Study on biodiversity distribution patterns based on the AquaMaps database: A case study of the equatorial waters, and offshores of Ecuador and Peru in the southeast Pacific Ocean
-
摘要: 生物多样性是生态系统稳定的重要生物基础。为探究东南太平洋的生物多样性及其对海域环境的响应关系,本研究基于AquaMaps数据库的物种数据,研究分析了赤道海域、厄瓜多尔以及秘鲁外海的Zeta多样性和生物多样性指数(Margalef指数、Shannon-Wiener指数、Pielou指数),并利用混合模型拟合分析生物多样性指数与海域环境因子的关系。结果显示,3个研究海域记录的相同物种数有118种,以鱼类为主;赤道海域Zeta多样性分析的共有物种数量为24.00,厄瓜多尔外海的为18.00,秘鲁外海的为12.00;在Zeta阶数2至Zeta阶数5之间,3个研究海域的Zeta比率增大明显,随后逐渐趋于稳定。赤道海域的Margalef指数、Shannon-Wiener指数和Pielou指数分别为13.34 ± 3.56,3.80 ± 0.25,0.61 ± 0.01,厄瓜多尔外海的分别为37.58 ± 36.49,4.67 ± 0.92,0.63 ± 0.02,秘鲁外海的分别为22.83 ± 18.95,4.22 ± 0.76和0.62 ± 0.02。3个研究海域之间的海表温度、盐度、叶绿素a浓度及混合层深度均存在显著差异。生物多样性指数均与海表温度和海水盐度呈显著的负效应关系,而与叶绿素a浓度和混合层深度的关系不显著。研究表明,东南太平洋赤道海域、厄瓜多尔外海及秘鲁外海的物种组成以鱼类为主,生物多样性存在海域间差异,以厄瓜多尔外海的生物多样性指数最高。Abstract: Biodiversity serves as a crucial biological foundation for ecosystem stability. This study aimed to investigate the biodiversity of the southeast Pacific and its response to marine environmental conditions through analyzing Zeta diversity in equatorial waters, and offshores of Ecuador and Peru based on species data from the AquaMaps database. This study also examined the biodiversity indices, including Margalef index, Shannon-Wiener index and Pielou index, and evaluated the relationships between these biodiversity indices and marine environment factors by using mixed-effects models. The results revealed that there were a total of 118 species commonly recorded across the three study areas, with fish being the predominant species group. Analysis of Zeta diversity revealed that the average compositional similarity was 24.00 species in the Equatorial waters, 18.00 species off the coast of Ecuador and 12.00 species offshore of Peru. The Zeta ratio notably increased from Zeta order 2 to Zeta order 5 across the study areas, stabilizing thereafter. The biodiversity indices were calculated as follows: in the equatorial waters the Margalef index was 13.34 ± 3.56, the Shannon-Wiener index was 3.80 ± 0.25, and the Pielou index was 0.61 ± 0.01. In the offshore of Ecuador, the indices were 37.58 ± 36.49 for the Margalef index, 4.67 ± 0.92 for the Shannon-Wiener index, and 0.63 ± 0.02 for the Pielou index. In the offshore of Peru, the indices were 22.83 ± 18.95 for the Margalef index, 4.22 ± 0.76 for the Shannon-Wiener index, and 0.62 ± 0.02 for the Pielou index. Significant differences were observed in sea surface temperature, salinity, chlorophyll a concentration, and mixed layer depth between the equatorial waters, and offshores of Ecuador and Peru. The biodiversity indices showed significant negative correlations with sea surface temperature and salinity, but the effects from chlorophyll a concentration and mixed layer depth were not determined. The study suggests that the species composition in the equatorial water, and offshores of Ecuador and Peru in the southeast Pacific is predominated by fish, and biodiversity varied spatially, with the highest biodiversity indices recorded in the offshore of Ecuador.
-
Key words:
- southeast Pacific /
- biodiversity /
- Zeta diversity /
- marine environment /
- ecosystem.
-
图 6 海表温度及海水盐度对东南太平洋生物多样性指数的效应关系
蓝色实线和灰色阴影分别表示GAMM拟合曲线及其95%置信区间
Fig. 6 The effects of sea surface temperature and salinity on the biodiversity indices in the southeast Pacific Ocean
Blue solid lines depict average model fits of generalized additive mixed-effects models, with 95% confidence intervals in grey shading
表 1 2011−2020年东南太平洋赤道海域、厄瓜多尔外海、秘鲁外海的环境因子数据
Tab. 1 Summary of environmental variables for the equatorial water, and offshores of Ecuador and Peru in the southeast Pacific from 2011 to 2020
环境因子 赤道海域 厄瓜多尔外海 秘鲁外海 显著性检验 χ2 p 海表温度/℃ 24.10~27.20
(25.17 ± 0.96)21.10~26.50
(24.25 ± 0.74)17.40~23.20
(21.27 ± 0.57)32.70 0.01 海水盐度 33.50~34.90
(34.37 ± 0.39)33.10~34.90
(34.26 ± 0.41)34.40~35.60
(35.18 ± 0.18)28.50 0.01 叶绿素a浓度
(mg·m−3)0.07~0.26
(0.18 ± 0.04)0.08~0.80
(0.24 ± 0.06)0.18~1.15
(0.33 ± 0.06)27.70 0.01 混合层深度/m 11.50~21.90
(16.00 ± 3.88)10.90~20.70
(14.57 ± 1.17)10.80~39.00
(22.21 ± 4.76)18.23 0.01 注:括号数据为平均值 ± 标准差。 表 2 东南太平洋赤道海域、厄瓜多尔外海、秘鲁外海生物多样性指数与环境因子的GAMM模型结果
Tab. 2 Results of generalized additive mixed-effects models performed biodiversity indices on marine environmental variables of equatorial waters, and offshores of Ecuador and Peru in the southeast Pacific
效应 模型参数因子 估计 标准
误差估计自
由度t F p Margalef指数 随机效应 研究海域 0.01 残差 0.84 固定效应 截距 −0.31 0.13 19.86 <2.00 × 10–16 海表温度 1 11.07 1.92 × 10–3 海水盐度 1 14.65 4.57 × 10–4 叶绿素a浓度 1 2.99 0.09 混合层深度 1.61 2.65 0.07 Shannon-Wiener指数 随机效应 研究海域 0.19 残差 0.75 固定效应 截距 −0.08 0.11 1.98 <2.00 × 10–16 海表温度 1 19.34 8.23 × 10–5 海水盐度 1 22.14 3.18 × 10–5 叶绿素a浓度 1 3.69 0.06 混合层深度 1.98 2.46 0.08 Pielou指数 随机效应 研究海域 0.21 残差 0.85 固定效应 截距 −0.15 0.13 3.65 <2.00 × 10–16 海表温度 1 5.69 0.02 海水盐度 1 8.84 0.01 叶绿素a浓度 1 2.23 0.13 混合层深度 2.03 0.21 0.65 -
[1] Purvis A, Hector A. Getting the measure of biodiversity[J]. Nature, 2000, 405(6783): 212−219. doi: 10.1038/35012221 [2] Selig E R, Turner W R, Troëng S, et al. Global priorities for marine biodiversity conservation[J]. PLoS One, 2014, 9(1): 1−11. doi: 10.1371/journal.pone.0082898 [3] Mcgill B J, Nekola J C. Mechanisms in macroecology: AWOL or purloined letter? Towards a pragmatic view of mechanism[J]. Oikos, 2010, 119(4): 591−603. doi: 10.1111/j.1600-0706.2009.17771.x [4] Socolar J B, Gilroy J J, Kunin W E, et al. How should beta-diversity inform biodiversity conservation?[J]. Trends in Ecology & Evolution, 2016, 31(1): 67−80. doi: 10.1016/j.tree.2015.11.005 [5] Hui C, Mcgeoch M A. Zeta diversity as a concept and metric that unifies incidence-based biodiversity patterns[J]. The American Naturalist, 2014, 184(5): 684−694. doi: 10.1086/678125 [6] Latombe G, Hui C, Mcgeoch M A. Multi-site generalised dissimilarity modelling: Using zeta diversity to differentiate drivers of turnover in rare and widespread species[J]. Methods in Ecology and Evolution, 2017, 8(4): 431−442. doi: 10.1111/2041-210X.12756 [7] Roigé M, Mcgeoch M, Hui C, et al. Cluster validity and uncertainty assessment for self-organizing map pest profile analysis.[J]. Methods in Ecology & Evolution, 2017, 8(3): 349−257. doi: 10.1111/2041-210X.12669 [8] Kunin W E, Harte J, He F, et al. Upscaling biodiversity: estimating the species–area relationship from small samples[J]. Ecological Monographs, 2018, 88(2): 170−187. doi: 10.1002/ecm.1284 [9] Simons A L, Mazor R, Stein E D, et al. Using alpha, beta, and zeta diversity in describing the health of stream-based benthic macroinvertebrate communities[J]. Ecological Applications, 2019, 29(4): 1−11. doi: 10.1002/eap.1896 [10] Leihy R I, Duffy G A, Chown S L. Species richness and turnover among indigenous and introduced plants and insects of the Southern Ocean Islands[J]. Ecosphere, 2018, 9(7): 1−15. doi: 10.1002/ecs2.2358 [11] Pettersen A K, Marzinelli E M, Steinberg P D, et al. Impact of marine protected areas on temporal stability of fish species diversity[J]. Conservation Biology, 2022, 36(2): 1−11. doi: 10.1111/cobi.13815 [12] Anderson R N, Sclater J G. Topography and evolution of the east Pacific Rise between 5°S and 20°S[J]. Earth and Planetary Science Letters, 1972, 14(3): 433−441. doi: 10.1016/0012-821X(72)90145-8 [13] Pennington J T, Mahoney K L, Kuwahara V S, et al. Primary production in the eastern tropical Pacific: A review[J]. Progress in oceanography, 2006, 69(2-4): 285−317. doi: 10.1016/j.pocean.2006.03.012 [14] Agüero M. Review of the State of World Marine Capture Fisheries Management: Pacific Ocean [M]. Food & Agriculture Org. , 2007. [15] Miloslavich P, Klein E, Díaz J M, et al. Marine biodiversity in the Atlantic and Pacific coasts of South America: knowledge and gaps[J]. PLoS One, 2011, 6(1): 1−43. doi: 10.1371/journal.pone.0014631 [16] Ramirez J L, Rosas-Puchuri U, Canedo R M, et al. DNA barcoding in the southeast Pacific marine realm: low coverage and geographic representation despite high diversity[J]. PLoS One, 2020, 15(12): 1−13. doi: 10.1371/journal.pone.0244323 [17] Pincay-Espinoza J E, Varela J L. Spatial-and size-related shifts in feeding habits of the common dolphinfish (Coryphaena hippurus) in the southeast Pacific Ocean[J]. Environmental Biology of Fishes, 2022, 105(2): 313−326. doi: 10.1007/s10641-022-01231-x [18] 李云凯, 冯丹, 高小迪, 等. 东太平洋赤道海域鸢乌贼 (Sthenoteuthis oualaniensis) 和茎柔鱼 (Dosidicus gigas) 的食性比较研究[J]. 海洋与湖沼, 2021, 52(5): 1303−1314. doi: 10.11693/hyhz20210300062Li Yunkai, Feng Dan, Gao Xiaodi, et al. Comparstive study on the feeding habits of Sthenoteuthis oualaniensis and Dosidicus gigas in the eastern equatorial Pacific Ocean[J]. Journal of Oceanology and Limnology, 2021, 52(5): 1303−1314. doi: 10.11693/hyhz20210300062 [19] 冯慧丽, 朱江峰, 陈彦. 基于Ecopath的热带东太平洋生态系统模型构建及其比较[J]. 上海海洋大学学报, 2019, 28(6): 921−932. doi: 10.12024/jsou.20190202538Feng Huili, Zhu Jiangfeng, Chen Yan. Construction and historical comparison of ecosystem structure of the eastern tropical Pacific Ocean based on Ecopath model[J]. Journal of Shanghai Ocean University, 2019, 28(6): 921−932. doi: 10.12024/jsou.20190202538 [20] Chavez-Molina V, Wagner D, Nocito E S, et al. Protecting the Salasy Gomez and Nazca Ridges: a review of policy pathways for creating conservation measures in the international waters of the southeast Pacific[J]. Marine Policy, 2023, 152: 1−12. doi: 10.1016/j.marpol.2023.105594 [21] Latombe G, Mcgeoch M A, Nipperess D A, et al. zetadiv: an R package for computing compositional change across multiple sites, assemblages or cases[J]. BioRxiv, 2018, 1(1): 1−42. doi: 10.1101/324897 [22] Hui C, Mcgeoch M A. Does the self-similar species distribution model lead to unrealistic predictions?[J]. Ecology, 2008, 89(10): 2946−2952. doi: 10.1890/07-1451.1 [23] Harte J. From spatial pattern in the distribution and abundance of species to a unified theory of ecology: the role of maximum entropy methods[J]. Springer Berlin Heidelberg, 2008, 102(3): 243−272. doi: 10.1007/978-3-540-76784-8_8 [24] Strong W. Assessing species abundance unevenness within and between plant communities[J]. Community Ecology, 2002, 3(2): 237−246. doi: 10.1556/COMEC.3.2002.2.9 [25] Iglesias-Rios R, Mazzoni R. Measuring diversity: looking for processes that generate diversity[J]. Natureza & Conservação, 2014, 12(2): 156−161. doi: 10.1016/j.ncon.2014.04.001 [26] Wood S N. Generalized Additive Models: an Introduction with R [M]. Chapman and Hall/CRC, 2017. [27] Wolberg G. Cubic spline interpolation: a review [D]. New York: Columbia University, 1988. [28] Grassle J F, Maciolek N J. Deep-sea species richness: regional and local diversity estimates from quantitative bottom samples[J]. The American Naturalist, 1992, 139(2): 313−341. doi: 10.1086/285329 [29] Sullivan B K. In situ feeding behavior of Sagitta elegans and Eukrohnia hamata (Chaetognatha) in relation to the vertical distribution and abundance of prey at Ocean Station “P” 1[J]. Limnology and Oceanography, 1980, 25(2): 317−326. doi: 10.4319/lo.1980.25.2.0317 [30] Olson R J, Galván-Magaña F. Food habits and consumption rates of common dolphinfish (Coryphaena hippurus) in the eastern Pacific Ocean[J]. Fishery Bulletin- National Oceanic and Atmospheric, 2002, 100(2): 279−298. doi: 10.1046/j.1444-2906.2002.00448.x [31] Oxenford H A, Murray P A, Luckhurst B E. The biology of wahoo (Acanthocybium solandri) in the western central Atlantic[J]. Gulf and Caribbean Research, 2003, 15(1): 33−49. doi: 10.18785/gcr.1501.06 [32] Schaefer K M, Fuller D W, Block B A. Movements, behavior, and habitat utilization of yellowfin tuna (Thunnus albacares) in the northeastern Pacific Ocean, ascertained through archival tag data[J]. Marine Biology, 2007, 152(2): 503−525. doi: 10.1007/s00227-007-0689-x [33] 杨志金. 西北太平洋鲯鳅生物学特征及其产量对气候环境变化的响应初探 [D]. 上海; 上海海洋大学, 2020.Yang Zhijing. A preliminary study on dolphinfish (Coryphaena hippurus) biological characteristic and its catches response to climateand environmental variability in the northwest Pacific Ocean [D]. Shanghai; Shanghai Ocean University, 2020. [34] 栾松鹤, 戴小杰, 田思泉, 等. 东南太平洋沙氏刺鲅生物学特性与环境偏好初步研究[J]. 海洋渔业, 2017, 39(1): 30−37. doi: 10.3969/j.issn.1004-2490.2017.01.004Luan Songhe, Dai Xiaojie, Tian Siquan, et al. Biology and environmental preferences of Acanthocybium solandri in the southeast Pacific Ocean[J]. Marine Fisheries, 2017, 39(1): 30−37. doi: 10.3969/j.issn.1004-2490.2017.01.004 [35] 孙安俯, 潘帅, 刘飞, 等. 3种金枪鱼的生物学研究进展[J]. 热带生物学报, 2023, 14(2): 221−228. doi: 10.3969/j.issn.1674-7054.2023.2.hnrdnydxxb202302012Sun Anfu, Pan Shuai, Liu Fei, et al. Research progress on age, growth, feeding and reproduction of bigeye tuna (Thunnus obesus), yellowfin tuna (Thunnus albacores) and bluefin tuna (Thunnus thynnus)[J]. Journal of Tropical Biology, 2023, 14(2): 221−228. doi: 10.3969/j.issn.1674-7054.2023.2.hnrdnydxxb202302012 [36] Mcgeoch M A, Latombe G, Andrew N R, et al. The application of zeta diversity as a continuous measure of compositional change in ecology[J]. BioRxiv, 2017, 11(1): 1−42. doi: 10.1101/216580 [37] Talukder B, Ganguli N, Matthew R, et al. Climate change-accelerated ocean biodiversity loss & associated planetary health impacts[J]. The Journal of Climate Change and Health, 2022, 6(1): 1−12. doi: 10.1016/j.joclim.2022.100114 [38] Seeliger U, Kjerfve B. Coastal Marine Ecosystems of Latin America [M]. Springer Science & Business Media, 2013. [39] Castro P, Huber M E. Marine Biology [M]. McGraw-Hill Education, 2008. [40] Gray J, Poore G C, Ugland K, et al. Coastal and deep-sea benthic diversities compared[J]. Marine Ecology Progress Series, 1997, 159(1): 97−103. [41] Cruz M, Gabor N, Mora E, et al. The known and unknown about marine biodiversity in Ecuador (continental and insular)[J]. Gayana, 2003, 67(2): 232−260. [42] Chaudhary C, Richardson A J, Schoeman D S, et al. Global warming is causing a more pronounced dip in marine species richness around the equator[J]. Proceedings of the National Academy of Sciences, 2021, 118(15): 1−6. doi: 10.1073/pnas.2015094118 [43] Antão L H, Bates A E, Blowes S A, et al. Temperature-related biodiversity change across temperate marine and terrestrial systems[J]. Nature Ecology & Evolution, 2020, 4(7): 927−933. doi: 10.1038/s41559-020-1185-7 [44] Chaudhary C, Saeedi H, Costello M J. Bimodality of latitudinal gradients in marine species richness[J]. Trends in Ecology & Evolution, 2016, 31(9): 670−676. doi: 10.1016/j.tree.2016.06.001 [45] Chaudhary C, Saeedi H, Costello M J. Marine species richness is bimodal with latitude: a reply to Fernandez and Marques[J]. Trends in Ecology & Evolution, 2017, 32(4): 234−237. doi: 10.1016/j.tree.2017.02.007 [46] Yasuhara M, Danovaro R. Temperature impacts on deep‐sea biodiversity[J]. Biological Reviews, 2015, 91(2): 275−287. doi: 10.1111/brv.12169 [47] Winder M, Sommer U. Phytoplankton response to a changing climate[J]. Hydrobiologia, 2012, 698(5): 5−16. doi: 10.1007/s10750-012-1149-2 [48] Telesh I, Schubert H, Skarlato S. Life in the salinity gradient: discovering mechanisms behind a new biodiversity pattern[J]. Estuarine, Coastal and Shelf Science, 2013, 135: 317−327. doi: 10.1016/j.ecss.2013.10.013 [49] Riegl B. Effects of the 1996 and 1998 positive sea-surface temperature anomalies on corals, coral diseases and fish in the Arabian Gulf (Dubai, UAE)[J]. Marine Biology, 2002, 140(1): 29−40. doi: 10.1007/s002270100676 [50] Thilakarathne E, Kumara P P, Thilakarathna R. Diversity and distribution of cetaceans off Mirissa in the southern coast of Sri Lanka I: Relationship with depth[J]. Sri Lanka Journal of Aquatic Sciences, 2015, 20(1): 35−45. doi: 10.4038/sljas.v20i1.7453 [51] Hodge B C, Pendleton D E, Ganley L C, et al. Identifying predictors of species diversity to guide designation of marine protected areas[J]. Conservation Science and Practice, 2022, 4(5): 1−15. doi: 10.1111/csp2.12665 [52] Meehl G A. Pacific region climate change[J]. Ocean & Coastal Management, 1997, 37(1): 137−147. doi: 10.1016/s0964-5691(97)00010-0 [53] 陈宝红, 周秋麟, 杨圣云. 气候变化对海洋生物多样性的影响[J]. 应用海洋学报, 2009, 28(3): 437−443.Chen Baohong, Zhou Qiulin, Yang Shengyun. Impacts of climate changes on marine biodiversity[J]. Journal of Applied Oceanography, 2009, 28(3): 437−443. [54] Beaugrand G. Marine Biodiversity, Climatic Variability and Global Change [M]. Routledge, 2014. [55] González C E, Medellín-Mora J, Escribano R. Environmental gradients and spatial patterns of Calanoid copepods in the southeast Pacific[J]. Frontiers in Ecology and Evolution, 2020, 8(2): 1−16. doi: 10.3389/fevo.2020.554409 [56] Kara A B, Rochford P A, Hurlburt H E. Mixed layer depth variability and barrier layer formation over the north Pacific Ocean[J]. Journal of Geophysical Research: Oceans, 2000, 105(C7): 16783−16801. doi: 10.1029/2000JC900071