Effects of soliton internal waves with different amplitudes on sound propagation characteristics
-
摘要: 基于南海海域层结特征、有限深度理论方程等,应用潜标实测与WOA2023气候态温度、盐度数据,重构不同振幅孤立子内波条件下的二维声速场,再结合BELLHOP射线声学模型仿真计算不同声速环境下的声传播损失、声线路径,声线到达结构等。仿真结果表明:孤立子内波会改变声线传播轨迹,当声线由海面向海底方向或由海底反转向海面方向经过孤立子内波中心时,会导致声线轨迹水平方向上分别向靠近声源和远离声源方向偏移,且孤立子内波振幅越大,声线轨迹偏移距离越大;孤立子内波也会改变声线到达结构,在特定接收点处存在孤立子内波条件时的声信号会更快传播到接收点。Abstract: Based on the stratification characteristics of the South China Sea and the finite depth theoretical equation, the two-dimensional sound velocity field under different amplitudes of soliton internal waves is reconstructed by using the temperature and salinity data measured by submersible moorings and WOA2023 climate states. Combined with the BELLHOP ray acoustic model, the sound propagation loss, the ray path, the sound ray arrival structure and so on are simulated under different amplitudes of soliton internal waves environment. The simulation results show that soliton internal waves will change the propagation path of the sound rays. When the sound rays pass through the center of internal wave from the sea surface to the sea bottom or from the sea bottom to the sea surface, the horizontal direction of the sound rays track will be offset towards the sound source and away from the sound source, respectively. The larger the amplitude of soliton internal wave, the larger the offset distance of the sound rays track. Soliton internal waves can also change the arrival structure of the sound rays, and the sound signal will propagate to the receiving point faster when there are soliton internal wave conditions at a specific receiving point.
-
图 6 没有内波环境的传播损失(a);孤立子内波振幅20 m (b)、60 m (c)、100 m (d)环境下的传播损失差
图中菱形为孤立子内波中心所在的位置
Fig. 6 Propagation loss in the absence of internal waves (a); the propagation loss difference of soliton internal wave amplitudes 20 m (b), 60 (c), 100 m (d)
The diamond in the figure indicates the location of the center of the soliton internal wave
图 7 声线掠射角为−5° (a)、2° (b)、10° (c)条件下的本征声线
蓝色点实线、黑色、绿色、红色实线分别代表无内波,孤立子内波振幅为20 m、60 m、100 m的环境
Fig. 7 Eigenrays under conditions of source grazing angle: −5° (a), 2° (b), 10° (c)
The blue dot solid line, black, green, and red solid lines represent environments without internal waves, with soliton internal wave amplitudes of 20 m, 60 m, and 100 m
图 9 接收深度160 m(a1−a3)、400 m(b1−b3)、600 m(c1−c3),距离30 km处,没有内波以及孤立子内波振幅20 m、60 m、100 m的声线到达结构
Fig. 9 At the receiving depth of 160 m (a1−a3), 400 m (b1−b3), 600 m (c1−c3), and a range of 30 km, sound ray arrival structures for no internal waves and soliton internal wave amplitudes of 20 m, 60 m, and 100 m.
表 1 模拟振幅20 m、60 m、100 m的孤立子内波参数
Tab. 1 Simulation of soliton internal wave parameters with amplitudes of 20 m, 60 m and 100 m
振幅$ {\eta }_{0} $/m 特征半倍波宽L/m 参数a/10−4 参数b 非线性相速度V/(m·s−1) 20 4 707.63 3.42 5 836.69 2.05 60 2 459.71 5.52 1 945.56 2.20 100 1 741.24 6.68 1 167.34 2.35 表 2 BELLHOP模型中使用的参数
Tab. 2 2 Parameters used in BELLHOP modeling
参数 取值 频率/Hz 3 000 声源深度/m 160 水深/m 1 360 海底密度/(kg·m−3) 1 500 纵波声速/(m·s−1) 1 550 纵波衰减系数/(dB·λ−1) 0.20 -
[1] Osborne A R, Burch T L. Internal solitons in the Andaman Sea[J]. Science, 1980, 208(4443): 451−460. doi: 10.1126/science.208.4443.451 [2] 杨士莪. 水声传播原理[M]. 哈尔滨: 哈尔滨工程大学出版社, 2007.Yang Shie. Principles of Underwater Sound Propagation[M]. Harbin: Harbin Engineering University Press, 2007. (查阅网上资料, 未找到对应的英文翻译, 请确认) [3] 张仁和. 水声物理、信号处理与海洋环境紧密结合是水声技术发展的趋势[J]. 应用声学, 2006, 25(6): 325−327. doi: 10.3969/j.issn.1000-310X.2006.06.001Zhang Renhe. The development trend of underwater acoustic technology is osculatory combination of underwater acoustic physics, signal processing and ocean environment[J]. Journal of Applied Acoustics, 2006, 25(6): 325−327. doi: 10.3969/j.issn.1000-310X.2006.06.001 [4] Zhang Renhe, Li Zhenglin, Peng Zhaohui, et al. Overview of shallow water acoustics in the State Key Laboratory of Acoustics[J]. AIP Conference Proceedings, 2012, 1495(1): 16−35. [5] Zhou Jixun, Zhang Xuezhen, Rogers P H. Resonant interaction of sound wave with internal solitons in the coastal zone[J]. The Journal of the Acoustical Society of America, 1991, 90(4): 2042−2054. doi: 10.1121/1.401632 [6] Apel J R, Badiey M, Chiu C S, et al. An overview of the 1995 SWARM shallow-water internal wave acoustic scattering experiment[J]. IEEE Journal of Oceanic Engineering, 1997, 22(3): 465−500. doi: 10.1109/48.611138 [7] Lynch J, Tang Dajun. Overview of shallow water 2006 JASA EL special issue papers[J]. The Journal of the Acoustical Society of America, 2008, 124(3): EL63−EL65. doi: 10.1121/1.2972156 [8] Headrick R H, Lynch J F, Kemp J N, et al. Modeling mode arrivals in the 1995 SWARM experiment acoustic transmissions[J]. The Journal of the Acoustical Society of America, 2000, 107(1): 221−236. doi: 10.1121/1.428301 [9] Tang Dajun, Moum J N, Lynch J F, et al. Shallow water’06: a joint acoustic propagation/nonlinear internal wave physics experiment[J]. Oceanography, 2007, 20(4): 156−167. doi: 10.5670/oceanog.2007.16 [10] Sagers J D, Wilson P S. Modeling fluctuations in depth-integrated acoustic intensity induced by internal waves along a 2-D track[J]. IEEE Journal of Oceanic Engineering, 2017, 42(1): 231−241. [11] Parnum I M, MacLeod R, Duncan A J, et al. The effect of internal waves on underwater sound propagation[C]//Proceedings of ACOUSTICS 2017. Perth, Australia, 2017. (查阅网上资料, 未找到出版社信息, 请补充) [12] Noufal K K, Sanjana M C, Latha G, et al. Influence of internal wave induced sound speed variability on acoustic propagation in shallow waters of North West Bay of Bengal[J]. Applied Acoustics, 2022, 194: 108778. doi: 10.1016/j.apacoust.2022.108778 [13] 陈守虎, 吴立新, 张仁和, 等. 南中国海内波特征及其引起的声场起伏[J]. 自然科学进展, 2004, 14(10): 1163−1170.Chen Shouhu, Wu Lixin, Zhang Renhe, et al. Characterizations of the internal waves and their effect on the sound transmission in the midst of the South China sea[J]. Progress in Natural Science, 2004, 14(10): 1163−1170. (查阅网上资料, 未找到对应的英文翻译, 请确认) [14] 宋俊, 李风华, 胡永明. 孤子内波对声场水平纵向相干特性的影响[J]. 声学技术, 2007, 26(2): 199−205. doi: 10.3969/j.issn.1000-3630.2007.02.008Song Jun, Li Fenghua, Hu Yongming. Effects of solitary internal wave on horizontal longitudinal coherence of shallow-water acoustic fields[J]. Technical Acoustics, 2007, 26(2): 199−205. doi: 10.3969/j.issn.1000-3630.2007.02.008 [15] 马树青, 杨士莪, 朴胜春, 等. 浅海孤立子内波对海洋声传播损失与声源定位的影响研究[J]. 振动与冲击, 2009, 28(11): 73−78.Ma Shuqing, Yang Shie, Piao Shengchun, et al. Influence of shallow water internal solitary waves on ocean sound propagation and source allocation[J]. Journal of Vibration and Shock, 2009, 28(11): 73−78. [16] 邵云生. 孤子内波模拟及其声场影响研究[J]. 声学与电子工程, 2015(4): 29−32.Shao Yunsheng. Simulation of soliton internal waves and their impact on the sound field[J]. Acoustics and Electronics Engineering, 2015(4): 29−32. (查阅网上资料, 未找到对应的英文翻译, 请确认) [17] 秦继兴, Katsnelson B, 李整林, 等. 浅海中孤立子内波引起的声能量起伏[J]. 声学学报, 2016, 41(2): 145−153.Qin Jixing, Katsnelson B, Li Zhenglin, et al. Intensity fluctuations due to the motion of internal solitons in shallow water[J]. Acta Acustica, 2016, 41(2): 145−153. [18] 邢传玺, 宋扬, 刘文博, 等. 孤立子内波存在下的声传播仿真研究[J]. 云南民族大学学报(自然科学版), 2019, 28(4): 358−365.Xing Chuanxi, Song Yang, Liu Wenbo, et al. Simulation research on sound propagation in the perspective of internal soliton wave[J]. Journal of Yunnan Minzu University (Natural Sciences Edition), 2019, 28(4): 358−365. [19] Fofonoff N P, Millard Jr R C. Algorithms for computation of fundamental properties of seawater[R]. Paris: Unesco, 1983: 203−209. [20] Locarnini R A, Mishonov A V, Baranova O K, et al. World ocean atlas 2023, volume 1: temperature[EB/OL]. NOAA, National Centers for Environmental Information. https://repository.library.noaa.gov/view/noaa/60599, 2023-07-06. [21] Reagan J R, Seidov D, Wang Zhankun, et al. World ocean atlas 2023, volume 2: salinity[EB/OL]. NOAA, National Centers for Environmental Information. https://repository.library.noaa.gov/view/noaa/60600, 2023-07-06. [22] Kundu P K, Allen J S, Smith R L. Modal decomposition of the velocity field near the Oregon coast[J]. Journal of Physical Oceanography, 1975, 5(4): 683−704. doi: 10.1175/1520-0485(1975)005<0683:MDOTVF>2.0.CO;2 [23] Pedlosky J. Geophysical Fluid Dynamics[M]. New York: Springer, 2013. [24] Cai Shuqun, Xie Jieshuo, Xu Jiexin, et al. Monthly variation of some parameters about internal solitary waves in the South China sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2014, 84: 73−85. doi: 10.1016/j.dsr.2013.10.008 [25] Joseph R I. Solitary waves in a finite depth fluid[J]. Journal of Physics A: Mathematical and General, 1977, 10(12): L225−L227. doi: 10.1088/0305-4470/10/12/002 [26] Porter M B, Bucker H P. Gaussian beam tracing for computing ocean acoustic fields[J]. The Journal of the Acoustical Society of America, 1987, 82(4): 1349−1359. doi: 10.1121/1.395269 [27] 杨坤德, 雷波, 卢艳阳. 海洋声学典型声场模型的原理及应用[M]. 西安: 西北工业大学出版社, 2018.Yang Kunde, Lei Bo, Lu Yanyang. Principles and Applications of Typical Sound Field Models in Marine Acoustics[M]. Xi’an: Northwestern Polytechnical University Press, 2018. (查阅网上资料, 未找到对应的英文翻译, 请确认) [28] 曹震卿, 张永刚, 李庆红, 等. 季节因素对大西洋声传播的影响分析[J]. 应用海洋学学报, 2018, 37(4): 514−524. doi: 10.3969/J.ISSN.2095-4972.2018.04.007Cao Zhenqing, Zhang Yonggang, Li Qinghong, et al. Impact of seasonal factors on the acoustic propagation in Atlantic Ocean[J]. Journal of Applied Oceanography, 2018, 37(4): 514−524. doi: 10.3969/J.ISSN.2095-4972.2018.04.007