/j.issn:1001-9332.2000.06.030 [39] 李大鹏, 张硕, 石一茜, 等. 海州湾海洋牧场浮游植物群落年际变化特征分析[J]. 生态环境学报, 2017, 26(2): 285−295.Li Dapeng, Zhang Shuo, Shi Yiqian, et al. Different seasonal changes of phytoplankton community in the marine farming of Haizhou Bay[J]. Ecology and Environmental Sciences, 2017, 26(2): 285−295. [40] 刘长东, 易坚, 郭晓峰, 等. 荣成俚岛人工鱼礁区浮游植物群落结构及其与环境因子的关系[J]. 中国海洋大学学报(自然科学版), 2016, 46(3): 50−59.Liu Changdong, Yi Jian, Guo Xiaofeng, et al. Phytoplankton community structure in artificial reef area around Lidao, Rongcheng, and its relationship with environmental factors[J]. Periodical of Ocean University of China, 2016, 46(3): 50−59. [41] 李欣宇, 张云岭, 齐遵利, 等. 基于Ecopath模型的祥云湾海洋牧场生态系统结构和能量流动分析[J]. 大连海洋大学学报, 2023, 38(2): 311−322.Li Xinyu, Zhang Yunling, Qi Zunli, et al. Analysis of ecosystem structure and energy flow in Xiangyun Bay marine ranching based on Ecopath model[J]. Journal of Dalian Ocean University, 2023, 38(2): 311−322. [42] 周毅, 杨红生, 张福绥. 海水双壳贝类的N、P排泄及其生态效应[J]. 中国水产科学, 2003, 10(2): 165−168. doi: 10.3321/j.issn:1005-8737.2003.02.016Zhou Yi, Yang Hongsheng, Zhang Fusui. Nitrogen and phosphorus excretions by marine bivalves and the ecological effects[J]. Journal of Fishery Sciences of China, 2003, 10(2): 165−168. doi: 10.3321/j.issn:1005-8737.2003.02.016 [43] 肖荣, 杨红. 人工鱼礁建设对福建霞浦海域营养盐输运的影响[J]. 海洋科学, 2016, 40(2): 94−101. doi: 10.11759/hykx20150331002Xiao Rong, Yang Hong. Influence of artificial reef construction on the transportation of nutrients in the off-shore area of Xiapu, Fujian[J]. Marine Sciences, 2016, 40(2): 94−101. doi: 10.11759/hykx20150331002 [44] 王旭. 祥云湾海洋牧场贝藻礁生态系统结构功能研究[D]. 青岛: 中国海洋大学, 2022.Wang Xu. The study of the structure and function of artificial algae-shellfish reef ecosystem at Xiangyun Bay marine ranching[D]. Qingdao: Ocean University of China, 2022. [45] Cloern J E. Does the benthos control phytoplankton biomass in South San Francisco Bay?[J]. Marine Ecology Progress Series, 1982, 9: 191−202. doi: 10.3354/meps009191 [46] Prins T C, Smaal A C. The role of the blue mussel Mytilus edulis in the cycling of nutrients in the Oosterschelde estuary (The Netherlands)[J]. Hydrobiologia, 1994, 282-283: 413−429. [47] 张升利, 张安国, 袁秀堂, 等. 底播增殖菲律宾蛤仔碳、氮、磷收支[J]. 应用生态学报, 2015, 26(4): 1244−1252.Zhang Shengli, Zhang Anguo, Yuan Xiutang, et al. Carbon, nitrogen, and phosphorus budgets of bottom-cultured clam Ruditapes philippinarum[J]. Chinese Journal of Applied Ecology, 2015, 26(4): 1244−1252. [48] 李希磊, 杨俊丽, 于潇, 等. 烟台四十里湾扇贝养殖区浮游植物群落调查[J]. 海洋科学, 2018, 42(8): 30−37. doi: 10.11759/hykx20180109002Li Xilei, Yang Junli, Yu Xiao, et al. Investigation of phytoplankton community in the scallop culture area of Sishili Bay in Yantai[J]. Marine Sciences, 2018, 42(8): 30−37. doi: 10.11759/hykx20180109002 [49] 周毅, 杨红生, 何义朝, 等. 四十里湾几种双壳贝类及污损动物的氮、磷排泄及其生态效应[J]. 海洋与湖沼, 2002, 33(4): 424−431. doi: 10.3321/j.issn:0029-814X.2002.04.012Zhou Yi, Yang Hongsheng, He Yichao, et al. Nitrogen and phosphorus excretion and its ecological effect by several bivalves and fouling animals[J]. Oceanologia et Limnologia Sinica, 2002, 33(4): 424−431. doi: 10.3321/j.issn:0029-814X.2002.04.012 [50] 高凤祥. 乳山湾浮游植物群落结构与太平洋牡蛎性成熟的研究[D]. 青岛: 中国海洋大学, 2006.Gao Fengxiang. Studies on phytoplankton community structure and sexual maturation of the Pacific Oyster[D]. Qingdao: Ocean University of China, 2006. [51] Schindler D W, Hecky R E, Findlay D L, et al. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(32): 11254−11258. [52] 胡章喜, 徐宁, 段舜山. 不同氮源对4种海洋微藻生长的影响[J]. 生态环境学报, 2010, 19(10): 2452−2457.Hu Zhangxi, Xu Ning, Duan Shunshan. Effects of nitrogen sources on the growth of Heterosigma akashiw, Karenia sp. , Phaeocystis globosa and Chaetoceros sp. [J]. Ecology and Environmental Sciences, 2010, 19(10): 2452−2457. [53] Harrison W G, Douglas D, Falkowski P, et al. Summer nutrient dynamics of the Middle Atlantic Bight: nitrogen uptake and regeneration[J]. Journal of Plankton Research, 1983, 5(4): 539−556. doi: 10.1093/plankt/5.4.539