Lag effect of climate change on CPUE of Thunnus albacares and Katsuwonus pelamis in the western and central Pacific Ocean purse seine fishery: An LSTM-Based study
-
摘要: 黄鳍金枪鱼(Thunnus albacares)和鲣(Katsuwonus pelamis)是大洋性高度洄游物种,也是全球大洋性渔业的主要捕捞对象,其种群分布和资源密度容易受气候变化所引起的海洋环境变化影响,且存在响应滞后。为了探索气候变化对中西太平洋海域(WCPO)低龄黄鳍金枪鱼和鲣群体影响及滞后效应,本研究基于长短期记忆神经网络(LSTM)分析了海洋尼诺指数(ONI)对1982年至2021年间WCPO围网黄鳍金枪鱼和鲣单位捕捞努力量渔获量(CPUE)的影响,利用不同时间步长模拟不同滞后期(0~12个月)下CPUE对ONI响应。结果表明:LSTM适用于对黄鳍金枪鱼和鲣等大洋性种群资源密度与ONI等环境因素间滞后效应的分析;WCPO赤道南北不同海域围网黄鳍金枪鱼和鲣CPUE对ONI的响应存在滞后,且不同海域的最佳滞后期均为12个月;最佳滞后期与渔获群体年龄相当,表明WCPO黄鳍金枪鱼和鲣的繁殖能力或幼鱼存活率易受到气候变化及其引起的海洋环境变动影响,表现出时长为捕捞年龄的滞后时间。研究方法与结果为后续开展WCPO关键物种群体分布研究提供了资源变动机制上的新思路。Abstract: Yellowfin tuna (Thunnus albacares) and skipjack tuna (Katsuwonus pelamis) are pelagic and highly migratory species, serving as primary targets in global pelagic fisheries. Their population distribution and abundance are susceptible to the impacts of climate-induced changes in the marine environment, exhibiting a response lag. In order to explore the influence of climate change on the juvenile populations of yellowfin tuna and skipjack tuna in the western and central Pacific Ocean (WCPO) and the associated lag effects, this study, based on Long Short-Term Memory (LSTM) neural networks, analyzed the impact of the Oceanic Niño index (ONI) on the Catch per Unit Effort (CPUE) of yellowfin tuna and skipjack tuna in the WCPO purse seine fishery from 1982 to 2021. Different time step lengths were employed to simulate the lag effects (0−12 months) of CPUE response to ONI. The results indicate LSTM is a suitable tool for analyzing the lag effects of relationship between the abundance of pelagic species, such as yellowfin tuna and skipjack tuna, and environmental factors like ONI. In the WCPO regions north and south of the equator, there exists a time lag in the response of juvenile yellowfin tuna and skipjack tuna CPUE to ONI, with the optimal lag period being 12 months for each region. The correspondence of the optimal lag period with the age of the harvested population (nearly 1 year) suggests that the reproductive capacity or survival rate of juvenile yellowfin tuna and skipjack tuna is influenced by climate change and the resulting changes in the marine environment. The research methodology and results provide new insights for subsequent studies in analyzing the stock dynamics and distribution of key species in the WCPO.
-
Key words:
- Thunnus albacares /
- Katsuwonus pelamis /
- Oceanic Niño index /
- lag effect /
- LSTM /
- western and central Pacific Ocean
-
图 2 中西太平洋围网黄鳍金枪鱼、鲣CPUE及ONI时序
a. 黄鳍金枪鱼赤道以北CPUE,b. 黄鳍金枪鱼赤道以南CPUE,c. 鲣赤道以北CPUE,d. 鲣赤道以南CPUE,e. ONI
Fig. 2 The time series of CPUEs of Thunnus albacares and Katsuwonus pelamis in the purse seine fishery of the western and central Pacific Ocean, and the ONI
a. CPUE of Thunnus albacares in the region north of the equator, b. CPUE of Thunnus albacares in the region south of the equator, c. CPUE of Katsuwonus pelamis in the region north of the equator, d. CPUE of Katsuwonus pelamis in the region south of the equator, e. ONI
图 3 滞后时间12个月下LSTM模型的迭代次数和损失值
a. 黄鳍金枪鱼赤道以北,b. 黄鳍金枪鱼赤道以南,c. 鲣赤道以北,d. 鲣赤道以南
Fig. 3 The iteration count and loss values of the LSTM model with a lag time of 12 months
a. Thunnus albacares in the region north of the equator, b. Thunnus albacares in the region south of the equator, c. Katsuwonus pelamis in the region north of the equator, d. Katsuwonus pelamis in the region south of the equator
图 4 滞后时间12个月下CPUE预测值与实际值的比较
a. 黄鳍金枪鱼赤道以北,b. 黄鳍金枪鱼赤道以南,c. 鲣赤道以北,d. 鲣赤道以南
Fig. 4 Comparison of CPUEs with a lag time of 12 months between predicted and actual values
a. Thunnus albacares in the region north of the equator, b. Thunnus albacares in the region south of the equator, c. Katsuwonus pelamis in the region north of the equator, d. Katsuwonus pelamis in the region south of the equator
表 1 WCPO赤道南北海域黄鳍金枪鱼和鲣CPUE及ONI的分布总况
Tab. 1 Overview of CPUEs of Thunnus albacares and Katsuwonus pelamis in WCPO south and north of the equator, along with the ONI
项目 海域 Min P25 P50 P75 Max 平均 黄鳍金枪鱼CPUE 赤道以北 0.779 2.750 4.823 6.914 18.208 5.118 赤道以南 0 6.129 7.489 9.321 16.460 7.735 鲣CPUE 赤道以北 3.217 9.362 13.380 17.077 32.286 13.491 赤道以南 6.858 14.803 18.758 22.559 35.583 18.777 海洋尼诺指数 \ −1.870 −0.603 −0.050 0.510 2.710 0.016 表 2 不同滞后时间下模型预测误差的统计结果
Tab. 2 Statistical results of model prediction errors under different lag time
滞后时间/月 黄鳍金枪鱼 鲣 赤道以北 赤道以南 赤道以北 赤道以南 MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE 0 9.90828 0.14917 0.15540 1.79009 0.10379 0.12012 3.28223 0.19211 0.23032 0.75190 0.14909 0.17050 1 2.97018 0.04652 0.06101 2.58407 0.15056 0.16129 2.56779 0.15519 0.18690 0.58860 0.13732 0.17983 2 3.52192 0.06414 0.06885 2.78081 0.14993 0.17108 2.32455 0.14219 0.16376 0.60977 0.12596 0.14845 3 9.52831 0.14418 0.14977 1.37389 0.09502 0.12549 3.84945 0.22736 0.26697 0.79580 0.17736 0.18951 4 7.90549 0.10914 0.12458 1.35588 0.08262 0.09750 5.67477 0.38144 0.39281 0.95240 0.21992 0.25508 5 4.71259 0.06653 0.07531 1.53034 0.08917 0.10222 5.84598 0.36893 0.39745 0.51162 0.10161 0.11268 6 4.69040 0.06422 0.07334 1.39996 0.07823 0.11137 5.46671 0.34900 0.37072 1.28165 0.28839 0.31291 7 6.63161 0.12643 0.13064 1.24703 0.07832 0.10089 5.51127 0.34509 0.37413 0.66225 0.14054 0.15561 8 5.21586 0.08945 0.09143 2.90610 0.16607 0.17832 7.08355 0.45903 0.48260 1.01102 0.21614 0.21883 9 6.85734 0.09821 0.10819 2.59891 0.14291 0.15865 3.05708 0.18717 0.21077 0.64069 0.14251 0.15294 10 9.78094 0.15027 0.15517 1.72018 0.11157 0.13687 4.22249 0.26537 0.28988 0.57465 0.12541 0.15013 11 5.93768 0.08297 0.09254 0.90011 0.06141 0.07853 2.54923 0.16213 0.19257 0.43067 0.09660 0.10529 12 2.53704 0.04456 0.05823 0.85169 0.05599 0.06346 1.01160 0.08631 0.12771 0.35689 0.07898 0.09953 注:加粗字体表示对应最优参数。 -
[1] Houssard P, Lorrain A, Tremblay-Boyer L, et al. Trophic position increases with thermocline depth in yellowfin and bigeye tuna across the Western and Central Pacific Ocean[J]. Progress in Oceanography, 2017, 154: 49−63. doi: 10.1016/j.pocean.2017.04.008 [2] Erauskin-Extramiana M, Arrizabalaga H, Hobday A J, et al. Large-scale distribution of tuna species in a warming ocean[J]. Global Change Biology, 2019, 25(6): 2043−2060. doi: 10.1111/gcb.14630 [3] Artetxe-Arrate I, Fraile I, Marsac F, et al. A review of the fisheries, life history and stock structure of tropical tuna (skipjack Katsuwonus pelamis, yellowfin Thunnus albacares and bigeye Thunnus obesus) in the Indian Ocean[J]. Advances in Marine Biology, 2021, 88: 39−89. [4] Nimit K, Masuluri N K, Berger A M, et al. Oceanographic preferences of yellowfin tuna (Thunnus albacares) in warm stratified oceans: a remote sensing approach[J]. International Journal of Remote Sensing, 2020, 41(15): 5785−5805. doi: 10.1080/01431161.2019.1707903 [5] Kim J, Na Hanna, Park Y G, et al. Potential predictability of skipjack tuna (Katsuwonus pelamis) catches in the Western Central Pacific[J]. Scientific Reports, 2020, 10(1): 3193. doi: 10.1038/s41598-020-59947-8 [6] Fao. The state of world fisheries and aquaculture 2022. Towards blue transformation[R]. Rome: Food and Agriculture Organization of the United Nations, 2022. [7] Monllor-Hurtado A, Pennino M G, Sanchez-Lizaso J L. Shift in tuna catches due to ocean warming[J]. PLoS One, 2017, 12(6): e0178196. doi: 10.1371/journal.pone.0178196 [8] Murua H, Rodriguez-Marin E, Neilson J D, et al. Fast versus slow growing tuna species: age, growth, and implications for population dynamics and fisheries management[J]. Reviews in Fish Biology and Fisheries, 2017, 27(4): 733−773. doi: 10.1007/s11160-017-9474-1 [9] Wu Yanlun, Lan Kuowei, Tian Yongjun. Determining the effect of multiscale climate indices on the global yellowfin tuna (Thunnus albacares) population using a time series analysis[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2020, 175: 104808. doi: 10.1016/j.dsr2.2020.104808 [10] Zhou Weifeng, Hu Huijuan, Fan Wei, et al. Impact of abnormal climatic events on the CPUE of yellowfin tuna fishing in the central and western Pacific[J]. Sustainability, 2022, 14(3): 1217. doi: 10.3390/su14031217 [11] Fadhilah A, Leidonald R, Susetya I E, et al. Analysis of the relationship between the ENSO phenomenon, Net Primary Productivity and catches of yellowfin tuna in Sibolga Waters, Indonesia[J]. Biodiversitas Journal of Biological Diversity, 2022, 23(9): 4440−4447. [12] Miller K A. Climate variability and tropical tuna: management challenges for highly migratory fish stocks[J]. Marine Policy, 2007, 31(1): 56−70. doi: 10.1016/j.marpol.2006.05.006 [13] Lehodey P. The pelagic ecosystem of the tropical Pacific Ocean: dynamic spatial modelling and biological consequences of ENSO[J]. Progress in Oceanography, 2001, 49(1/4): 439−468. [14] Kim J, Na Hanna. Interannual variability of yellowfin tuna (Thunnus albacares) and bigeye tuna (Thunnus obesus) catches in the southwestern Tropical Indian Ocean and its relationship to climate variability[J]. Frontiers in Marine Science, 2022, 9: 857405. doi: 10.3389/fmars.2022.857405 [15] Lehodey P, Bertrand A, Hobday A J, et al. ENSO impact on marine fisheries and ecosystems[M]//McPhaden M J, Santoso A, Cai Wenju. El Niño Southern Oscillation in a Changing Climate. Washington: American Geophysical Union, 2021: 429−451. [16] Langley A, Briand K, Kirby D S, et al. Influence of oceanographic variability on recruitment of yellowfin tuna (Thunnus albacares) in the western and central Pacific Ocean[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2009, 66(9): 1462−1477. doi: 10.1139/F09-096 [17] Dueri S, Bopp L, Maury O. Projecting the impacts of climate change on skipjack tuna abundance and spatial distribution[J]. Global Change Biology, 2014, 20(3): 742−753. doi: 10.1111/gcb.12460 [18] Zainuddin M, Nelwan A, Farhum S A, et al. Characterizing potential fishing zone of Skipjack Tuna during the southeast monsoon in the Bone Bay-Flores Sea using remotely sensed oceanographic data[J]. International Journal of Geosciences, 2013, 4(1): 259−266. doi: 10.4236/ijg.2013.41A023 [19] Schaefer K M, Fuller D W, Block B A. Vertical movements and habitat utilization of skipjack (Katsuwonus pelamis), yellowfin (Thunnus albacares), and bigeye (Thunnus obesus) tunas in the equatorial eastern Pacific Ocean, ascertained through archival tag data[M]//Nielsen J L, Arrizabalaga H, Fragoso N, et al. Tagging and Tracking of Marine Animals with Electronic Devices. Dordrecht: Springer, 2009: 121−144. [20] Yen K W, Wang Guihua, Lu H J. Evaluating habitat suitability and relative abundance of skipjack (Katsuwonus pelamis) in the western and central Pacific during various El Niño events[J]. Ocean & Coastal Management, 2017, 139: 153−160. [21] Bell J D, Senina I, Adams T, et al. Pathways to sustaining tuna-dependent Pacific Island economies during climate change[J]. Nature Sustainability, 2021, 4(10): 900−910. doi: 10.1038/s41893-021-00745-z [22] Salazar J E, Benavides I F, Cabrera C V P, et al. Generalized additive models with delayed effects and spatial autocorrelation patterns to improve the spatiotemporal prediction of the skipjack (Katsuwonus pelamis) distribution in the Colombian Pacific Ocean[J]. Regional Studies in Marine Science, 2021, 45: 101829. doi: 10.1016/j.rsma.2021.101829 [23] Qiu Yongsong, Lin Zhaojin, Wang Yuezhong. Responses of fish production to fishing and climate variability in the northern South China Sea[J]. Progress in Oceanography, 2010, 85(3/4): 197−212. [24] Lan Kuowei, Wu Yanlun, Chen Luchi, et al. Effects of climate change in marine ecosystems based on the spatiotemporal age structure of top predators: a case study of bigeye tuna in the Pacific Ocean[J]. Frontiers in Marine Science, 2021, 8: 614594. doi: 10.3389/fmars.2021.614594 [25] Brill R W, Dewar H, Graham J B. Basic concepts relevant to heat transfer in fishes, and their use in measuring the physiological thermoregulatory abilities of tunas[J]. Environmental Biology of Fishes, 1994, 40(2): 109−124. doi: 10.1007/BF00002538 [26] Ménard F, Marsac F, Bellier E, et al. Climatic oscillations and tuna catch rates in the Indian Ocean: a wavelet approach to time series analysis[J]. Fisheries Oceanography, 2007, 16(1): 95−104. doi: 10.1111/j.1365-2419.2006.00415.x [27] Hou Xiangyun, Ma Shuyang, Tian Yongjun, et al. The effects of trans-basin climate variability on skipjack tuna in the northwest Pacific Ocean: causal and nonstationary[J]. Frontiers in Marine Science, 2022, 9: 895219. doi: 10.3389/fmars.2022.895219 [28] Lu H J, Lee K T, Lin H L, et al. Spatio-temporal distribution of yellowfin tuna Thunnus albacares and bigeye tuna Thunnus obesus in the Tropical Pacific Ocean in relation to large-scale temperature fluctuation during ENSO episodes[J]. Fisheries Science, 2001, 67(6): 1046−1052. doi: 10.1046/j.1444-2906.2001.00360.x [29] Singh A A, Suzuki N, Sakuramoto K. Influence of climatic conditions on the time series fluctuation of yellowfin tuna Thunnus albacares in the south Pacific Ocean[J]. Open Journal of Marine Science, 2015, 5(3): 247−264. doi: 10.4236/ojms.2015.53020 [30] Domokos R. Influence of El Niño-Southern Oscillation on bigeye and yellowfin tuna longline catch per unit effort in the equatorial Pacific[J]. Fisheries Oceanography, 2023, 32(6): 527−540. doi: 10.1111/fog.12644 [31] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735−1780. doi: 10.1162/neco.1997.9.8.1735 [32] Jiao Yuanjie. Prediction of fish migration based on LSTM model[C]//2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA). Shenyang: IEEE, 2021: 697−701. [33] Cavieses Núñez R A, Ojeda Ruiz de la Peña M Á, Flores Irigollen A, et al. Deep learning models for the prediction of small-scale fisheries catches: finfish fishery in the region of “Bahía Magadalena-Almejas”[J]. ICES Journal of Marine Science, 2018, 75(6): 2088−2096. doi: 10.1093/icesjms/fsy065 [34] Xu Hui, Song Liming, Zhang Tianjiao, et al. Effects of different spatial resolutions on prediction accuracy of Thunnus alalunga fishing ground in waters near the Cook Islands Based on Long Short-Term Memory (LSTM) Neural Network Model[J]. Journal of Ocean University of China, 2023, 22(5): 1427−1438. doi: 10.1007/s11802-023-5525-5 [35] Gers F A, Schmidhuber J, Cummins F. Learning to forget: continual prediction with LSTM[J]. Neural Computation, 2000, 12(10): 2451−2471. doi: 10.1162/089976600300015015 [36] Prasetyo Y, Nabilah F. Pattern analysis of El Nino and La Nina phenomenon based on sea surface temperature (SST) and rainfall intensity using oceanic Nino Index (ONI) in West Java Area[J]. IOP Conference Series: Earth and Environmental Science, 2017, 98: 012041. doi: 10.1088/1755-1315/98/1/012041 [37] Kiem A S, Verdon-Kidd D C. Climatic drivers of Victorian streamflow: is ENSO the dominant influence?[J]. Australasian Journal of Water Resources, 2009, 13(1): 17−29. doi: 10.1080/13241583.2009.11465357 [38] Longhurst A R. Ecological Geography of the Sea[M]. 2nd ed. Burlington: Academic Press, 2010. [39] Le Borgne R, Allain V, Griffiths S P, et al. Vulnerability of open ocean food webs in the tropical Pacific to climate change[M]//Bell J D, Johnson J E, Hobday A J. Vulnerability of Tropical Pacific Fisheries and Aquaculture to Climate Change. New Caledonia: Secretariat of the Pacific Community, 2011: 189−250. [40] Mazumder A N, Rashid H A, Mohsenin T. An energy-efficient low power LSTM processor for human activity monitoring[C]//2020 IEEE 33rd International System-on-Chip Conference (SOCC). Las Vegas: IEEE, 2020: 54−59. [41] Singh A A, Sakuramoto K, Suzuki N. Impact of climatic factors on albacore tuna Thunnus alalunga in the south Pacific Ocean[J]. American Journal of Climate Change, 2015, 4(4): 295−312. doi: 10.4236/ajcc.2015.44024 [42] Hampton J, Fournier D A. A spatially disaggregated, length-based, age-structured population model of yellowfin tuna (Thunnus albacares) in the western and central Pacific Ocean[J]. Marine and Freshwater Research, 2001, 52(7): 937−963. doi: 10.1071/MF01049 [43] Foster R G, Roenneberg T. Human responses to the geophysical daily, annual and lunar cycles[J]. Current Biology, 2008, 18(17): R784−R794. doi: 10.1016/j.cub.2008.07.003 [44] Hodson T O. Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not[J]. Geoscientific Model Development, 2022, 15(14): 5481−5487. doi: 10.5194/gmd-15-5481-2022 [45] Chai Tianfeng, Draxler R R. Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature[J]. Geoscientific Model Development, 2014, 7(3): 1247−1250. doi: 10.5194/gmd-7-1247-2014 [46] De Myttenaere A, Golden B, Le Grand B, et al. Mean absolute percentage error for regression models[J]. Neurocomputing, 2016, 192: 38−48. doi: 10.1016/j.neucom.2015.12.114 [47] Reglero P, Tittensor D P, Álvarez-Berastegui D, et al. Worldwide distributions of tuna larvae: revisiting hypotheses on environmental requirements for spawning habitats[J]. Marine Ecology Progress Series, 2014, 501: 207−224. doi: 10.3354/meps10666 [48] Leung S, Thompson L, McPhaden M J, et al. ENSO drives near-surface oxygen and vertical habitat variability in the tropical Pacific[J]. Environmental Research Letters, 2019, 14(6): 064020. doi: 10.1088/1748-9326/ab1c13 [49] Yen K W, Lu H J, Chang Yi, et al. Using remote-sensing data to detect habitat suitability for yellowfin tuna in the western and central Pacific Ocean[J]. International Journal of Remote Sensing, 2012, 33(23): 7507−7522. doi: 10.1080/01431161.2012.685973 [50] Lehodey P, Hampton J, Brill R W, et al. Vulnerability of oceanic fisheries in the tropical Pacific to climate change[M]//Bell J D, Johnson J E, Hobday A J. Vulnerability of Tropical Pacific Fisheries and Aquaculture to Climate Change. New Caledonia: Secretariat of the Pacific Community, 2011: 433−492. [51] Peña-Torres J, Dresdner J, Vasquez F. El Niño and fishing location decisions: the Chilean straddling jack mackerel fishery[J]. Marine Resource Economics, 2017, 32(3): 249−275. doi: 10.1086/692073 [52] Moore B R, Bell J D, Evans K, et al. Defining the stock structures of key commercial tunas in the Pacific Ocean I: current knowledge and main uncertainties[J]. Fisheries Research, 2020, 230: 105525. doi: 10.1016/j.fishres.2020.105525 [53] Lehodey P, Chai F, Hampton J. Modelling climate-related variability of tuna populations from a coupled ocean-biogeochemical-populations dynamics model[J]. Fisheries Oceanography, 2003, 12(4/5): 483−494. [54] Yen K W, Lu H J. Spatial-temporal variations in primary productivity and population dynamics of skipjack tuna Katsuwonus pelamis in the western and central Pacific Ocean[J]. Fisheries Science, 2016, 82(4): 563−571. doi: 10.1007/s12562-016-0992-x [55] Shi Xiaofei, Zhang Jian, Wang Xiao, et al. Reproductive biology of yellowfin tuna (Thunnus albacares) in tropical western and central Pacific Ocean[J]. Fishes, 2022, 7(4): 162. doi: 10.3390/fishes7040162 [56] Ohashi S, Aoki Y, Tanaka F, et al. Reproductive traits of female skipjack tuna Katsuwonus pelamis in the western central Pacific Ocean (WCPO)[C]//15th Regular Session of the Scientific Committee. Pohnpei, Micronesia: WCPFC, 2019. [57] Schaefer K M, Fuller D W, Block B A. Movements, behavior, and habitat utilization of yellowfin tuna (Thunnus albacares) in the northeastern Pacific Ocean, ascertained through archival tag data[J]. Marine Biology, 2007, 152(3): 503−525. doi: 10.1007/s00227-007-0689-x [58] Ashida H. Spatial and temporal differences in the reproductive traits of skipjack tuna Katsuwonus pelamis between the subtropical and temperate western Pacific Ocean[J]. Fisheries Research, 2020, 221: 105352. doi: 10.1016/j.fishres.2019.105352 [59] Grande M, Murua H, Zudaire I, et al. Energy allocation strategy of skipjack tuna Katsuwonus pelamis during their reproductive cycle[J]. Journal of Fish Biology, 2016, 89(5): 2434−2448. doi: 10.1111/jfb.13125 [60] Zudaire I, Murua H, Grande M, et al. Variations in the diet and stable isotope ratios during the ovarian development of female yellowfin tuna (Thunnus albacares) in the Western Indian Ocean[J]. Marine Biology, 2015, 162(12): 2363−2377. doi: 10.1007/s00227-015-2763-0 [61] Chan H L. How climate change and climate variability affected trip distance of a commercial fishery[J]. PLoS Climate, 2023, 2(2): e0000143. doi: 10.1371/journal.pclm.0000143 [62] Kim E, Moon D, Kim S. Effects of climate-induced variation in the catch distribution and biological characteristics of skipjack tuna Katsuwonus pelamis in the western and central Pacific Ocean[J]. Korean Journal of Fisheries and Aquatic Sciences, 2015, 48(4): 489−497. doi: 10.5657/KFAS.2015.0489 [63] Bigelow K, Hampton J, Fournier D. Preliminary application of the MULTIFAN-CL model to skipjack tuna in the tropical WCPO[C]//13th Meeting of the Standing Committee on Tuna and Billfish. Noumea: SPC, 2000. [64] Hoyle S D, Williams A J, Minte-Vera C V, et al. Approaches for estimating natural mortality in tuna stock assessments: application to global yellowfin tuna stocks[J]. Fisheries Research, 2023, 257: 106498. doi: 10.1016/j.fishres.2022.106498 [65] Matsumoto W M, Skillman R A, Dizon A E. Synopsis of Biological Data on Skipjack Tuna, Katsuwonus Pelamis[M]. Seattle: U. S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Services, 1984. [66] Kaji T, Tanaka M, Oka M, et al. Growth and morphological development of laboratory-reared yellowfin tuna Thunnus albacares larvae and early juveniles, with special emphasis on the digestive system[J]. Fisheries Science, 1999, 65(5): 700−707. doi: 10.2331/fishsci.65.700 [67] Ashida H, Watanabe K, Tanabe T. Growth variability of juvenile skipjack tuna (Katsuwonus pelamis) in the western and central Pacific Ocean[J]. Environmental Biology of Fishes, 2018, 101(3): 429−439. doi: 10.1007/s10641-017-0708-9 [68] Sardenne F, Bodin N, Chassot E, et al. Trophic niches of sympatric tropical tuna in the western Indian Ocean inferred by stable isotopes and neutral fatty acids[J]. Progress in Oceanography, 2016, 146: 75−88. doi: 10.1016/j.pocean.2016.06.001 [69] Benavides I F, Romero-Leiton J P, Santacruz M, et al. Applying seasonal time series modeling to forecast marine fishery landings for six species in the Colombian Pacific Ocean[J]. Regional Studies in Marine Science, 2022, 56: 102716. doi: 10.1016/j.rsma.2022.102716 [70] LEE B, SUHARTONO S, LIM A, et al. Forecasting world tuna catches with ARIMA-spline and ARIMA-neural networks models[J]. Walailak Journal of Science and Technology, 2021, 18(17): 9726. [71] Cavieses-Núñez R, Ojeda-Ruiz M A, Flores-Irigollen A, et al. Focused small-scale fisheries as complex systems using deep learning models[J]. Latin American Journal of Aquatic Research, 2021, 49(2): 342−353. doi: 10.3856/vol49-issue2-fulltext-2622 [72] Nagano K, Yamamura O. Predicting catch of Giant Pacific octopus Enteroctopus dofleini in the Tsugaru Strait using a machine learning approach[J]. Fisheries Research, 2023, 261: 106622. doi: 10.1016/j.fishres.2023.106622 [73] Siami-Namini S, Tavakoli N, Namin A S. A comparison of ARIMA and LSTM in forecasting time series[C]//2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA). Orlando: IEEE, 2018: 1394−1401. [74] Qian Fei, Chen Xianfu. Stock prediction based on LSTM under different stability[C]//2019 IEEE 4th International Conference on Cloud Computing and Big Data Analysis (ICCCBDA). Chengdu: IEEE, 2019: 483−486. [75] Zhao J, Huang F, Lv J, et al. Do RNN and LSTM have long memory?[C]// Daumé III H, Singh A. Proceedings of the 37th International Conference on Machine Learning. PMLR, 2020: 11365−11375.