Seasonal variation and influencing factors of zooplankton community structure in Weizhou Island of Guangxi
-
摘要: 为了解广西涠洲岛海域浮游动物群落结构与环境因子的关系,探究海岛附近海域浮游动物群落季节变化规律,于2022年1月(冬)、4月(春)、8月(夏)、11月(秋)对广西涠洲岛海域的浮游动物进行采样,分析浮游动物种类组成、丰度、生物量和优势种在4个季节间的变化特征及其主要环境影响因素。全年4个季节共鉴定出浮游动物224种(类),包括浮游幼虫25种(类),隶属于18个类群,以桡足类最多(78种),水螅水母类次之(35种)。浮游动物种类数量呈现出春>秋>冬>夏的季节变化特征,种类组成上呈现春>冬>秋>夏的季节变化特征,优势类群在季节上存在桡足类—赤潮生物和胶质性生物−毛颚类−桡足类的更替现象,浮游动物群落结构季节变化特征明显。浮游动物的年平均丰度和生物量分别为(246.50 ± 158.75)ind./m3和(126.08 ± 192.27)mg/m3,春季的丰度和生物量均最高(712.80 ± 630.28)ind./m3和(367.79 ± 264.33)mg/m3,冬季的丰度最低(62.29 ±29.56)ind./m3,夏季的生物量最低(35.48 ± 19.88)mg/m3,丰度和生物量均存在明显的季节变化。RDA结果显示水温、盐度、营养盐和叶绿素a是影响广西涠洲岛海域浮游动物群落结构季节变化的主要环境因素,海洋季风引起水团发生季节性变化驱动着浮游动物优势种的演替。研究海域浮游动物的重要类群桡足类丰度季节变化特征与布氏鲸在涠洲岛海域的迁徙规律吻合,表明渔业基础饵料生物影响着布氏鲸的迁徙活动。此外,春季原生动物和胶质性生物大量增殖生长引起桡足类优势度下降的现象对涠洲岛海域产生的生态影响值得关注与探究。Abstract: The seasonal variations of zooplankton communities in the nearby seas of the Island was investigated to know the relationship between the structure of zooplankton communities and environmental factors in the sea areas around Weizhou Island in Guangxi. Collecting samples of zooplankton communities were conducted in January (winter), April (spring), August (summer), and November (autumn) of 2022. The study examines the variations in zooplankton species composition, abundance, biomass, and dominant species across the four seasons, while also investigating their primary environmental influencing factors. A total of 224 species (classes) of zooplankton were identified throughout the four seasons of the year, including 25 species (classes) planktonic larvae, belonging to 18 groups. Copepods were the most abundant (78 species), followed by hydrozoan jellyfish (35 species). The number of zooplankton species shows a seasonal variation pattern of spring > autumn > winter > summer, and the composition of species shows a seasonal variation pattern of spring > winter > autumn > summer. The dominant species group exhibits a seasonal replacement phenomenon of copepods, red tide organisms, and glial organisms, as well as hairy jawbones and copepods. The seasonal variation characteristics of the zooplankton community structure are obvious. The annual average abundance and biomass of zooplankton are (246.50 ± 158.75) ind./m3 and (126.08 ± 192.27) mg/m3, respectively. The abundance and biomass in spring are the highest (712.80 ± 630.28) ind./m3 and (367.79 ± 264.33) mg/m3, while the abundance in winter is the lowest (62.09 ± 29.61) ind./m3 and the biomass in summer is the lowest (35.48 ± 19.88) mg/m3. The results of redundancy analysis indicate that water temperature, salinity, nutrients and chlorophyll a are the main environmental factors affecting the seasonal changes of zooplankton community structure in the sea area of Weizhou Island, Guangxi. The seasonal changes in water masses cause by the ocean monsoon drive the succession of dominant species of zooplankton. The seasonal variation characteristics of the abundance of copepods, an important group of zooplankton in the sea area, are consistent with the migration patterns of the Balaenoptera edeni in the waters of Weizhou Island, indicating that the basic feed organisms of the fishing industry affect the migration activities of the B. edeni. In addition, the ecological impact of the decreased dominant group of copepods caused by the proliferation and growth of protozoa and glial organisms in spring on the waters of Weizhou Island deserves attention and exploration.
-
Key words:
- Weizhou Island /
- zooplankton /
- community structure /
- seasonal variation /
- environmental factor
-
表 1 研究海域浮游动物种类组成和平均丰度
Tab. 1 Species composition and average abundance of zooplankton in the study sea area
类群 冬季 春季 夏季 秋季 种数 丰度/(ind.·m−3) 种数 丰度 /(ind.·m−3) 种数 丰度/(ind.·m−3) 种数 丰度 /(ind.·m−3) 桡足类 Copepoda 34 37.49 38 53.41 37 17.82 36 74.62 水螅水母类 Hydromedusae 12 0.96 20 8.77 5 0.42 10 1.15 浮游幼虫 Planktonic larvae 10 9.77 19 74.73 17 35.43 14 6.95 毛颚类 Chaetognatha 13 9.80 14 47.32 3 48.81 17 13.60 管水母类 Siphonophora 3 0.14 14 34.44 / / 4 0.84 糠虾类 Mysidacea 7 0.19 6 0.58 / / 6 1.48 浮游被囊类 Tunicata 1 0.01 6 204.88 1 0.45 1 0.21 樱虾类 Sergestidae 2 0.05 2 2.99 2 2.39 6 2.72 介形类 Ostracoda 3 1.05 4 4.82 / / 1 0.83 端足类 Amphipoda / / 4 5.74 / / 2 0.36 枝角类 Cladocera / / 2 22.00 2 2.00 2 0.18 磷虾类 Euphausiacea 3 0.05 1 0.77 / / 1 0.12 栉水母类 Ctenophora 1 0.02 2 0.60 1 0.60 1 0.05 浮游软体动物 Pelagic Mollusc / / 3 0.39 1 0.07 / / 原生动物 Protozoa 1 1.09 1 250.97 / / / / 头索类 Acrania 1 0.01 / / / / / / 歪尾类 Anomura 1 0.06 / / / / / / 多毛类 Polychaeta / / 1 0.39 / / / / 合计 92 62.29 137 712.80 69 107.99 101 103.11 注:“/”表示该类群未出现。 表 3 研究海域浮游动物物种多样性指数和均匀度指数
Tab. 3 Diversity and evenness of zooplankton in the study sea area
季节 多样性指数(H′) 均匀度指数(J′) 范围 平均值 范围 平均值 全年 0.77~4.44 2.89 ± 0.69 0.15~0.85 0.64 ± 0.13 冬季 2.23~3.47 2.99 ± 0.41 0.48~0.78 0.69 ± 0.08 春季 0.77~4.44 3.20 ± 0.97 0.15~0.85 0.62 ± 0.18 夏季 2.14~3.20 2.57 ± 0.32 0.52~0.82 0.62 ± 0.09 秋季 1.20~3.95 2.80 ± 0.76 0.38~0.80 0.63 ± 0.12 表 2 研究海域各季节浮游动物优势种优势度(Y)
Tab. 2 Dominance species dominance of Zooplankton in the study sea area in each season (Y)
种类 冬季 春季 夏季 秋季 丰度/
(ind.·m−3)优势度 丰度/
(ind.·m−3)优势度 丰度/
(ind.·m−3)优势度 丰度 /
(ind.·m−3)优势度 精致真刺水蚤
Euchaeta concinna17.73 0.249* 1.93 0.001 / / 8.35 0.029 瘦尾胸刺水蚤
Centropages tenuiremis6.61 0.080 1.45 0.000 / / / / 亚强次真哲水蚤
Subeucalanus subcrassus5.031 0.061 9.83 0.012 14.22 0.115* 32.64 0.317* 微刺哲水蚤
Canthocalanus pauper3.53 0.031 0.73 0.000 0.42 0.002 16.17 0.157* 锥形宽水蚤
Temora turbinata4.56 0.026 5.40 0.005 0.21 0.000 1.33 0.007 帽形次真哲水蚤
Subeucalanus pileatus/ / 7.04 0.005 0.34 0.001 11.40 0.049 小长足水蚤
Calanopia minor/ / / / 0.05 0.000 3.99 0.029 肥胖箭虫
Sagitta enflata7.12 0.115* 43.11 0.056 48.62 0.450* 16.37 0.085 夜光虫
Noctiluca scintillans1.09 0.001 250.97 0.305* / / / / 软拟海樽
Dolioletta gegenbauri/ / 150.27 0.183* / / / / 宽肌纽鳃樽
Iasis zonaria/ / 18.35 0.026 / / / / 鸟喙尖头溞
Penilia avirostris/ / 21.59 0.026 1.87 0.006 0.11 0.000 短尾类溞状幼虫
Zoea larva (Brachyura)1.68 0.024 16.74 0.022 10.25 0.095 1.10 0.006 长尾类糠虾幼虫
Mccruran mysis larva0.36 0.001 14.38 0.020 14.03 0.113 2.75 0.023 鱼卵 Fish eggs 5.24 0.054 11.31 0.016 1.70 0.015 0.40 0.001 长尾类幼虫 Macrura larva 3.65 0.026 0.21 0.000 / / 0.12 0.000 棘皮动物长腕幼虫
Echinodermata ophiopluteus larva/ / 0.07 0.000 6.03 0.030 1.62 0.006 注:带“*”的数字为前两位优势种的优势度;“/”表示该物种未出现。 -
[1] Ratnarajah L, Abu-Alhaija R, Atkinson A, et al. Monitoring and modelling marine zooplankton in a changing climate[J]. Nature Communications, 2023, 14(1): 564. doi: 10.1038/s41467-023-36241-5 [2] 刘栋, 李永明, 陈胜林, 等. 2014年黄骅港海域浮游动物群落结构季节变化及其影响因素研究[J]. 海洋科学, 2022, 46(4): 81−97.Liu Dong, Li Yongming, Chen Shenglin, et al. Seasonal variation of zooplankton community structure and its influencing factors in waters adjacent to the Huanghua Port, Bohai in 2014[J]. Marine Sciences, 2022, 46(4): 81−97. [3] Deng Shulin, Li Manchun, Sun Han, et al. Exploring temporal and spatial variability of precipitation of Weizhou Island, South China Sea[J]. Journal of Hydrology: Regional Studies, 2017, 9: 183−198. [4] 陶晓娉, 吴淼, 刘熊, 等. 广西北部湾海域水质污染调查与分析[J]. 广西科学, 2022, 29(3): 532−540.Tao Xiaoping, Wu Miao, Liu Xiong, et al. Investigation and analysis of water quality pollution in Beibu Gulf of Guangxi[J]. Guangxi Sciences, 2022, 29(3): 532−540. [5] 黄晓煦, 徐轶肖, 张腾, 等. 涠洲岛海域营养盐变化特征与评价[J]. 广西科学, 2021, 28(2): 130−135.Huang Xiaoxu, Xu Yixiao, Zhang Teng, et al. Characteristics and evaluation of nutrient salt variation in the sea area of the Weizhou Island[J]. Guangxi Sciences, 2021, 28(2): 130−135. [6] 陈波, 许铬本, 牙韩争, 等. 入海径流扩散对北部湾北部环流的影响[J]. 海洋湖沼通报, 2020(2): 43−54.Chen Bo, Xu Geben, Ya Hanzheng, et al. Effect of the runoff diffusion on the circulation in the northern Beibu Gulf[J]. Transactions of Oceanology and Limnology, 2020(2): 43−54. [7] 侍茂崇. 北部湾环流研究述评[J]. 广西科学, 2014, 21(4): 313−324.Shi Maochong. Study comments on circulation in Beibu Gulf[J]. Guangxi Sciences, 2014, 21(4): 313−324. [8] 杨振雄, 张敬怀, 吕向立, 等. 涠洲岛造礁石珊瑚群落变化特征及其环境影响因子[J]. 生态学报, 2021, 41(18): 7168−7179.Yang Zhenxiong, Zhang Jinghuai, Lü Xiangli, et al. The ecological succession of scleratinian coral communities and their environmental factors in Weizhou Island[J]. Acta Ecologica Sinica, 2021, 41(18): 7168−7179. [9] 邱广龙, 潘良浩, 王欣, 等. 广西涠洲岛滨海湿地潮下带海草、红树林与互花米草的分布和群落结构特征[J]. 应用海洋学学报, 2021, 40(1): 56−64.Qiu Guanglong, Pan Lianghao, Wang Xin, et al. Distribution and community structure of subtidal seagrasses, mangroves and Spartina alterniflora on the coastal wetlands of Weizhou Island, Guangxi[J]. Journal of Applied Oceanography, 2021, 40(1): 56−64. [10] Zhang Yaoyao, Chen Mo, Chen Mao, et al. Community-based population monitoring for large baleen whales: the case study of Bryde’s whale in Beibu Gulf of China[J]. Integrative Zoology, 2021, 16(4): 626−635. doi: 10.1111/1749-4877.12525 [11] 吴采雯. 广西布氏鲸的种群动态及捕食策略研究[D]. 南京: 南京师范大学, 2021.Wu Caiwen. Population dynamics and feeding strategies of Eden’s whales in Guangxi, China[D]. Nanjing: Nanjing Normal University, 2021. [12] Chen Mo, Huang S L, Wu Haiping, et al. Occurrence of Bryde’s whales, Balaenoptera edeni, in the northern Beibu Gulf, China[J]. Marine Mammal Science, 2019, 35(4): 1643−1652. doi: 10.1111/mms.12607 [13] 庞碧剑, 蓝文陆, 黎明民, 等. 北部湾近岸海域浮游动物群落结构特征及季节变化[J]. 生态学报, 2019, 39(19): 7014−7024.Pang Bijian, Lan Wenlu, Li Mingmin, et al. Community structure and seasonal variation of zooplankton in coastal Beibu Gulf[J]. Acta Ecologica Sinica, 2019, 39(19): 7014−7024. [14] 阙江龙, 徐兆礼, 孙鲁峰. 北部湾西北部饵料浮游动物季节变化及其与鱼卵、仔稚鱼的关系[J]. 中国水产科学, 2015, 22(5): 1027−1035.Que Jianglong, Xu Zhaoli, Sun Lufeng. Seasonal variation in zooplankton characteristics and their relationship with fish eggs and larvae in the Northwest Beibu Gulf[J]. Journal of Fishery Sciences of China, 2015, 22(5): 1027−1035. [15] 郑白雯. 北部湾北部浮游生物生态学研究[D]. 厦门: 厦门大学, 2014.Zheng Baiwen. Ecological studies on plankton in northern Beibu Gulf[D]. Xiamen: Xiamen University, 2014. [16] 马璐, 曹文清, 张文静, 等. 北部湾北部海域夏季微型浮游动物对浮游植物的摄食压力[J]. 生态学报, 2014, 34(3): 546−554.Ma Lu, Cao Wenqing, Zhang Wenjing, et al. An ecological study on zooplankton in the northern Beibu Gulf V: the effects of microzooplankton grazing on phytoplankton in summer[J]. Acta Ecologica Sinica, 2014, 34(3): 546−554. [17] 何本茂, 黎广钊, 韦蔓新, 等. 涠洲岛珊瑚礁海域氮磷比值季节变化与浮游生物结构的关系[J]. 热带海洋学报, 2013, 32(4): 64−72.He Benmao, Li Guangzhao, Wei Manxin, et al. Relationship between the seasonality of seawater N: P ratio and the structure of plankton on the reefs of Weizhou Island, northern South China Sea[J]. Journal of Tropical Oceanography, 2013, 32(4): 64−72. [18] 韦蔓新, 黎广钊, 何本茂, 等. 涠洲岛珊瑚礁生态系中浮游动植物与环境因子关系的初步探讨[J]. 海洋湖沼通报, 2005(2): 34−39.Wei Manxin, Li Guangzhao, He Benmao, et al. Preliminory study of the relationship between plankton and environmental factors in the coral reef system around Weizhou Island[J]. Transactions of Oceanology and Limnology, 2005(2): 34−39. [19] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB 17378.4−2007, 海洋监测规范 第4部分: 海水分析[S]. 北京: 中国标准出版社, 2008.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration. GB 17378.4−2007, The specification for marine monitoring—Part 4: seawater analysis[S]. Beijing: Standards Press of China, 2008. [20] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB 17378.7−2007, 海洋监测规范 第7部分: 近海污染生态调查和生物监测[S]. 北京: 中国标准出版社, 2008.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration. GB 17378.7−2007, The specification for marine monitoring—Part 7: ecological survey for offshore pollution and biological monitoring[S]. Beijing: Standards Press of China, 2008. [21] 黄彬彬, 吴风霞, 郑淑娴, 等. 雷州半岛以东近岸海域浮游动物群落结构与环境因子关系[J]. 广东海洋大学学报, 2022, 42(2): 53−61.Huang Binbin, Wu Fengxia, Zheng Shuxian, et al. Relationships between community structure of zooplankton and environmental factors in the east Leizhou Peninsula coastal area[J]. Journal of Guangdong Ocean University, 2022, 42(2): 53−61. [22] 杨杰青, 欧阳珑玲, 史赟荣, 等. 海南西北部近岸海域浮游动物群落结构[J]. 应用海洋学学报, 2019, 38(3): 381−392.Yang Jieqing, Ouyang Longling, Shi Yunrong, et al. Zooplankton community structure in nearshore waters of northwest Hainan Island[J]. Journal of Applied Oceanography, 2019, 38(3): 381−392. [23] 李明明, 谭可易, 黄家辉, 等. 北部湾东北部水团和流场季节变化: 2018−2019年观测数据分析[J]. 海洋学研究, 2022, 40(3): 73−85.Li Mingming, Tan Keyi, Huang Jiahui, et al. Seasonal variation of water masses and current field in the northeastern Beibu Gulf based on observations in 2018−2019[J]. Journal of Marine Sciences, 2022, 40(3): 73−85. [24] 曹振轶, 鲍敏, 管卫兵, 等. 北部湾东北部水团分布及季节变化分析[J]. 海洋与湖沼, 2019, 50(3): 532−542.Cao Zhenyi, Bao Min, Guan Weibing, et al. Water-mass evolution and the seasonal change in northeast of the Beibu Gulf, China[J]. Oceanologia et Limnologia Sinica, 2019, 50(3): 532−542. [25] Chen Zhenhua, Qiao Fangli, Xia Changshui, et al. The numerical investigation of seasonal variation of the cold water mass in the Beibu Gulf and its mechanisms[J]. Acta Oceanologica Sinica, 2015, 34(1): 44−54. doi: 10.1007/s13131-015-0595-x [26] 谭树华, 曹文清, 林元烧, 等. 黄、东海精致真刺水蚤种群遗传结构研究[J]. 海洋科学, 2004, 28(4): 29−33.Tan Shuhua, Cao Wenqing, Lin Yuanshao, et al. Population genetic structure of Euchaeta concinna (Copepoda) in the Yellow Sea and the East China Sea[J]. Marine Sciences, 2004, 28(4): 29−33. [27] 徐兆礼, 陈亚瞿. 东海毛颚类优势种及与环境的关系[J]. 中国水产科学, 2005, 12(1): 76−82.Xu Zhaoli, Chen Yaqu. Relationships between dominant species of Chaetognatha and environmental factors in the East China Sea[J]. Journal of Fishery Sciences of China, 2005, 12(1): 76−82. [28] 岳新利, 张梦柯, 谷利德, 等. 福建平潭外海域夜光藻赤潮期营养元素和溶解态痕量金属动态与响应[J]. 厦门大学学报(自然科学版), 2023, 62(3): 375−384.Yue Xinli, Zhang Mengke, Gu Lide, et al. Dynamics of nutrients and dissolved trace metals during an algal bloom of Noctiluca scintillans in the waters off the Pingtan Island, Fujian[J]. Journal of Xiamen University (Natural Science), 2023, 62(3): 375−384. [29] 盖建军, 矫新明, 倪金俤, 等. 海州湾夜光虫的空间分布特征[J]. 水产养殖, 2012, 33(10): 13−16.Gai Jianjun, Jiao Xinmig, Ni Jindi, et al. The characteristics of spatial distribution of Noctiluca in the Haizhou Bay[J]. Journal of Aquaculture, 2012, 33(10): 13−16. [30] 粟启仲, 雷学铁, 刘国强, 等. 广西北部湾近岸海域近20年赤潮灾害特征分析[J]. 广西科学, 2022, 29(3): 552−557.Su Qizhong, Lei Xuetie, Liu Guoqiang, et al. Characteristics of red tide disaster in coastal waters of Beibu Gulf of Guangxi in recent 20 years[J]. Guangxi Sciences, 2022, 29(3): 552−557. [31] Lucas C H, Jones D O B, Hollyhead C J, et al. Gelatinous zooplankton biomass in the global oceans: geographic variation and environmental drivers[J]. Global Ecology and Biogeography, 2014, 23(7): 701−714. doi: 10.1111/geb.12169 [32] Condon R H, Duarte C M, Pitt K A, et al. Recurrent jellyfish blooms are a consequence of global oscillations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 110(3): 1000−1005. [33] 谭烨辉, 赖艳娇, 连喜平, 等. 浮游胶质被囊动物暴发机制及海洋碳泵效应[J]. 热带海洋学报, 2023, 42(5): 178−193.Tan Yehui, Lai Yanjiao, Lian Xiping, et al. Swarms of pelagic gelatinous tunicates and their roles in marine biological carbon pump[J]. Journal of Tropical Oceanography, 2023, 42(5): 178−193. [34] Pourjomeh F, Shokri M R, Rezai H, et al. The relationship among environmental variables, jellyfish and non-gelatinous zooplankton: a case study in the north of the Gulf of Oman[J]. Marine Ecology, 2017, 38(6): e12476. doi: 10.1111/maec.12476 [35] 崔鑫. 海洋胶体物质的性质及其对有害赤潮藻生长的影响[D]. 青岛: 中国海洋大学, 2005.Cui Xin. The properties of marine colloids and their influence on Micro-algal growth[D]. Qingdao: Ocean University of China, 2005. [36] 王永智. 近30年北部湾涠洲岛珊瑚礁生态系统健康评价及其生态资产核算方法研究[D]. 南宁: 广西大学, 2020.Wang Yongzhi. Assessment of coral reef ecosystem health and ecological assets in past three decades at Weizhou Island reef, Beibu Gulf[D]. Nanning: Guangxi University, 2020. [37] Heneghan R F, Everett J D, Blanchard J L, et al. Climate-driven zooplankton shifts cause large-scale declines in food quality for fish[J]. Nature Climate Change, 2023, 13(5): 470−477. doi: 10.1038/s41558-023-01630-7 [38] Wei Yuqiu, Ding Dongsheng, Gu Ting, et al. Different responses of phytoplankton and zooplankton communities to current changing coastal environments[J]. Environmental Research, 2022, 215: 114426. doi: 10.1016/j.envres.2022.114426 [39] 李开枝, 尹健强, 黄良民, 等. 浮游被囊动物的分类及其生态学研究进展[J]. 生态学报, 2010, 30(1): 174−185.Li Kaizhi, Yin Jianqiang, Huang Liangmin, et al. Advances on classification and ecology of pelagic tunicates[J]. Acta Ecologica Sinica, 2010, 30(1): 174−185. [40] 庞碧剑, 李天深, 蓝文陆, 等. 钦州湾秋季和春季浮游动物分布特征及影响因素[J]. 生态学报, 2018, 38(17): 6204−6216.Pang Bijian, Li Tianshen, Lan Wenlu, et al. Distribution patterns and environmental factors of zooplankton in the Qinzhou Bay in spring and autumn[J]. Acta Ecologica Sinica, 2018, 38(17): 6204−6216. [41] 龚玉艳, 张才学, 陈作志, 等. 湛江湾浮游动物群落结构特征及其周年变化[J]. 海洋科学, 2015, 39(12): 46−55.Gong Yuyan, Zhang Caixue, Chen Zuozhi, et al. Structural characteristics of zooplankton populations and their annual changes in Zhanjiang Bay[J]. Marine Sciences, 2015, 39(12): 46−55. [42] 王彦, 申玉春, 叶宁, 等. 流沙湾浮游生物的群落结构与时空分布[J]. 广东海洋大学学报, 2012, 32(6): 66−73.Wang Yan, Shen Yuchun, Ye Ning, et al. Community structure and temporal and spatial distribution of plankton in Liusha Bay[J]. Journal of Guangdong Ocean University, 2012, 32(6): 66−73. [43] Chopelet J, Blier P U, Dufresne F. Plasticity of growth rate and metabolism in Daphnia magna populations from different thermal habitats[J]. Journal of Experimental Zoology Part A, 2008, 309A(9): 553−562. doi: 10.1002/jez.488 [44] 陈宜展, 杨威, 曹永港, 等. 北部湾北部环流的季节特征[J]. 广东海洋大学学报, 2020, 40(4): 68−74.Chen Yizhan, Yang Wei, Cao Yonggang, et al. Seasonal characteristics of circulation in the northern Beibu Gulf[J]. Journal of Guangdong Ocean University, 2020, 40(4): 68−74. [45] 陈波, 侍茂崇. 北部湾海洋环流研究进展[J]. 广西科学, 2019, 26(6): 595−603.Chen Bo, Shi Maochong. Advances in study of Beibu Gulf circulation[J]. Guangxi Sciences, 2019, 26(6): 595−603. [46] 马婕. 大亚湾浮游动物主要功能群的摄食及其对环境变化的响应[D]. 上海: 上海海洋大学, 2019.Ma Jie. Feeding of the main functional groups of zooplankton in Daya Bay and its response to environmental changes[D]. Shanghai: Shanghai Ocean University, 2019. [47] 李晓娇. 氮磷营养盐对胶州湾浮游植物群落结构的影响[D]. 上海: 上海海洋大学, 2021.Li Xiaojiao. Effects of nitrogen and phosphorus nutrients on phytoplankton community structure in Jiaozhou Bay[D]. Shanghai: Shanghai Ocean University, 2021. [48] 饶科. 富营养化浅水湖泊浮游植物群落环境驱动因子及内源污染研究——以鲁湖和后官湖为例[D]. 武汉: 武汉大学, 2019.Rao Ke. The research of environmental driving factors of phytoplankton community and internal pollution in eutrophic shallow lakes-Take lake Luhu and lake Houguan as examples[D]. Wuhan: Wuhan University, 2019. [49] 韩博平, 林娴, 林秋奇, 等. 水体富营养化过程对大型滤食性浮游动物种群的影响[C]//王如松. 中国生态学会2006学术年会论文荟萃. 沈阳: 中国生态学学会, 2006.Han Boping, Lin Xian, Lin Qiuqi, et al. Effects of eutrophication processes on large filter-feeding zooplankton populations in water[C]//Wang Rusong. Papers from the 2006 Annual Meeting of the Ecological Society of China. Shenyang: Ecological Society of China, 2006: 1. [50] Elser J J, Goldman C R. Zooplankton effects on phytoplankton in lakes of contrasting trophic status[J]. Limnology and Oceanography, 1991, 36(1): 64−90. doi: 10.4319/lo.1991.36.1.0064 [51] Décima M. Zooplankton trophic structure and ecosystem productivity[J]. Marine Ecology Progress Series, 2022, 692: 23−42. doi: 10.3354/meps14077 [52] Asgari M, Steiner C F. Interactive effects of productivity and predation on zooplankton diversity[J]. Oikos, 2017, 126(11): 1617−1624. doi: 10.1111/oik.04099 [53] Stige L C, Eriksen E, Dalpadado P, et al. Direct and indirect effects of sea ice cover on major zooplankton groups and planktivorous fishes in the Barents Sea[J]. ICES Journal of Marine Science, 2019, 76(S1): i24−i36. [54] Gao Jingsong, Wu Guidan, Ya Hanzheng. Review of the circulation in the Beibu Gulf, South China Sea[J]. Continental Shelf Research, 2017, 138: 106−119. doi: 10.1016/j.csr.2017.02.009 [55] Wang Yanfeng, Yao Lijun, Chen Pimao, et al. Environmental influence on the spatiotemporal variability of fishing grounds in the Beibu Gulf, South China Sea[J]. Journal of Marine Science and Engineering, 2020, 8(12): 957. doi: 10.3390/jmse8120957 [56] Watanabe H, Okazaki M, Tamura T, et al. Habitat and prey selection of common minke, sei, and Bryde’s whales in mesoscale during summer in the subarctic and transition regions of the western North Pacific[J]. Fisheries Science, 2012, 78(3): 557−567. doi: 10.1007/s12562-012-0480-x [57] Siciliano S, de Oliveira Santos M C, Vicente A F C, et al. Strandings and feeding records of Bryde’s whales (Balaenoptera edeni) in south-eastern Brazil[J]. Journal of the Marine Biological Association of the United Kingdom, 2004, 84(4): 857−859. doi: 10.1017/S0025315404010082h [58] 史赟荣. 长江口鱼类群落多样性及基于多元排序方法群落动态的研究[D]. 上海: 上海海洋大学, 2012.Shi Yunrong. Studies on fish community diversity and community dynamics based on multivariate analysis in the Yangtze River Estuary[D]. Shanghai: Shanghai Ocean University, 2012. [59] 王军, 黄丽月, 苏永全. 罗源湾几种鲱科鱼类食性的研究[J]. 福建水产, 1992(3): 14−20.Wang Jun, Huang Liyue, Su Yongquan. Food habits of several herring species in Luoyuan Bay[J]. Journal of Fujian Fisheries, 1992(3): 14−20. [60] Penry G S, Cockcroft V G, Hammond P S. Seasonal fluctuations in occurrence of inshore Bryde’s whales in Plettenberg Bay, South Africa, with notes on feeding and multispecies associations[J]. African Journal of Marine Science, 2012, 3(33): 403−414. [61] Wiseman N, Parsons S, Stockin K A, et al. Seasonal occurrence and distribution of Bryde’s whales in the Hauraki Gulf, New Zealand[J]. Marine Mammal Science, 2011, 27(4): E253−E267. [62] Maciel I S, Tardin R H, Simão S M. Occurrence and habitat use of Bryde’s whales (Balaenoptera edeni) in the Cabo Frio region, South-eastern Brazil[J]. Journal of the Marine Biological Association of the United Kingdom, 2018, 98(Special 5): 1081−1086.