Similarities and differences in statistical characteristics of mesoscale eddies between southeastern tropical Indian Ocean and northern South China Sea
-
摘要: 热带东南印度洋和南海北部均在地形和背景环流特征方面具有相似性,且均存在较为活跃的中尺度涡运动。本文基于卫星高度计观测,对这两个海域中尺度涡的统计特征、季节和年际变化进行了对比分析。结果表明,生成于热带东南印度洋和南海的中尺度涡数量均随其生命周期增长近似指数衰减,平均以0.2 m/s的速度向西或西南移动,但前者的平均半径更大,后者的平均振幅更强。在季节变化方面,涡动能均在北半球春季最小,在秋季最大,但热带东南印度洋涡旋生成数在夏−秋季最多,而南海北部在冬−春季最多。在年际变化方面,热带东南印度洋和南海北部涡旋活动均受到厄尔尼诺−南方涛动(ENSO)的影响,在厄尔尼诺年涡动能更强,而拉尼娜年涡动能更弱,但ENSO影响这两个海域中尺度涡的机制略有不同,前者主要通过调制印尼贯穿流,从而抑制或增强该海域斜压不稳定能量实现,而后者主要通过改变南海局地风场,从而产生风应力旋度异常实现。此外,热带东南印度洋中尺度涡还受到印度洋偶极子的影响,而南海北部中尺度涡则与印度洋偶极子之间相关较弱。Abstract: Both the southeastern Tropical Indian Ocean and the northern South China Sea are similar in topography and background circulation characteristics, and both have active mesoscale eddy motion. Based on satellite altimeter data, the seasonal and interannual variations of mesoscale eddies in these two sea areas are compared. The results show that the number of mesoscale eddies generated in the southeastern Tropical Indian Ocean and the northern South China Sea decay exponentially with the growth of their life cycle. Mesoscale eddies in these two sea areas move to the west or southwest with an average speed of 0.2 m/s, but the average radius of the former is larger and the average amplitude of the latter is stronger. In terms of seasonal variation, the eddy kinetic energy is smallest in spring and largest in autumn in the northern hemisphere, but the eddy generation number in the southeastern Tropical Indian Ocean is largest in summer-autumn and the northern South China Sea is largest in winter-spring. In interannual variation, the eddy activity in the southeastern Tropical Indian Ocean and the northern South China Sea is affected by El Niño-Southern Oscillation (ENSO). The eddy kinetic energy is stronger In El Niño year and weaker in La Niña year, but the mechanism of ENSO affecting the mesoscale eddy in these two areas is slightly different. The former is mainly achieved by modulating Indonesian Throughflow to suppress or enhance the baroclinic instability energy in this area, while the latter is mainly achieved by changing the local wind field in the northern South China Sea to produce wind stress curl anomaly. In addition, the mesoscale eddy in the southeastern Tropical Indian Ocean is also affected by the Indian Ocean Dipole, while the correlation between the mesoscale eddy in the northern South China Sea and the Indian Ocean Dipole is weak.
-
图 2 热带东南印度洋(SETIO)和南海北部(NSCS)涡旋生成数量分布
a.SETIO反气旋涡;b.SETIO气旋涡;c.NSCS反气旋涡;d.NSCS气旋涡
Fig. 2 Distribution of eddy numbers in southeastern Tropical Indian Ocean (SETIO) and northern South China Sea (NSCS)
a. SETIO anticyclonic eddies; b.SETIO cyclonic eddies; c. NSCS anticyclonic eddies; d.NSCS cyclonic eddies
图 4 热带东南印度洋(SETIO)和南海北部(NSCS)涡旋振幅分布特征
a. SETIO反气旋涡;b. SETIO气旋涡;c. NSCS反气旋涡;d. NSCS气旋涡
Fig. 4 Distribution characteristics of eddy numbers in southeastern Tropical Indian Ocean (SETIO) and northern South China Sea (NSCS)
a. SETIO anticyclonic eddies; b. SETIO cyclonic eddies; c. NSCS anticyclonic eddies; d.NSCS cyclonic eddies
图 5 热带东南印度洋(SETIO)和南海北部(NSCS)涡旋半径分布特征
a. SETIO反气旋涡;b.SETIO气旋涡;c.NSCS反气旋涡;d.NSCS气旋涡
Fig. 5 Distribution characteristics of eddy numbers in southeastern Tropical Indian Ocean (SETIO) and northern South China Sea (NSCS)
a. SETIO anticyclonic eddies; b. SETIO cyclonic eddies; c. NSCS anticyclonic eddies; d.NSCS cyclonic eddies
图 6 热带东南印度洋(SETIO)和南海北部(NSCS)涡旋轨迹分布
a. SETIO反气旋涡;b. SETIO气旋涡;c. NSCS反气旋涡;d. NSCS气旋涡
Fig. 6 Distribution of eddy trajectory in southeastern Tropical Indian Ocean (SETIO) and northern South China Sea (NSCS)
a. SETIO anticyclonic eddies; b. SETIO cyclonic eddies; c. NSCS anticyclonic eddies; d.NSCS cyclonic eddies
图 7 热带东南印度洋(SETIO)和南海北部(NSCS)涡旋移动速度分布
a. SETIO反气旋涡 b. SETIO气旋涡 c. NSCS反气旋涡 d. NSCS气旋涡
Fig. 7 Distribution of eddy velocity in southeastern Tropical Indian Ocean (SETIO) and northern South China Sea (NSCS)
a. SETIO anticyclonic eddies; b. SETIO cyclonic eddies; c. NSCS anticyclonic eddies; d.NSCS cyclonic eddies
图 8 热带东南印度洋(SETIO)和南海北部(NSCS)涡旋生成数量和EKE的季节分布
a. 涡动能;b. 涡旋生成数;c. SETIO海域反气旋与气旋涡;d. NSCS海域反气旋与气旋涡。MAM:3−5月,JJA:6−8月,SON:9−11月,DJF:12−2月
Fig. 8 Distribution of eddy velocity in southeastern Tropical Indian Ocean (SETIO) and northern South China Sea (NSCS)
a. Eddy kinetic energy; b. eddy number; c. anticyclonic eddies and cyclonic eddies in SETIO sea area; d. anticyclonic eddies and cyclonic eddies in NSCS sea area. MAM: March−May, JJA: June−August, SON: September−November, DJF: December−February
图 9 热带东南印度洋(SETIO,a–d)和南海北部(NSCS,e–h)气旋涡(CE)和反气旋涡(AE)生命周期的季节变化
a、e. 春季;b、f. 夏季;c、g. 秋季;d、h. 冬季
Fig. 9 Seasonal variation of life time of cyclonic eddy (CE) and anticyclonic eddy (AE) in southeastern Tropical Indian Ocean (SETIO, a–d) and northern South China Sea (NSCS, e–h)
a, e. spring; b, f. summer; c, g. fall; d, h. winter
图 10 热带东南印度洋(SETIO,a−d)和南海北部(NSCS,e−h)气旋涡(CE)和反气旋涡(AE)振幅的季节变化
a、e. 春季;b、f. 夏季;c、g. 秋季;d、h. 冬季
Fig. 10 Seasonal variation of amplitude of cyclonic eddy (CE) and anticyclonic eddy (AE) in southeastern Tropical Indian Ocean (SETIO, a−d) and northern South China Sea (NSCS, e−h)
a, e. spring; b, f. summer; c, g. fall; d, h. winter
图 11 热带东南印度洋(SETIO,a–d)和南海北部(NSCS,e–h)气旋涡(CE)和反气旋涡(AE)半径的季节变化
a、e. 春季;b、f. 夏季;c、g. 秋季;d、h. 冬季
Fig. 11 Seasonal variation of radiusof cyclonic eddy (CE) and anticyclonic eddy (AE) in southeastern Tropical Indian Ocean (SETIO, a–d) and northern South China Sea (NSCS, e–h)
a, e. spring; b, f. summer; c, g. fall; d, h. winter
图 12 涡动能异常值年际信号与Niño3.4指数超前滞后相关关系(a),涡动能异常值年际信号与DMI指数超前滞后相关关系(b)
图中虚线表示置信度检验区间,绝对值大于虚线说明通过95%的置信度检验
Fig. 12 Lead-lag correlation between interannual anomaly signals of eddy kinetic energy and Niño3.4 index (a), Lead-lag correlation between interannual anomaly signals of eddy kinetic energy and DMI (b)
aaaaa
表 1 不同文献对热带东南印度洋中尺度涡活动及动力参数的统计结果
Tab. 1 Statistics of activities and dynamic parameters of mesoscale eddies in Southeastern Tropical Indian Ocean from previous studies
-
[1] Rossby T, Flagg C, Ortner P, et al. A tale of two eddies: diagnosing coherent eddies through acoustic remote sensing[J]. Journal of Geophysical Research: Oceans, 2011, 116(C12): C12017. doi: 10.1029/2011JC007307 [2] 李立. 南海中尺度海洋现象研究概述[J]. 台湾海峡, 2002, 21(2): 265−274.Li Li. A review on mesoscale oceanographical phenomena in the South China Sea[J]. Journal of Oceanography in Taiwan Strait, 2002, 21(2): 265−274. [3] Chelton D B, Schlax M G, Samelson R M. Global observations of nonlinear mesoscale eddies[J]. Progress in Oceanography, 2011, 91(2): 167−216. doi: 10.1016/j.pocean.2011.01.002 [4] Yim B Y, Noh Y, Qiu Bo, et al. The vertical structure of eddy heat transport simulated by an eddy-resolving OGCM[J]. Journal of Physical Oceanography, 2010, 40(2): 340−353. doi: 10.1175/2009JPO4243.1 [5] Early J J, Samelson R M, Chelton D B. The evolution and propagation of quasigeostrophic ocean eddies[J]. Journal of Physical Oceanography, 2011, 41(8): 1535−1555. doi: 10.1175/2011JPO4601.1 [6] Qiu Bo, Chen Shuiming. Eddy-induced heat transport in the subtropical North Pacific from Argo, TMI, and altimetry measurements[J]. Journal of Physical Oceanography, 2005, 35(4): 458−473. doi: 10.1175/JPO2696.1 [7] Dong Changming, Nencioli F, Liu Yu, et al. An automated approach to detect oceanic eddies from satellite remotely sensed sea surface temperature data[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(6): 1055−1059. doi: 10.1109/LGRS.2011.2155029 [8] 赵新华, 侯一筠, 刘泽, 等. 基于卫星高度计和浮标漂流轨迹的海洋涡旋特征信息对比分析[J]. 海洋与湖沼, 2019, 50(4): 759−764. doi: 10.11693/hyhz20181100269Zhao Xinhua, Hou Yijun, Liu Ze, et al. Analysis of the global eddies based on altimeter snapshots and buoy drifting trajectory data[J]. Oceanologia et Limnologia Sinica, 2019, 50(4): 759−764. doi: 10.11693/hyhz20181100269 [9] 程旭华, 齐义泉. 基于卫星高度计观测的全球中尺度涡的分布和传播特征[J]. 海洋科学进展, 2008, 26(4): 447−453. doi: 10.3969/j.issn.1671-6647.2008.04.005Cheng Xuhua, Qi Yiquan. Distribution and propagation of mesoscale eddies in the global oceans learnt from altimetric data[J]. Advances in Marine Science, 2008, 26(4): 447−453. doi: 10.3969/j.issn.1671-6647.2008.04.005 [10] Zu Yongcan, Fang Yue, Sun Shuangwen, et al. Seasonal variation of mesoscale eddy intensity in the global ocean[J]. Acta Oceanologica Sinica, 2024, 43(1): 48−58. doi: 10.1007/s13131-023-2278-3 [11] Feng Ming, Wijffels S. Intraseasonal variability in the south equatorial current of the East Indian Ocean[J]. Journal of Physical Oceanography, 2002, 32(1): 265−277. doi: 10.1175/1520-0485(2002)032<0265:IVITSE>2.0.CO;2 [12] Yu Zhiyu, Potemra J. Generation mechanism for the intraseasonal variability in the Indo-Australian basin[J]. Journal of Geophysical Research: Oceans, 2006, 111(C1): C01013. [13] Hanifah F, Ningsih N S, Sofian I. Dynamics of eddies in the southeastern tropical Indian Ocean[J]. Journal of Physics: Conference Series, 2016, 739: 012042. doi: 10.1088/1742-6596/739/1/012042 [14] Yang Guang, Yu Weidong, Yuan Yeli, et al. Characteristics, vertical structures, and heat/salt transports of mesoscale eddies in the southeastern tropical Indian Ocean[J]. Journal of Geophysical Research: Oceans, 2015, 120(10): 6733−6750. doi: 10.1002/2015JC011130 [15] Wang Xuan, Cheng Xuhua, Liu Xiaohui, et al. Dynamics of eddy generation in the southeast tropical Indian Ocean[J]. Journal of Geophysical Research: Oceans, 2021, 126(3): e2020JC016858. doi: 10.1029/2020JC016858 [16] Ismail M F A, Ribbe J, Arifin T, et al. A census of eddies in the tropical eastern boundary of the Indian Ocean[J]. Journal of Geophysical Research: Oceans, 2021, 126(6): e2021JC017204. doi: 10.1029/2021JC017204 [17] Metzger E J, Hurlburt H E. The nondeterministic nature of Kuroshio penetration and eddy shedding in the South China Sea[J]. Journal of Physical Oceanography, 2001, 31(7): 1712−1732. doi: 10.1175/1520-0485(2001)031<1712:TNNOKP>2.0.CO;2 [18] Li Li, Nowlin Jr W D, Su Jilan. Anticyclonic rings from the Kuroshio in the South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1998, 45(9): 1469−1482. doi: 10.1016/S0967-0637(98)00026-0 [19] 郑全安, 谢玲玲, 郑志文, 等. 南海中尺度涡研究进展[J]. 海洋科学进展, 2017, 35(2): 131−158. doi: 10.3969/j.issn.1671-6647.2017.02.001Zheng Quan’an, Xie Lingling, Zheng Zhiwen, et al. Progress in research of mesoscale eddies in the South China Sea[J]. Advances in Marine Science, 2017, 35(2): 131−158. doi: 10.3969/j.issn.1671-6647.2017.02.001 [20] 王萌, 张艳伟, 刘志飞, 等. 南海北部中尺度涡的时空分布特征: 基于卫星高度计资料的统计分析[J]. 地球科学进展, 2019, 34(10): 1069−1080. doi: 10.11867/j.issn.1001-8166.2019.10.1069Wang Meng, Zhang Yanwei, Liu Zhifei, et al. Temporal and spatial characteristics of mesoscale eddies in the northern South China Sea: statistics analysis based on altimeter data[J]. Advances in Earth Science, 2019, 34(10): 1069−1080. doi: 10.11867/j.issn.1001-8166.2019.10.1069 [21] Yuan Dongliang, Han Weiqing, Hu Dunxin. Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data[J]. Journal of Geophysical Research: Oceans, 2006, 111(C11): C11007. [22] Caruso M J, Gawarkiewicz G G, Beardsley R C. Interannual variability of the Kuroshio intrusion in the South China Sea[J]. Journal of Oceanography, 2006, 62(4): 559−575. doi: 10.1007/s10872-006-0076-0 [23] Wang Liping, Koblinsky C J, Howden S. Mesoscale variability in the South China Sea from the Topex/Poseidon altimetry data[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2000, 47(4): 681−708. doi: 10.1016/S0967-0637(99)00068-0 [24] 林鹏飞, 王凡, 陈永利, 等. 南海中尺度涡的时空变化规律Ⅰ. 统计特征分析[J]. 海洋学报, 2007, 29(3): 14−22. doi: 10.3321/j.issn:0253-4193.2007.03.002Lin Pengfei, Wang Fan, Chen Yongli, et al. Temporal and spatial variation characteristics on eddies in the South China Sea Ⅰ. Statistical analyses[J]. Haiyang Xuebao, 2007, 29(3): 14−22. doi: 10.3321/j.issn:0253-4193.2007.03.002 [25] Ogata T, Masumoto Y. Interactions between mesoscale eddy variability and Indian Ocean dipole events in the Southeastern tropical Indian Ocean—case studies for 1994 and 1997/1998[J]. Ocean Dynamics, 2010, 60(3): 717−730. doi: 10.1007/s10236-010-0304-4 [26] Ogata T, Masumoto Y. Interannual modulation and its dynamics of the mesoscale eddy variability in the southeastern tropical Indian Ocean[J]. Journal of Geophysical Research: Oceans, 2011, 116(C5): C05005. [27] 崔凤娟, 匡晓迪, 王玉. 南海中尺度涡年际变化特征及动力机制分析[J]. 海洋与湖沼, 2015, 46(3): 508−516. doi: 10.11693/hyhz20140900242Cui Fengjuan, Kuang Xiaodi, Wang Yu. The analysis on interannual variation characteristics of eddy activities and its dynamic mechanism in the South China Sea[J]. Oceanologia et Limnologia Sinica, 2015, 46(3): 508−516. doi: 10.11693/hyhz20140900242 [28] Chen Gengxin, Wang Dongxiao, Han Weiqing, et al. The extreme El Niño events suppressing the intraseasonal variability in the eastern tropical Indian Ocean[J]. Journal of Physical Oceanography, 2020, 50(8): 2359−2372. doi: 10.1175/JPO-D-20-0041.1 [29] Chen Gengxin, Hou Yijun, Chu Xiaoqing, et al. The variability of eddy kinetic energy in the South China Sea deduced from satellite altimeter data[J]. Chinese Journal of Oceanology and Limnology, 2009, 27(4): 943−954. doi: 10.1007/s00343-009-9297-6 [30] 刘钦燕, 黄瑞新, 王东晓, 等. 印度尼西亚贯穿流与南海贯穿流的相互调制[J]. 科学通报, 2006, 51(S2): 44−50.Liu Qinyan, Huang Ruixin, Wang Dongxiao, et al. Interplay between the Indonesian throughflow and the South China Sea throughflow[J]. Chinese Science Bulletin, 2006, 51(S2): 50−58. [31] Wang Dongxiao, Liu Qinyan, Huang Ruixin, et al. Interannual variability of the South China Sea throughflow inferred from wind data and an ocean data assimilation product[J]. Geophysical Research Letters, 2006, 33(14): L14605. [32] Zu Yongcan, Fang Yue, Sun Shuangwen, et al. The Seasonality of mesoscale eddy intensity in the southeastern tropical Indian Ocean[J]. Frontiers in Marine Science, 2022, 9: 855832. doi: 10.3389/fmars.2022.855832 [33] Syamsudin F, Kaneko A. Ocean variability along the southern coast of Java and Lesser Sunda Islands[J]. Journal of Oceanography, 2013, 69(5): 557−570. doi: 10.1007/s10872-013-0192-6 [34] Li Jiaxun, Zhang Ren, Jin Baogang. Eddy characteristics in the northern South China Sea as inferred from Lagrangian drifter data[J]. Ocean Science, 2011, 7(5): 661−669. doi: 10.5194/os-7-661-2011 [35] 林宏阳, 胡建宇, 郑全安. 南海及西北太平洋卫星高度计资料分析: 海洋中尺度涡统计特征[J]. 台湾海峡, 2012, 31(1): 105−113.Lin Hongyang, Hu Jianyu, Zheng Quan’an. Satellite altimeter data analysis of the South China Sea and the northwest Pacific Ocean: statistical features of oceanic mesoscale eddies[J]. Journal of Oceanography in Taiwan Strait, 2012, 31(1): 105−113. [36] 林宏阳, 胡建宇, 郑全安. 吕宋海峡附近中尺度涡特征的统计分析[J]. 海洋学报, 2012, 34(1): 1−7.Lin Hongyang, Hu Jianyu, Zheng Quan’an. Statistical analysis of the features of meso-scale eddies near the Luzon Strait[J]. Haiyang Xuebao, 2012, 34(1): 1−7. [37] Pegliasco C, Busché C, Faugère Y. Mesoscale Eddy Trajectory Atlas META3.2 Delayed-Time two satellites: version META3.2 DT twosat[Z]. 2022. (查阅网上资料, 未能确认文献类型, 请确认文献类型及格式是否正确) [38] Mason E, Pascual A, McWilliams J C. A new sea surface height–based code for oceanic mesoscale eddy tracking[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(5): 1181−1188. doi: 10.1175/JTECH-D-14-00019.1 [39] 龙霜, 董庆, 殷紫. 印度洋–太平洋暖池区中尺度涡特征研究[J]. 海洋学报, 2022, 44(3): 118−127. doi: 10.12284/j.issn.0253-4193.2022.3.hyxb202203011Long Shuang, Dong Qing, Yin Zi. Statistical analysis of mesoscale eddies in the Indo-Pacific Warm Pool[J]. Haiyang Xuebao, 2022, 44(3): 118−127. doi: 10.12284/j.issn.0253-4193.2022.3.hyxb202203011 [40] Chelton D B, Schlax M G, Samelson R M, et al. Global observations of large oceanic eddies[J]. Geophysical Research Letters, 2007, 34(15): L15606. [41] 胡冬, 陈希, 毛科峰, 等. 南印度洋中尺度涡统计特征及三维合成结构研究[J]. 海洋学报, 2017, 39(9): 1−14. doi: 10.3969/j.issn.0253-4193.2017.09.001Hu Dong, Chen Xi, Mao Kefeng, et al. Statistical characteristics and composed three dimensional structures of mesoscale eddies in the South Indian Ocean[J]. Haiyang Xuebao, 2017, 39(9): 1−14. doi: 10.3969/j.issn.0253-4193.2017.09.001 [42] Yang Guang, Wang Fan, Li Yuanlong, et al. Mesoscale eddies in the northwestern subtropical Pacific Ocean: statistical characteristics and three-dimensional structures[J]. Journal of Geophysical Research: Oceans, 2013, 118(4): 1906−1925. doi: 10.1002/jgrc.20164 [43] Morrow R, Birol F, Griffin D, et al. Divergent pathways of cyclonic and anti-cyclonic ocean eddies[J]. Geophysical Research Letters, 2004, 31(24): L24311. [44] Chen Gengxin, Hou Yijun, Chu Xiaoqing. Mesoscale eddies in the South China Sea: mean properties, spatiotemporal variability, and impact on thermohaline structure[J]. Journal of Geophysical Research: Oceans, 2011, 116(C6): C06018. [45] Sangrà P, Pascual A, Rodríguez-Santana Á, et al. The Canary Eddy Corridor: a major pathway for long-lived eddies in the subtropical North Atlantic[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2009, 56(12): 2100−2114. doi: 10.1016/j.dsr.2009.08.008 [46] Peña-Molino B, Sloyan B M, Nikurashin M, et al. Revisiting the seasonal cycle of the Timor Throughflow: impacts of winds, waves and eddies[J]. Journal of Geophysical Research: Oceans, 2022, 127(4): e2021JC018133. doi: 10.1029/2021JC018133 [47] Li Yuanlong, Guo Yaru, Zhu Yanan, et al. Variability of heat content and eddy kinetic energy in the Southeast Indian Ocean: roles of the Indonesian throughflow and local wind forcing[J]. Journal of Physical Oceanography, 2022, 52(11): 2789−2806. doi: 10.1175/JPO-D-22-0051.1 [48] Zheng Shaojun, Feng Ming, Du Yan, et al. Interannual variability of eddy kinetic energy in the subtropical Southeast Indian Ocean associated with the El Niño-southern oscillation[J]. Journal of Geophysical Research: Oceans, 2018, 123(2): 1048−1061. doi: 10.1002/2017JC013562