留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海南岛岬湾海滩裂流的分布特征研究

朱道恒 刘润 李志强 孙琰 胡鹏鹏

朱道恒,刘润,李志强,等. 海南岛岬湾海滩裂流的分布特征研究[J]. 海洋学报,2024,46(9):1–13 doi: 10.12284/hyxb2024082
引用本文: 朱道恒,刘润,李志强,等. 海南岛岬湾海滩裂流的分布特征研究[J]. 海洋学报,2024,46(9):1–13 doi: 10.12284/hyxb2024082
Zhu Daoheng,Liu Run,Li Zhiqiang, et al. Study on the distribution characteristics of rip currents in embayed beach on Hainan Island[J]. Haiyang Xuebao,2024, 46(9):1–13 doi: 10.12284/hyxb2024082
Citation: Zhu Daoheng,Liu Run,Li Zhiqiang, et al. Study on the distribution characteristics of rip currents in embayed beach on Hainan Island[J]. Haiyang Xuebao,2024, 46(9):1–13 doi: 10.12284/hyxb2024082

海南岛岬湾海滩裂流的分布特征研究

doi: 10.12284/hyxb2024082
基金项目: 国家自然科学基金面上项目(42176067);广东省基础与应用基础研究基金自然科学基金项目(2024A1515011427);广东海洋大学科研启动经费项目(060302112317)。
详细信息
    作者简介:

    朱道恒(1992—),男,湖北省孝感市人,博士,研究方向为海岸地貌动力过程及裂流的监测。E-mail:dhzhu911@163.com

    通讯作者:

    李志强(1974—),男,湖南省郴州市人,教授,主要研究方向为海岸动力过程与海岸环境演变。E-mail:qiangzl1974@163.com

  • 中图分类号: P731.2

Study on the distribution characteristics of rip currents in embayed beach on Hainan Island

  • 摘要: 海南岛海岸以岬湾海滩为主,是我国重要的滨海旅游目的地,也是裂流引起滨海溺水事故的高发地。为研究海南岛岬湾海滩裂流的分布特征,从海南环岛54个岬湾海滩近20年的卫星影像中解译裂流的发生情况,统计裂流的分布特征,并与现场调查结果对比。结果表明:在区域分布上,海南岛东岸和南岸岬湾的裂流发生率明显大于西岸和北岸;在位置分布上,岬湾中部的海滩裂流数量高于两侧;在几何特征上,裂流的平均长度与平均宽度、平均间距均呈正相关,但裂流的平均宽度、平均数量与裂流间距均无显著相关性。波浪环境对裂流密度影响明显,表现为裂流密度随平均有效波高、平均波周期、平均入射波功率和平均入射波能的增加均减小。岬湾尺度对裂流发生数量影响明显,表现为岬湾宽度、岬湾凹入度和岬角长度与平均裂流数量均呈正相关,但岸线曲率与平均裂流数量无显著相关性。卫星影像解译裂流发生情况与现场调查结果和裂流风险评价模型的结果基本一致,相关结论可为海南岛海滩安全管理和裂流预警工作提供参考。
  • 图  1  海南岛54个岬湾海滩的位置(基于国家测绘地理信息局标准地图服务网下载审图号为GS(2021)5449号地图制作)

    Fig.  1  Location of the 54 embayed beaches around Hainan Island

    图  2  54个海滩的卫星影像数、水动力参数和沉积物中值粒度统计结果

    Fig.  2  Statistical results of the number of satellite images, hydrodynamic parameters and median sediment grain size for 54 beaches

    图  3  卫星影像和无人机航拍图像数据示例

    Fig.  3  Examples of satellite imagery and UAV aerial imagery data

    图  4  Google Earth影像解译的整体流程

    Fig.  4  Flow chart of Google Earth image interpretation

    图  5  从卫星影像中解译裂流的长度(L)、宽度(W)和间距(D),其中图a、b和d表示裂流(沟槽)与海岸线垂直,图c和e表示裂流(沟槽)与海岸线不垂直

    Fig.  5  Interpretating the rip length (L), rip width (W) and rip distance (D) from satellite images, where figures a, b and d indicate that rips (channels) are perpendicular to the coastline, and c and e indicate that rips (channels) are not perpendicular to the coastline

    图  6  岬湾海岸的平面形态示意图(改自文献[21])

    Fig.  6  Schematic diagram of the morphology of embayed beaches (modified from Ref. [21])

    图  7  从卫星影像和无人机图像中解译各海滩的裂流发生情况(a),基于卫星影像解译(b)和现场调查(c)的2022年12月24日海棠湾海滩的裂流发生情况

    Fig.  7  The occurrences of rips were interpreted from satellite images and drone images (a), the occurrence of rips at Haitang Bay on December 24, 2022 based on satellite image interpretation (b) and in situ observation (c)

    图  8  54个岬湾的宽度、凹入度和发生裂流的平均数量统计结果(a),19个岬湾海滩发生裂流的平均长度、平均宽度和平均间距统计结果(b)

    Fig.  8  The width of 54 embayed beaches and average number of rips (a), statistical results of the average length, average width and average spacing of rips on 19 embayed beaches (b)

    图  9  裂流几何特征变量之间的拟合关系

    Fig.  9  Fitting relationship between the geometric characteristic of rip currents

    图  10  54个岬湾海滩的状态和裂流风险判别结果,数字对应图1中的海滩编号

    Fig.  10  Results of beach states and rip hazard evaluation for 54 embayed beaches, numbers correspond to the beach numbers in Fig. 1

    图  11  裂流数量和分布密度与近岸波浪环境的拟合关系

    Fig.  11  Fitting relationship between the number of rips and wave environment, fitting relationship between rip density and wave environment

    图  12  平均裂流数量与岬湾尺度特征间的拟合关系

    Fig.  12  Fitting relationship between the average number of rips and the bay scale features

    图  13  裂流特征与岬湾尺度特征间的拟合关系

    Fig.  13  Fitting relationship between the characteristcs of rips and the bay scale features

    图  14  54个岬湾的朝向、平均入射波角度和平均裂流数量

    Fig.  14  The opening direction, mean incident wave angle and average number of rips of 54 headland bays

    表  1  从卫星影像解译各类裂流特征的方法

    Tab.  1  Criteria for interpreting rip current types from satellite images

    类型 特征
    地形控制型 沟槽裂流 裂流出现在有沟槽垂直或斜向切割的沙坝或台地,沟槽两侧波浪破碎有白沫,槽内无或少白沫且水色偏深
    聚焦裂流 入射波峰线向岸呈现韵律状弯曲,波高沿岸规律性变化,裂流在小波高处出现,沿岸有白沫出现,通常存在物质离岸输运而使水色变深
    水动力控制型 瞬变裂流 波浪为正向入射的短峰波风浪,裂流出现在短峰之间区域,伴随短波峰的瞬变演化而间歇出现
    剪切不稳定裂流 波浪斜向入射,裂流出现在近似平直海岸不稳定沿岸流,表现为离岸迁移的大尺度涡运动。碎波带内出现窄裂流颈,
    存在物质离岸输运使水色偏深
    边界控制型 偏斜裂流 裂流出现在垂直海岸结构物的迎浪侧,存在物质离岸输运使水色偏深
    阴影区裂流 裂流出现在垂直海岸结构物背浪侧的波影区,边界处出现白沫
    混合型 沟槽−瞬变裂流 波浪为几乎垂直入射的风浪,裂流在沙坝沟槽处出现,沟槽附近有白沫
    边界−沟槽裂流 垂直海岸结构物边界附近存在沟槽地形,沟槽双侧有白沫出现
    聚焦−沟槽裂流 裂流出现在双沙坝地形,外部沙坝的白沫不明显,内部沙坝被沟槽分割,沟槽宽一般较大且呈规律性分布
    下载: 导出CSV

    表  2  基于地形动力学模型的海滩状态和裂流风险等级判别

    Tab.  2  Beach state and rip hazard evaluation method based on morphodynamic model

    海滩组别 Ω RTR 海滩类型 风险等级
    反射型 $ \varOmega < 2 $ $ {\mathrm{RTR}} < 3 $ 完全反射型(R)
    $ 3 \leqslant {\mathrm{RTR}} \leqslant 7 $ 有裂流沟槽的低潮台地(LTTR)
    $ {\mathrm{RTR}} > 7 $ 无裂流沟槽的平坦低潮台地型(LTT)
    中间状态 $ 2 \leqslant \varOmega \leqslant 5 $ $ {\mathrm{RTR}} < 3 $ 沿岸沙坝和裂流沟槽交替的沙坝型(B)
    $ 3 \leqslant {\mathrm{RTR}} \leqslant 7 $ 低潮时伴有冲流沙坝和裂流沟槽的低潮沙坝裂流型(LTBR)
    消散型 $ \varOmega > 5 $ $ {\mathrm{RTR}} < 3 $ 沙坝消散型(BD)
    $ 3 \leqslant {\mathrm{RTR}} \leqslant 7 $ 无沙坝消散型(NBD)
    超消散型 $\varOmega > 2$ $ {\mathrm{RTR}} > 7 $ 超消散型(UD)
    下载: 导出CSV
  • [1] Bowen A J. Rip currents: 1. Theoretical investigations[J]. Journal of Geophysical Research, 1969, 74(23): 5467−5478. doi: 10.1029/JC074i023p05467
    [2] MacMahan J H, Thornton E B, Reniers A J H M. Rip current review[J]. Coastal Engineering, 2006, 53(2/3): 191−208.
    [3] Woodward E, Beaumont E, Russell P, et al. Analysis of rip current incidents and victim demographics in the UK[J]. Journal of Coastal Research, 2013, 65: 850−855. doi: 10.2112/SI65-144.1
    [4] Li Zhiqiang. Rip current hazards in South China headland beaches[J]. Ocean & Coastal Management, 2016, 121: 23−32.
    [5] Zhang Yao, Huang Wanru, Liu Xunan, et al. Rip current hazard at coastal recreational beaches in China[J]. Ocean & Coastal Management, 2021, 210: 105734.
    [6] Brewster B C, Gould R E, Brander R W. Estimations of rip current rescues and drowning in the United States[J]. Natural Hazards and Earth System Sciences, 2019, 19(2): 389−397. doi: 10.5194/nhess-19-389-2019
    [7] Castelle B, Scott T, Brander R W, et al. Rip current types, circulation and hazard[J]. Earth-Science Reviews, 2016, 163: 1−21. doi: 10.1016/j.earscirev.2016.09.008
    [8] Castelle B, Coco G. The morphodynamics of rip channels on embayed beaches[J]. Continental Shelf Research, 2012, 43: 10−23. doi: 10.1016/j.csr.2012.04.010
    [9] Short A D, Masselink G. Embayed and structurally controlled beaches[M]//Short A D. Handbook of Beach and Shoreface Morphodynamics. New York: John Wiley and Sons Ltd, 1999: 230−250.
    [10] Holman R A, Symonds G, Thornton E B, et al. Rip spacing and persistence on an embayed beach[J]. Journal of Geophysical Research: Oceans, 2006, 111(C1): C01006.
    [11] Gallop S L, Bryan K R, Coco G, et al. Storm-driven changes in rip channel patterns on an embayed beach[J]. Geomorphology, 2011, 127(3/4): 179−188.
    [12] Reniers A J H M, Roelvink J A, Thornton E B. Morphodynamic modeling of an embayed beach under wave group forcing[J]. Journal of Geophysical Research: Oceans, 2004, 109(C1): C01030.
    [13] Wang Hong, Zhu Shouxian, Li Xunqiang, et al. Numerical simulations of rip currents off arc-shaped coastlines[J]. Acta Oceanologica Sinica, 2018, 37(3): 21−30. doi: 10.1007/s13131-018-1197-1
    [14] 屈小开, 潘毅, 梁慧迪, 等. 岬湾裂流发生规律数值研究[J]. 水动力学研究与进展, 2023, 38A(1): 59−66.

    Qu Xiaokai, Pan Yi, Liang Huidi, et al. Numerical study on occurrence regularity of rip currents in embayed beach[J]. Journal of Hydrodynamics, 2023, 38A(1): 59−66.
    [15] 胡鹏鹏, 李志强, 朱道恒, 等. 广东省14个海滩裂流类型及统计特征分析[J]. 海洋学报, 2022, 44(6): 140−149. doi: 10.12284/j.issn.0253-4193.2022.6.hyxb202206013

    Hu Pengpeng, Li Zhiqiang, Zhu Daoheng, et al. Types and statistical analysis of rip currents at 14 beaches in the Guangdong Province[J]. Haiyang Xuebao, 2022, 44(6): 140−149. doi: 10.12284/j.issn.0253-4193.2022.6.hyxb202206013
    [16] 李志强. 基于地形动力学的华南海滩裂流风险研究[J]. 热带海洋学报, 2015, 34(1): 8−14. doi: 10.3969/j.issn.1009-5470.2015.01.002

    Li Zhiqiang. Study on the rip current hazard of South China beaches based on beach morphodynamics[J]. Journal of Tropical Oceanography, 2015, 34(1): 8−14. doi: 10.3969/j.issn.1009-5470.2015.01.002
    [17] 李志强, 朱雅敏. 基于地形动力学的海滩裂流安全性评价——以三亚大东海为例[J]. 热带地理, 2015, 35(1): 96−102.

    Li Zhiqiang, Zhu Yamin. Beach safety evaluation based on rip current morphodynamic: a case study of Dadonghai of Sanya, China[J]. Tropical Geography, 2015, 35(1): 96−102.
    [18] 海南测绘局. 海南省地图集[M]. 成都: 成都地图出版社, 1996.

    Hainan Administration of Surveying Mapping. Atlas of Hainan Province[M]. Chengdu: Chengdu Cartographic Publishing House, 1996.
    [19] Folk R L, Ward W C. Brazos river bar [Texas]; A study in the significance of grain size parameters[J]. Journal of Sedimentary Research, 1957, 27(1): 3−26. doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D
    [20] Hsu J R C, Silvester R, Xia Yimin. Applications of headland control[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1989, 115(3): 299−310. doi: 10.1061/(ASCE)0733-950X(1989)115:3(299)
    [21] 李志强, 李维泉, 陈子燊, 等. 华南岬间弧形海岸平面形态影响因素及类型[J]. 地理学报, 2014, 69(5): 595−606. doi: 10.11821/dlxb201405003

    Li Zhiqiang, Li Weiquan, Chen Zishen, et al. Influencing factors and classifications of arc-shaped coasts in South China[J]. Acta Geographica Sinica, 2014, 69(5): 595−606. doi: 10.11821/dlxb201405003
    [22] Wright L D, Short A D. Morphodynamic variability of surf zones and beaches: a synthesis[J]. Marine Geology, 1984, 56(1/4): 93−118.
    [23] Masselink G, Short A D. The effect of tide range on beach morphodynamics and morphology: a conceptual beach model[J]. Journal of Coastal Research, 1993, 9(3): 785−800.
    [24] Komar P, Gaughan M K. Airy wave theory and breaker height prediction[C]//Proceedings of the 13th International Conference on Coastal Engineering. Vancouver: ASCE, 1972: 405−418.
    [25] Ferguson R I, Church M. A simple universal equation for grain settling velocity[J]. Journal of Sedimentary Research, 2004, 74(6): 933−937. doi: 10.1306/051204740933
    [26] Turner I L, Whyte D, Ruessink B G, et al. Observations of rip spacing, persistence and mobility at a long, straight coastline[J]. Marine Geology, 2007, 236(3/4): 209−221.
    [27] Short A D, Brander R W. Regional variations in rip density[J]. Journal of Coastal Research, 1999, 15(3): 813−822.
    [28] Valipour A, Shirgahi H. Estimation of rip density on intermediate beaches using an extreme learning machine model[J]. Regional Studies in Marine Science, 2022, 52: 102332. doi: 10.1016/j.rsma.2022.102332
    [29] 胡鹏鹏, 李志强, 朱道恒, 等. 基于XBeach模型的深圳金沙湾裂流的数值模拟[J]. 海洋学报, 2022, 44(4): 122−133. doi: 10.12284/j.issn.0253-4193.2022.4.hyxb202204013

    Hu Pengpeng, Li Zhiqiang, Zhu Daoheng, et al. Numerical simulation of rip current in Jinsha Bay, Shenzhen based on XBeach model[J]. Haiyang Xuebao, 2022, 44(4): 122−133. doi: 10.12284/j.issn.0253-4193.2022.4.hyxb202204013
    [30] 徐传乐, 季新然, 任智源. 规则波对沙坝沟槽地形上裂流特性影响的数值研究[J]. 力学季刊, 2023, 44(4): 1038−1051.

    Xu Chuanle, Ji Xinran, Ren Zhiyuan. Numerical study on the formation characteristics of rip current in topographic of bar with rip channels induced by regular waves[J]. Chinese Quarterly of Mechanics, 2023, 44(4): 1038−1051.
    [31] Zhou Liangming, Li Zhanbin, Mou Lin, et al. Numerical simulation of wave field in the South China Sea using WAVEWATCH III[J]. Chinese Journal of Oceanology and Limnology, 2014, 32(3): 656−664. doi: 10.1007/s00343-014-3155-x
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  68
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-28
  • 录用日期:  2024-08-12
  • 修回日期:  2024-04-12
  • 网络出版日期:  2024-08-15
  • 刊出日期:  2024-09-01

目录

    /

    返回文章
    返回