The evolution of global sea level fingerprints under multiplescenarios
-
摘要: 气候变化背景下,区域质量海平面变化速率不一。其中,陆地向海水输送的淡水在负荷自吸效应与极移反馈共同作用下形成质量海平面的时空异质性变化,即海平面指纹,是质量海平面中的重要组成部分。本文利用三套陆地水储量异常数据,采用考虑负荷自吸效应与极移反馈的海平面方程,模拟3种情景下的海平面指纹,分别为:(1)吻合实际冰川物质平衡的情景;(2)吻合近期气候变化速率的情景;(3)仅考虑气候自然变率的情景。基于模拟结果,分析多情景下海平面指纹的演化特征,并评估其对观测质量海平面异常的贡献。研究表明:格陵兰岛、阿拉斯加、高加索及中东地区、南安第斯山脉和南极洲等地区的冰川消融主导海平面指纹的趋势项。吻合实际冰川物质平衡的情景能更好地再现观测质量海平面异常趋势项的全球分布格局,表现为与GRACE/GRACE-FO结果的空间相似系数为0.31、与测高卫星结果的空间相似系数为0.71。非冰川区域陆地水储量异常则更好地再现观测质量海平面异常的振幅项,表现为仅考虑气候自然变率情景下的海平面指纹与GRACE/GRACE-FO结果的空间相似系数为0.67、与测高卫星结果的空间相似系数为0.84。低纬海域质量海平面异常主要贡献源是海平面指纹。Abstract: Under the backdrop of climate change, mass sea level change rates are varied across regions. Therein, underthe combined effect ofthe self-attraction and loading effect andpolar motion feedback, freshwater transported from land to searesulted in the spatiotemporal heterogeneous change of mass sea level, termed sea level fingerprints. The sea level fingerprints are important components of mass sea level. This study utilized three terrestrial water storage anomalies datasets to simulate sea level fingerprints under three scenarios, following a sea level equation that incorporated the self-attraction and loading effect along with polar motion feedback. The simulated scenarios were: (1) aligning with the actual glacial mass balance; (2) consistent with the recent climate change rates; and (3) considering climate natural variability alone. Based on simulation results, this study analyzed the evolution ofsea level fingerprints under multiple scenarios and assessed their contribution to observed mass sea level anomalies.The study revealed that glacier melting in regions such as Greenland, Alaska, the Caucasus and Middle East, the Southern Andes, and Antarctica dominated the trendterm of sea level fingerprints. The sea level fingerprints, which align with the actual glacier mass balance, better replicated the global distribution pattern of the observed mass sea level anomalies trend term,as shown by the spatial similarity coefficients of 0.31 with the GRACE/GRACE-FO results and 0.71 with the altimetry satellite results. Non-glacial regional terrestrial water storage anomalies better captured the amplitude term of the observed mass sea level anomalies, as shown by sea level fingerprints, which consider climate natural variability alone, having spatial similarity coefficients of 0.67 with the GRACE/GRACE-FO results and 0.84 with the altimetry satellite results. The sea level fingerprints were the primary contributing source to mass sea level anomalies in low-latitude regions.
-
Key words:
- sea level fingerprints /
- sea level equation /
- multiple scenarios
-
图 3 海平面指纹季节振幅全球分布特征图
a.横坐标为经度,纵坐标为季节振幅经向余弦加权平均值,e.横坐标为季节振幅纬向算数平均值,纵坐标为纬度,b.SLF_D、c.SLF_L、d.SLF_H全球各格网季节振幅,
Fig. 3 Characteristic maps of the global distributions of SLF seasonal amplitudes
a. Horizontal coordinate is longitude, vertical coordinate is longitudinal cosine-weighted mean of seasonal amplitudes; e. horizontal coordinate is latitudinal arithmetic mean of seasonal amplitudes, vertical coordinate is latitude b. SLF_D, c. SLF_L, d. SLF_H global seasonal amplitudes for each grid
图 4 20°S至50°N陆地水储量异常驱动的海平面指纹季节振幅与全球陆地水储量异常驱动的海平面指纹季节振幅的比值全球分布特征图
a.SLF_D、b.SLF_L、c.SLF_H全球各格网季节振幅占比
Fig. 4 Characteristic maps of the global distributions of the ratio of SLF seasonal amplitudes driven by TWS anomalies from 20°S to 50°N to that driven by the global TWS anomalies
a. SLF_D, b. SLF_L, c. SLF_Hglobal ratio ofseasonal amplitudes for each grid
图 5 海平面指纹变化趋势全球分布特征图
a.横坐标为经度,纵坐标为变化趋势经向余弦加权平均值,e.横坐标为变化趋势纬向算数平均值,纵坐标为纬度,b.SLF_D、c.SLF_L、d.SLF_H全球各格网变化趋势
Fig. 5 Characteristic maps of the global distributions of SLF trends
a. Horizontal coordinate is longitude, vertical coordinate is longitudinal cosine-weighted mean of trends; e. horizontal coordinate is latitudinal arithmetic mean of trends, vertical coordinate is latitude; b. SLF_D, c. SLF_L, d. SLF_H global trends for each grid
图 6 海平面指纹年际变异波动全球分布特征图
a.横坐标为经度,纵坐标为年际变异波动经向余弦加权平均值,e.横坐标为年际变异波动纬向算数平均值,纵坐标为纬度,b.SLF_D,c.SLF_L、d.SLF_H全球各格网年际变异波动
Fig. 6 Characteristic maps of the global distributions of SLF interannual variation fluctuations
a. Horizontal coordinate is longitude, vertical coordinate is longitudinal cosine-weighted mean of interannual variation fluctuations; e. horizontal coordinate is latitudinal arithmetic mean of interannual variation fluctuations, vertical coordinate is latitude; b. SLF_D, c. SLF_L, d. SLF_H global interannual variation fluctuations for each grid
图 7 海平面指纹与GRACE/GRACE-FO观测的质量海平面异常的评估结果空间分布图
b、f、j和 c、g、k分别为SLF_D、SLF_L、SLF_H与GRACE/GRACE-FO观测的质量海平面异常间的CorrCoef和EV;a、e、i和 d、h、l分别为SLF_D、SLF_L、SLF_H的CorrCoef和EV纬向算术平均值。结果均仅显示观测范围内显著相关区域(p < 0.05)
Fig. 7 Spatial distribution of correlation between SLF and GRACE/GRACE-F oobserved mass sea level anomalies
b, f, j, and c, g, k The CorrCoef and EV between SLF_D, SLF_L, and SLF_H and the GRACE/GRACE-F oobserved mass sea level anomalies, respectively; a, e, i, and d, h, l the SLF_D, SLF_L, and SLF_H CorrCoef and EV latitudinal arithmetic means, respectively. The results all show only regions of significant correlation (p < 0.05) within the observed range
图 8 海平面指纹与测高质量海平面异常的评估结果空间分布
b、f、j和c、g、k分别为SLF_D、SLF_L、SLF_H与GRACE/GRACE-FO观测的质量海平面异常间的CorrCoef和EV;a、e、i和d、h、l分别为SLF_D、SLF_L、SLF_H的CorrCoef和EV纬向算术平均值。结果均仅显示观测范围内显著相关区域(p<0.05)
Fig. 8 Spatial distribution of correlation between SLF and altimetry observed mass sea level anomalies
b, f, j, and c, g, k The CorrCoef and EV between SLF_D, SLF_L, and SLF_H and the altimetry observed mass sea level anomalies, respectively; and, a, e, i, and d, h, l the SLF_D, SLF_L, and SLF_H CorrCoef and EV latitudinal arithmetic means, respectively. The results all show only regions of significant correlation (p<0.05) within the observed range
表 1 参数常数表
Tab. 1 Parameters and constants
符号 参数/常数 数值 单位 $ g $ 重力加速度 9.81 m·s−2 $ r $ 地球平均半径 6.3710 ×106m $ {\rho }_{w} $ 水密度 1000 kg·m−3 $ {\rho }_{e} $ 地球平均密度 5512 kg·m−3 $ {k}_{2} $ 2阶潮汐勒夫数(表面势) 0.3055 - $ {h}_{2} $ 2阶潮汐勒夫数(位移) 0.6149 - $ \Omega $ 地球平均旋转速度 7.2921 ×10−5s−1 $ \mathbb{A} $ 赤道平均转动惯量 8.0077 ×1037kg·m2 $ \mathbb{C} $ 极转动惯量 8.0345 ×1037kg·m2 $ \varrho $ 钱德勒摆动频率 1.6490 ×10−7s−1 表 2 TWS异常重构数据集
Tab. 2 TWS anomalies reconstruction dataset
表 3 海平面指纹与观测质量海平面异常的比较表
Tab. 3 Comparisons between SLF and satellite-observed mass sea level anomalies
重力卫星时期 测高卫星时期 SLF_D SLF_L SLF_H SLF_D SLF_L SLF_H SimCoef 长期趋势 0.31 0.30 0.14 0.71 0.71 0.60 振幅 0.65 0.65 0.67 0.83 0.83 0.84 MAD ± STD/mm 13.89 ± 22.79 13.95 ± 22.79 15.92 ± 22.50 22.97 ± 16.74 22.99 ± 16.73 25.60 ± 16.35 注:重力卫星时期和测高卫星时期的时空范围不同。 -
[1] 胡宝怡, 王磊. 陆地水储量变化及其归因: 研究综述及展望[J]. 水利水电技术, 2021, 52(5): 13−25.Hu Baoyi, Wang Lei. Terrestrial water storage change and its attribution: a review and perspective[J]. Water Resources and Hydropower Engineering, 2021, 52(5): 13−25. [2] Rodell M, Famiglietti J S, Wiese D N, et al. Emerging trends in global freshwater availability[J]. Nature, 2018, 557(7707): 651−659. doi: 10.1038/s41586-018-0123-1 [3] Frederikse T, Landerer F, Caron L, et al. The causes of sea-level rise since 1900[J]. Nature, 2020, 584(7821): 393−397. doi: 10.1038/s41586-020-2591-3 [4] Cazenave A, Moreira L. Contemporary sea-level changes from global to local scales: a review[J]. Proceedings of the Royal Society A-Mathematical, Physical and Engineering Sciences, 2022, 478(2261): 20220049. doi: 10.1098/rspa.2022.0049 [5] Zhang Juanjuan, Fu Qi, Huang Yu, et al. Negative impacts of sea-level rise on soil microbial involvement in carbon metabolism[J]. Science of the Total Environment, 2022, 838: 156087. doi: 10.1016/j.scitotenv.2022.156087 [6] Aghakouchak A, Chiang F, Huning L S, et al. Climate extremes and compound hazards in a warming world[J]. Annual Review of Earth and Planetary Sciences, 2020, 48: 519−548. doi: 10.1146/annurev-earth-071719-055228 [7] Alhamid A K, Akiyama M, Aoki K, et al. Stochastic renewal process model of time-variant tsunami hazard assessment under nonstationary effects of sea-level rise due to climate change[J]. Structural Safety, 2022, 99: 102263. doi: 10.1016/j.strusafe.2022.102263 [8] Wollschlaeger S, Sadhu A, Ebrahimi G, et al. Investigation of climate change impacts on long-term care facility occupants[J]. City and Environment Interactions, 2022, 13: 100077. doi: 10.1016/j.cacint.2021.100077 [9] Intergovernmental Panel on Climate Change. Climate Change 2021 – the Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2023. (查阅网上资料, 未找到本条文献出版地信息, 请确认) [10] Adhikari S, Ivins E R, Frederikse T, et al. Sea-level fingerprints emergent from GRACE mission data[J]. Earth System Science Data, 2019, 11(2): 629−646. doi: 10.5194/essd-11-629-2019 [11] Coulson S, Dangendorf S, Mitrovica J X, et al. A detection of the sea level fingerprint of Greenland ice sheet melt[J]. Science, 2022, 377(6614): 1550−1554. doi: 10.1126/science.abo0926 [12] Gregory J M, Griffies S M, Hughes C W, et al. Concepts and terminology for sea level: mean, variability and change, both local and global[J]. Surveys in Geophysics, 2019, 40(6): 1251−1289. doi: 10.1007/s10712-019-09525-z [13] Moreira L, Cazenave A, Barnoud A, et al. Sea-level fingerprints due to present-day water mass redistribution in observed sea-level data[J]. Remote Sensing, 2021, 13(22): 4667. doi: 10.3390/rs13224667 [14] Mitrovica J X, Gomez N, Morrow E, et al. On the robustness of predictions of sea level fingerprints[J]. Geophysical Journal International, 2011, 187(2): 729−742. doi: 10.1111/j.1365-246X.2011.05090.x [15] Stepanov V N, Hughes C W. Parameterization of ocean self-attraction and loading in numerical models of the ocean circulation[J]. Journal of Geophysical Research: Oceans, 2004, 109(C3): C03037. [16] Tamisiea M E, Hill E M, Ponte R M, et al. Impact of self-attraction and loading on the annual cycle in sea level[J]. Journal of Geophysical Research: Oceans, 2010, 115(C7): C07004. [17] Richter K, Riva R E M, Drange H. Impact of self-attraction and loading effects induced by shelf mass loading on projected regional sea level rise[J]. Geophysical Research Letters, 2013, 40(6): 1144−1148. doi: 10.1002/grl.50265 [18] Milne G A, Mitrovica J X. Postglacial sea-level change on a rotating earth[J]. Geophysical Journal International, 1998, 133(1): 1−19. doi: 10.1046/j.1365-246X.1998.1331455.x [19] Woodward R S. On the form and position of the sea level with special references to its dependence on superficial masses symmetrically disposed about a normal to the earth’s surface[R]. 1888. (查阅网上资料, 未找到本条文献出版信息, 请确认) [20] Daly R A. Pleistocene changes of level[J]. American Journal of Science, 1925, s5-10(58): 281−313. doi: 10.2475/ajs.s5-10.58.281 [21] Bloom A L. Pleistocene shorelines: a new test of isostasy[J]. GSA Bulletin, 1967, 78(12): 1477−1494. doi: 10.1130/0016-7606(1967)78[1477:PSANTO]2.0.CO;2 [22] Walcott R I. Past sea levels, eustasy and deformation of the earth[J]. Quaternary Research, 1972, 2(1): 1−14. doi: 10.1016/0033-5894(72)90001-4 [23] Farrell W E, Clark J A. On postglacial sea level[J]. Geophysical Journal International, 1976, 46(3): 647−667. [24] Milne G A, Mitrovica J X. Postglacial sea-level change on a rotating earth: first results from a gravitationally self-consistent sea-level equation[J]. Geophysical Journal International, 1996, 126(3): F13−F20. doi: 10.1111/j.1365-246X.1996.tb04691.x [25] Tapley B D, Watkins M M, Flechtner F, et al. Contributions of GRACE to understanding climate change[J]. Nature Climate Change, 2019, 9(5): 358−369. doi: 10.1038/s41558-019-0456-2 [26] 王林松, 陈超, 马险, 等. 冰盖消融的海平面指纹变化及其对GRACE监测结果的影响[J]. 地球物理学报, 2018, 61(7): 2679−2690.Wang Linsong, Chen Chao, Ma Xian, et al. Sea level fingerprints of ice sheet melting and its impacts on monitoring results of GRACE[J]. Chinese Journal of Geophysics, 2018, 61(7): 2679−2690. [27] Sun Jianwei, Wang Linsong, Peng Zhenran, et al. The sea level fingerprints of global terrestrial water storage changes detected by GRACE and GRACE-FO data[J]. Pure and Applied Geophysics, 2022, 179(9): 3493−3509. doi: 10.1007/s00024-022-03123-8 [28] Deng Shanshan, Jian Zhenlong, Liu Yuxin, et al. Tracking low-frequency variations in land-sea water mass redistribution during the GRACE/GRACE-FO era[J]. Remote Sensing, 2023, 15(17): 4248. doi: 10.3390/rs15174248 [29] Hsu C W, Velicogna I. Detection of sea level fingerprints derived from GRACE gravity data[J]. Geophysical Research Letters, 2017, 44(17): 8953−8961. doi: 10.1002/2017GL074070 [30] Adhikari S, Milne G A, Caron L, et al. Decadal to centennial timescale mantle viscosity inferred from modern crustal uplift rates in Greenland[J]. Geophysical Research Letters, 2021, 48(19): e2021GL094040. doi: 10.1029/2021GL094040 [31] Adhikari S, Ivins E R, Larour E. ISSM-SESAWv1.0: mesh-based computation of gravitationally consistent sea-level and geodetic signatures caused by cryosphere and climate driven mass change[J]. Geoscientific Model Development, 2016, 9(3): 1087−1109. doi: 10.5194/gmd-9-1087-2016 [32] Sun Yu, Riva R, Ditmar P, et al. Using GRACE to explain variations in the earth's oblateness[J]. Geophysical Research Letters, 2019, 46(1): 158−168. doi: 10.1029/2018GL080607 [33] Lin Yucheng, Hibbert F D, Whitehouse P L, et al. A reconciled solution of meltwater pulse 1A sources using sea-level fingerprinting[J]. Nature Communications, 2021, 12(1): 2015. doi: 10.1038/s41467-021-21990-y [34] Deng Shanshan, Liu Yuxin, Zhang Wenxi. A comprehensive evaluation of GRACE-like terrestrial water storage (TWS) reconstruction products at an interannual scale during 1981-2019[J]. Water Resources Research, 2023, 59(3): e2022WR034381. doi: 10.1029/2022WR034381 [35] Humphrey V, Gudmundsson L. GRACE-REC: a reconstruction of climate-driven water storage changes over the last century[J]. Earth System Science Data, 2019, 11(3): 1153−1170. doi: 10.5194/essd-11-1153-2019 [36] Li Fupeng, Kusche J, Rietbroek R, et al. Comparison of data-driven techniques to reconstruct (1992-2002) and predict (2017-2018) GRACE-like gridded total water storage changes using climate inputs[J]. Water Resources Research, 2020, 56(5): e2019WR026551. doi: 10.1029/2019WR026551 [37] Li Fupeng, Kusche J, Chao Nengfang, et al. Long-term (1979−present) total water storage anomalies over the global land derived by reconstructing GRACE data[J]. Geophysical Research Letters, 2021, 48(8): e2021GL093492. doi: 10.1029/2021GL093492 [38] 邓珊珊, 刘苏峡, 莫兴国, 等. 全球陆地水储量异常时空分布重建数据集(1981-2020)[J]. 全球变化数据仓储电子杂志, 2023, 10(2). (查阅网上资料, 未找到本条文献页码信息, 请确认) Deng Shanshan, Liu Suxia, Mo Xingguo, et al. Reconstruction dataset of spatial and temporal global terrestrial water storage anomalies (1981−2020)[J]. Digital Journal of Global Change Data Repository, 2023, 10(2). (查阅网上资料, 未找到本条文献英文翻译, 请确认) [39] Lambeck K. The Earth’s Variable Rotation: Geophysical Causes and Consequences[M]. Cambridge: Cambridge University Press, 1980. [40] Deng Shanshan, Liu Suxia, Mo Xingguo. Assessment and attribution of China’s droughts using an integrated drought index derived from GRACE and GRACE-FO data[J]. Journal of Hydrology, 2021, 603: 127170. doi: 10.1016/j.jhydrol.2021.127170 [41] 林纾. 季以上尺度预报春季区域性沙尘暴过程的方法研究[J]. 中国沙漠, 2006, 26(3): 478−483.Lin Shu. Method of forecasting regional sandstorm process in spring on seasonal scale[J]. Journal of Desert Research, 2006, 26(3): 478−483. [42] Deng Shanshan, Liu Suxia, Mo X G, et al. Polar drift in the 1990s explained by terrestrial water storage changes[J]. Geophysical Research Letters, 2021, 48(7): e2020GL092114. (查阅网上资料, 未找到本条文献标黄作者全拼信息, 请确认) [43] Deng Shanshan, Liu Suxia, Mo Xingguo. Assessment of three common methods for estimating terrestrial water storage change with three reanalysis datasets[J]. Journal of Climate, 2020, 33(2): 511−525. doi: 10.1175/JCLI-D-18-0637.1 [44] Scanlon B R, Zhang Zizhan, Save H, et al. Global evaluation of new GRACE mascon products for hydrologic applications[J]. Water Resources Research, 2016, 52(12): 9412−9429. doi: 10.1002/2016WR019494 [45] 张岚, 孙文科. 重力卫星GRACE Mascon产品的应用研究进展与展望[J]. 地球与行星物理论评, 2022, 53(1): 35−52.Zhang Lan, Sun Wenke. Progress and prospect of GRACE Mascon product and its application[J]. Reviews of Geophysics and Planetary Physics, 2022, 53(1): 35−52. [46] Watkins M M, Wiese D N, Yuan D N, et al. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(4): 2648−2671. doi: 10.1002/2014JB011547 [47] Wiese D N, Landerer F W, Watkins M M. Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution[J]. Water Resources Research, 2016, 52(9): 7490−7502. doi: 10.1002/2016WR019344 [48] Loomis B D, Luthcke S B, Sabaka T J. Regularization and error characterization of GRACE mascons[J]. Journal of Geodesy, 2019, 93(9): 1381−1398. doi: 10.1007/s00190-019-01252-y [49] Save H, Bettadpur S, Tapley B D. High-resolution CSR GRACE RL05 mascons[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(10): 7547−7569. doi: 10.1002/2016JB013007 [50] Peltier W R, Argus D F, Drummond R. Comment on "an assessment of the ICE-6G_C (VM5a) glacial isostatic adjustment model" by Purcell et al[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(2): 2019−2028. doi: 10.1002/2016JB013844 [51] Tapley B D, Bettadpur S, Watkins M, et al. The gravity recovery and climate experiment: mission overview and early results[J]. Geophysical Research Letters, 2004, 31(9): L09607. [52] ServiceC C C, StoreC D. Sea level gridded data from satellite observations for the global ocean from 1993 to present[DS]. 2018. (查阅网上资料, 未能确认文献类型, 请确认文献类型及格式是否正确) [53] Chen Jianli, Tapley B, Tamisiea M E, et al. Error assessment of GRACE and GRACE Follow-On mass change[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(9): e2021JB022124. doi: 10.1029/2021JB022124 [54] Ludwigsen C A, Andersen O B. Contributions to Arctic sea level from 2003 to 2015[J]. Advances in Space Research, 2021, 68(2): 703−710. doi: 10.1016/j.asr.2019.12.027 [55] Jin Shuanggen, Zou Fang. Re-estimation of glacier mass loss in Greenland from GRACE with correction of land-ocean leakage effects[J]. Global and Planetary Change, 2015, 135: 170−178. doi: 10.1016/j.gloplacha.2015.11.002 [56] WöppelmannG, Marcos M. Vertical land motion as a key to understanding sea level change and variability[J]. Reviews of Geophysics, 2016, 54(1): 64−92. doi: 10.1002/2015RG000502 [57] Frederikse T, Jevrejeva S, Riva R E M, et al. A consistent sea-level reconstruction and its budget on basin and global scales over 1958-2014[J]. Journal of Climate, 2018, 31(3): 1267−1280. doi: 10.1175/JCLI-D-17-0502.1