留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合类别数量自适应深度数据增强和迁移学习的造礁珊瑚识别方法研究

王岚 魏皓 车亚辰 张翠翠

王岚,魏皓,车亚辰,等. 融合类别数量自适应深度数据增强和迁移学习的造礁珊瑚识别方法研究[J]. 海洋学报,2024,46(9):120–130 doi: 10.12284/hyxb2024096
引用本文: 王岚,魏皓,车亚辰,等. 融合类别数量自适应深度数据增强和迁移学习的造礁珊瑚识别方法研究[J]. 海洋学报,2024,46(9):120–130 doi: 10.12284/hyxb2024096
Wang Lan,Wei Hao,Che Yachen, et al. Integration of category-quantity adaptive deep data augmentation and transfer learning for reef-building coral recognition[J]. Haiyang Xuebao,2024, 46(9):120–130 doi: 10.12284/hyxb2024096
Citation: Wang Lan,Wei Hao,Che Yachen, et al. Integration of category-quantity adaptive deep data augmentation and transfer learning for reef-building coral recognition[J]. Haiyang Xuebao,2024, 46(9):120–130 doi: 10.12284/hyxb2024096

融合类别数量自适应深度数据增强和迁移学习的造礁珊瑚识别方法研究

doi: 10.12284/hyxb2024096
基金项目: 国家重点研发计划项目(2022YFC3104600);海南省重点研发计划项目(ZDYF2024SHFZ051);国家自然科学基金面上项目(42076007);自然资源部海洋观测技术重点实验室定向基金(klootB06)。
详细信息
    作者简介:

    王岚(1997—),女,四川省绵阳市人,主要从事图像识别研究。E-mail:17721910924@163.com

    通讯作者:

    张翠翠(1986—),女,山东省滨州市人,副教授,主要从事智能海洋计算、模式识别研究。E-mail:cuicui.zhang@tju.edu.cn

  • 中图分类号: P714+.5

Integration of category-quantity adaptive deep data augmentation and transfer learning for reef-building coral recognition

  • 摘要: 造礁珊瑚识别对于珊瑚礁生态系统的保护与监测具有重要意义。深度学习作为图像识别的前沿技术,在珊瑚识别领域逐渐得到应用。然而,其识别性能仍然面临挑战。其中,数据集中类别间样本数量不平衡和数据多样性欠缺是两个主要问题。前者使得深度学习模型在特征提取过程中更偏向于样本数较多的类,对少数类(尤其是濒危珊瑚)的学习能力不足进而影响其识别准确度。后者因为数据缺乏多样性使得模型无法充分学习各种珊瑚特征,进而限制了特征提取的能力。鉴于此,本文提出了一种融合类别数量自适应深度数据增强和迁移学习的造礁珊瑚类型识别方法。针对第一个问题,本文利用识别结果评价指标F1-score定义的数据生成量化公式对原始深度数据增强方法DeepSMOTE进行改进,提出了类别数量自适应的深度数据增强方法DeepSMOTE-F1。该方法根据每类珊瑚的识别结果自适应地增强其样本数量,确保模型充分学习各类珊瑚特征。针对第二个问题,利用迁移学习强化了模型的提取能力。实验结果表明,在RSMAS、EILAT和EILAT2这3个代表性珊瑚识别数据集上,相较于原始DeepSMOTE,本文提出的DeepSMOTE-F1识别准确率分别提升了2.88%、0.39%和1.54%;与现有的珊瑚智能识别方法相比,准确率分别提升了0.76%、1.40%和1.30%。
  • 图  1  更改后的ResNet-50网络结构

    Fig.  1  The network structure of the modified ResNet-50

    图  2  SMOTE采样示意图

    Fig.  2  The diagram of SMOTE sampling

    图  3  DeepSMOTE深度数据增强结果示例:a中展示了RSMAS数据集[20]中3个珊瑚类:Colpophyllia natans, Acropora cervicornisMeandrina meandrites,b中展示了EILAT数据集[20]中3个珊瑚类:Branches TypeⅡ, Brain Coral和Favid Coral。每个类有3个示例,从左到右依次为原始图像、近邻图像、新图像。右上角的数值是由SMOTE算法随机确定的比例因子,介于0~1,表示新的图像与原始图像和近邻图像的接近程度。值越大则代表越接近原始图像,值越小则代表越接近近邻图像

    Fig.  3  The example results of deep data augmentation using DeepSMOTE: a. displays three classes of coral in the RSMAS dataset[20]: Colpophyllia Natans, Acropora Cervicornis and Meandrina Meandrites, b. displays three classes of coral in the EILAT dataset[20]: Branches TypeⅡ, Brain Coral和Favid Coral. There are three examples provided for each class. The 1st−3rd column shows the original image, the nearest neighbor image, and the generated image, respectively. The value in the top right corner is the scale factor randomly determined by the SMOTE, which ranges from 0 to 1. It indicates the degree of similarity between the generated image and the original image, as well as the nearest neighbor image. A higher value indicates greater similarity with the original image, while a lower value indicates greater similarity with the nearest neighbor image

    图  4  DeepSMOTE-F1流程图

    Fig.  4  Flow chart of the DeepSMOTE-F1

    图  5  整体方法框架

    Fig.  5  The framework of the holistic method

    图  6  每个敏感性实验在3个数据集(a. EILAT2; b. EILAT; c. RSMAS)上的各类别F1-score

    Fig.  6  The F1-score for each class on the three datasets (a. EILAT2; b. EILAT; c. RSMAS)

    图  7  采用DeepSMOTE-F1前后各类珊瑚图像数量对比(a. EILAT2; b. EILAT; c. RSMAS)

    Fig.  7  The comparison of the number of samples before and after data augmentation using DeepSMOTE-F1(a. EILAT2; b. EILAT; c. RSMAS)

    表  1  RSMAS数据集基本信息[12]

    Tab.  1  The information of the RSMAS dataset

    数据集 数量
    RSMAS Acropora cervicornis 109
    Acropora palmata 77
    Colpophyllia natans 57
    Diadema antillarum 63
    Diploria strigosa 24
    Gorgonians 60
    Millepora alcicornis 22
    Montastraea cavernosa 79
    Meandrina meandrites 54
    Montipora spp. 28
    Palythoas palythoa 32
    Sponge fungus 88
    Siderastrea siderea 37
    Tunicates 36
    总数 766
    下载: 导出CSV

    表  2  EILAT数据集基本信息[12]

    Tab.  2  The basic information of the EILAT dataset

    数据集 数量
    EILAT Sand 87
    Urchin 80
    Dead Coral 280
    Brain Coral 160
    Favid Coral 200
    Branches TypeⅠ 23
    Branches TypeⅡ 216
    Branches TypeⅢ 77
    总数 1123
    下载: 导出CSV

    表  3  EILAT2数据集基本信息[24]

    Tab.  3  The basic information of the EILAT2 dataset

    数据集 数量
    EILAT2 Sand 80
    Urchin 14
    Brain Coral 71
    Favid Coral 89
    Branches Type 49
    总数 303
    下载: 导出CSV

    表  4  参数设置

    Tab.  4  The setting of parameters

    模型 批次大小 学习率 迭代次数
    ResNet-50 32 0.001/0.0001/0.00001 300/500/1000
    64 0.001/0.0001/0.00001 300/500/1000
    128 0.001/0.0001/0.00001 300/500/1000
    下载: 导出CSV

    表  5  每个敏感性实验在RSMAS、EILAT和EILAT2数据集上的识别准确率

    Tab.  5  The classification accuracy of each sensitivity experiment on RSMAS, EILAT, and EILAT2 datasets

    方法 RSMAS EILAT EILAT2
    基线 84.19% 74.28% 74.23%
    DeepSMOTE 85.00% 79.22% 80.08%
    DeepSMOTE-F1 87.88% 79.61% 81.62%
    迁移学习 97.54% 94.84% 97.06%
    DeepSMOTE-F1 + 迁移学习 98.81% 98.02% 99.01%
    下载: 导出CSV

    表  6  本文方法提供最佳识别准确率的参数设置

    Tab.  6  The setting of parameters of the proposed method on achieving the highest classification accuracy

    数据集批次大小学习率迭代次数
    RSMAS640.001500
    EILAT320.001300
    EILAT2320.001300
    下载: 导出CSV

    表  7  与现有珊瑚识别方法在RSMAS、EILAT和EILAT2数据集上的识别准确率对比

    Tab.  7  The comparison of classification accuracy with existing coral classification methods on RSMAS, EILAT and EILAT2 datasets

    方法RSMASEILATEILAT2
    ReasFeats[10]97.42%96.00%96.83%
    MDNet[11]89.70%94.70%91.20%
    ResNet+Augmentation[12]98.05%96.62%97.71%
    DeepSMOTE-F1+迁移学习98.81%98.02%99.01%
    下载: 导出CSV
  • [1] 黄晖, 陈竹, 黄林韬. 中国珊瑚礁状况报告(2010−2019)[M]. 北京: 海洋出版社, 2021.

    Huang Hui, Chen Zhu, Huang Lintao. Status of Coral Reefs in China (2010−2019)[M]. Beijing: China Ocean Press, 2021.
    [2] Elliff C I, Silva I R. Coral reefs as the first line of defense: shoreline protection in face of climate change[J]. Marine Environmental Research, 2017, 127: 148−154. doi: 10.1016/j.marenvres.2017.03.007
    [3] 黄林韬, 黄晖, 江雷. 中国造礁石珊瑚分类厘定[J]. 生物多样性, 2020, 28(4): 515−523. doi: 10.17520/biods.2019384

    Huang Lintao, Huang Hui, Jiang Lei. A revised taxonomy for Chinese hermatypic corals[J]. Biodiversity Science, 2020, 28(4): 515−523. doi: 10.17520/biods.2019384
    [4] 夏荣林, 宁志铭, 余克服, 等. 长棘海星暴发对珊瑚礁区沉积物营养盐动力学的影响研究[J]. 海洋学报, 2022, 44(8): 23−30. doi: 10.12284/j.issn.0253-4193.2022.8.hyxb202208003

    Xia Ronglin, Ning Zhiming, Yu Kefu, et al. Study on the impacts of crown-of-thorns starfish on nutrient dynamics in the coral reef sediments[J]. Haiyang Xuebao, 2022, 44(8): 23−30. doi: 10.12284/j.issn.0253-4193.2022.8.hyxb202208003
    [5] International Union for Conservation of Nature. The IUCN red list of threatened species, version 2022−2[R/OL]. [2023−07−06]. https://www.iucnredlist.org.
    [6] Mahmood A, Bennamoun M, An S, et al. Deep learning for coral classification[M]//Samui P, Sekhar Roy S, Balas V E. Handbook of Neural Computation. London: Academic Press, 2017: 383-401.
    [7] Marcos M S A C, Soriano M N, Saloma C A. Classification of coral reef images from underwater video using neural networks[J]. Optics Express, 2005, 13(22): 8766−8771. doi: 10.1364/OPEX.13.008766
    [8] Pizarro O, Rigby P, Johnson-Roberson M, et al. Towards image-based marine habitat classification[C]//Proceedings of the OCEANS 2008. Quebec City, Canada: IEEE, 2008: 1−7.
    [9] Elawady M. Sparse coral classification using deep convolutional neural networks[J]. arXiv: 1511.09067, 2015.
    [10] Mahmood A, Bennamoun M, An S, et al. Resfeats: residual network based features for image classification[C]//Proceedings of 2017 IEEE International Conference on Image Processing. Beijing, China: IEEE, 2017: 1597−1601.
    [11] Modasshir M, Li A Q, Rekleitis I. MDNet: multi-patch dense network for coral classification[C]//Proceedings of the OCEANS 2018 MTS/IEEE Charleston. Charleston, USA: IEEE, 2018: 1−6.
    [12] Gómez-Ríos A, Tabik S, Luengo J, et al. Towards highly accurate coral texture images classification using deep convolutional neural networks and data augmentation[J]. Expert Systems with Applications, 2019, 118: 315−328. doi: 10.1016/j.eswa.2018.10.010
    [13] Lumini A, Nanni L, Maguolo G. Deep learning for plankton and coral classification[J]. Applied Computing and Informatics, 2023, 19(3/4): 265−283. doi: 10.1016/j.aci.2019.11.004
    [14] Khan S H, Hayat M, Bennamoun M, et al. Cost-sensitive learning of deep feature representations from imbalanced data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(8): 3573−3587. doi: 10.1109/TNNLS.2017.2732482
    [15] Lee H, Park M, Kim J. Plankton classification on imbalanced large scale database via convolutional neural networks with transfer learning[C]//Proceedings of 2016 IEEE International Conference on Image Processing. Phoenix, USA: IEEE, 2016: 3713−3717.
    [16] Dablain D, Krawczyk B, Chawla N V. DeepSMOTE: fusing deep learning and SMOTE for imbalanced data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(9): 6390−6404. doi: 10.1109/TNNLS.2021.3136503
    [17] Chinchor N. MUC-4 evaluation metrics[C]//Proceedings of the 4th Conference on Message Understanding. McLean, USA: Association for Computational Linguistics, 1992: 22−29.
    [18] Alzubaidi L, Bai J, Al-Sabaawi A, et al. A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications[J]. Journal of Big Data, 2023, 10(1): 1−82.
    [19] Pan S J, Yang Qiang. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345−1359. doi: 10.1109/TKDE.2009.191
    [20] Shihavuddin A S M. Coral reef dataset[EB/OL]. [2024-01-22]. https://data.mendeley.com/datasets/86y667257h/2.
    [21] WoRMS. An authoritative classification and catalogue of marine names[EB/OL]. [2024-04-05]. https://www.marinespecies.org.
    [22] Nanglu K, Lerosey-Aubril R, Weaver J C, et al. A mid-Cambrian tunicate and the deep origin of the ascidiacean body plan[J]. Nature Communications, 2023, 14(1): 3832. doi: 10.1038/s41467-023-39012-4
    [23] Rodríguez L, López C, Casado-Amezua P, et al. Genetic relationships of the hydrocoral Millepora alcicornis and its symbionts within and between locations across the Atlantic[J]. Coral Reefs, 2019, 38(2): 255−268. doi: 10.1007/s00338-019-01772-1
    [24] Shihavuddin A S M, Gracias N, Garcia R, et al. Image-based coral reef classification and thematic mapping[J]. Remote Sensing, 2013, 5(4): 1809−1841. doi: 10.3390/rs5041809
    [25] Buda M, Maki A, Mazurowski M A. A systematic study of the class imbalance problem in convolutional neural networks[J]. Neural Networks, 2018, 106: 249−259. doi: 10.1016/j.neunet.2018.07.011
    [26] Nair V, Hinton G E. Rectified linear units improve restricted boltzmann machines[C]//Proceedings of the 27th International Conference on International Conference on Machine Learning (ICML-10). Haifa, Israel: Omnipress, 2010: 807−814.
    [27] Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16(1): 321−357.
    [28] Deng Jia, Dong Wei, Socher R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE, 2009: 248−255.
  • 加载中
图(7) / 表(7)
计量
  • 文章访问数:  100
  • HTML全文浏览量:  50
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-02
  • 修回日期:  2024-05-08
  • 网络出版日期:  2024-08-15
  • 刊出日期:  2024-09-01

目录

    /

    返回文章
    返回