留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进DeepLabV3+模型的海冰提取方法

孙士昌 王志勇 李振今 张保敬 田康 赵相禹

孙士昌,王志勇,李振今,等. 基于改进DeepLabV3+模型的海冰提取方法−以北极格陵兰海为例[J]. 海洋学报,2024,46(8):131–142 doi: 10.12284/hyxb2024075
引用本文: 孙士昌,王志勇,李振今,等. 基于改进DeepLabV3+模型的海冰提取方法−以北极格陵兰海为例[J]. 海洋学报,2024,46(8):131–142 doi: 10.12284/hyxb2024075
Sun Shichang,Wang Zhiyong,Li Zhenjin, et al. An extraction method for sea ice based on improved DeepLabV3+ model:Taking the Arctic Greenland Sea as an example[J]. Haiyang Xuebao,2024, 46(8):131–142 doi: 10.12284/hyxb2024075
Citation: Sun Shichang,Wang Zhiyong,Li Zhenjin, et al. An extraction method for sea ice based on improved DeepLabV3+ model:Taking the Arctic Greenland Sea as an example[J]. Haiyang Xuebao,2024, 46(8):131–142 doi: 10.12284/hyxb2024075

基于改进DeepLabV3+模型的海冰提取方法以北极格陵兰海为例

doi: 10.12284/hyxb2024075
基金项目: 国家自然科学基金(41876202)。
详细信息
    作者简介:

    孙士昌(1999—),男,山东省济宁市人,研究方向为遥感数据处理与应用。E-mail:sunshichang2021@163.com

    通讯作者:

    王志勇(1978—),男,山东省青岛市人,教授,从事雷达干涉测量、海洋遥感等方面的研究。E-mail:wzywlp@163.com

  • 中图分类号: P731.15

An extraction method for sea ice based on improved DeepLabV3+ model:Taking the Arctic Greenland Sea as an example

  • 摘要: 海冰是全球气候变化的指示剂,北极海冰的变化关系到全球变暖、海平面上升等。针对传统语义分割模型对海冰进行提取时存在细节提取不精确、提取速度慢等问题,构建了一种改进DeepLabV3+的海冰提取方法。首先,将主干网络Xception替换为MobileNetV2,在保证海冰提取精度的同时大幅度降低模型参数量,节约时间;其次,将ASPP改进为DenseASPP,在进行海冰的多尺度特征提取时进一步扩大感受野,获得更为密集的特征;最后,引入坐标注意力机制,同时强化关注通道和空间上的特征,加强海冰边缘细节信息提取。选取北极格陵兰海为实验区,通过对该海域2020–2022年间冬季的10景Sentinel-1A双极化SAR影像进行处理、标注之后形成数据集进行实验,对比U-Net、PSPNet和DeepLabV3+等经典模型。结果表明:本文方法的mIoU达到了88.46%,mPA达到了94.16%。相较于传统DeepLabV3+,mIoU提高了2.35%,mPA提高了2.90%,参数量和GFLOPs分别减少了45.08 M和106.01 G,同时训练模型时间和提取海冰时间分别减少了68%和30%。对比U-Net、PSPNet等模型,同样取得了最优结果。与其他模型相比,本文新构建的模型对海冰特征的学习能力更强,能获取更多海冰细节信息,并大幅度节约用时,能够为研究全球变暖环境下的海冰退化监测问题提供技术支持。
  • 图  1  海冰提取技术路线

    Fig.  1  Sea ice extraction technology roadmap

    图  2  坐标注意力机制结构

    Fig.  2  Structure of coordinate attention mechanism

    图  3  本文模型结构

    Fig.  3  Model structure of this paper

    图  4  海冰提取结果对比

    Fig.  4  Comparison of sea ice extraction results

    图  5  不同方法的海冰提取结果

    Fig.  5  Results of sea ice extraction by different methods

    图  6  训练过程Loss曲线

    Fig.  6  Training process Loss curve

    图  7  相关指标与下采样因子关系曲线

    Fig.  7  Relation curve of correlation index and downsampling factor

    图  8  相关指标与学习率关系曲线

    Fig.  8  Relation curve of correlation index and learning rate

    表  1  实验平台主要参数信息

    Tab.  1  Main parameters of the experimental platform

    配置 参数
    处理器 i5-12490F CPU @ 3.00 GHz
    RAM 16.0 G
    GPU NVIDIA GeForce RTX 3060
    显存 12.0 GB
    操作系统 Windows 10
    编程语言 Python 3.9
    深度学习框架 Pytorch 1.13
    下载: 导出CSV

    表  2  具体实验数据

    Tab.  2  Specific experimental data

    序号传感器成像日期模式极化方式用途
    1Sentinel-1B2021.12.01EWHH、HV训练
    2Sentinel-1B2021.12.08EWHH、HV训练
    3Sentinel-1B2021.12.09EWHH、HV训练
    4Sentinel-1A2021.12.21EWHH、HV训练
    5Sentinel-1A2021.12.22EWHH、HV训练
    6Sentinel-1A2021.12.30EWHH、HV训练
    7Sentinel-1A2021.12.30EWHH、HV训练
    8Sentinel-1A2020.02.28EWHH、HV验证
    9Sentinel-1A2021.12.01EWHH、HV验证
    10Sentinel-1A2022.12.01EWHH、HV验证
    下载: 导出CSV

    表  3  对比实验精度评价表

    Tab.  3  Comparison of experimental accuracy evaluation table

    mIoU mPA mP Parameters GFLOPs 训练
    用时
    提取
    用时
    PSPNet 85.43 91.42 93.73 46.71 M 118.43 G 13h 48min 57 s
    U-Net 85.69 90.97 94.02 24.89 M 451.71 G 13h 43min 58 s
    本文模型
    (DeepLabV3+_mbV2_DenseASPP_CA)
    88.46 94.16 94.82 9.63 M 60.84 G 6h 40min 53 s
    下载: 导出CSV

    表  4  消融实验精度评价表

    Tab.  4  Ablation experiment accuracy evaluation table

    mIoU mPA mP Parameters GFLOPs 训练
    用时
    提取
    用时
    传统DeepLabV3+ 86.11% 91.26% 94.21% 54.71 M 166.85 G 20h 47min 76 s
    DeepLabV3+_mbV2 86.58% 92.61% 92.93% 5.81 M 52.88 G 5h 53min 48 s
    DeepLabV3+_DenseASPP 86.82% 92.98% 94.32% 58.51 M 175.76 G 23h 5min 80 s
    DeepLabV3+_CA 87.39% 93.60% 94.47% 54.72 M 166.85 G 21h 54min 77 s
    本文模型(DeepLabV3+_mbV2_DenseASPP_CA) 88.46% 94.16% 94.82% 9.63 M 60.84 G 6h 40min 53 s
    下载: 导出CSV
  • [1] Serreze M C, Holland M M, Stroeve J. Perspectives on the Arctic’s shrinking sea-ice cover[J]. Science, 2007, 315(5818): 1533−1536. doi: 10.1126/science.1139426
    [2] Trusel L D, Das S B, Osman M B, et al. Nonlinear rise in Greenland runoff in response to post-industrial arctic warming[J]. Nature, 2018, 564(7734): 104−108. doi: 10.1038/s41586-018-0752-4
    [3] 葛梦滢, 高稳, 祝敏, 等. 基于SE-ConvLSTM的时空特征融合SAR图像海冰分类[J]. 遥感技术与应用, 2023, 38(6): 1306−1316.

    Ge Mengying, Gao Wen, Zhu Min, et al. Sea ice classification of SAR images based on SE-ConvLSTM spatial-temporal feature fusion[J]. Remote Sensing Technology and Application, 2023, 38(6): 1306−1316.
    [4] 李小娜, 张杰, 戴永寿, 等. 灰度共生矩阵纹理特征对SAR海冰漂移监测的增强性能研究[J]. 海洋科学, 2018, 42(4): 9−17.

    Li Xiaona, Zhang Jie, Dai Yongshou, et al. Research on the enhanced performance of texture feature for sea ice drift monitoring based on gray level co-occurrence matrices[J]. Marine Sciences, 2018, 42(4): 9−17.
    [5] Wang Bin, Xia Linghui, Song Dongmei, et al. A two-round weight voting strategy-based ensemble learning method for sea ice classification of sentinel-1 imagery[J]. Remote Sensing, 2021, 13(19): 3945. doi: 10.3390/rs13193945
    [6] 周颖, 匡定波, 巩彩兰, 等. 风云三号卫星MERSI影像提取北极海冰参数的方法[J]. 红外与毫米波学报, 2017, 36(1): 41−48,126−127.

    Zhou Ying, Kuang Dingbo, Gong Cailan, et al. A method to extract parameters of Arctic Sea ice from FY-3/MERSI imagery[J]. Journal of Infrared and Millimeter Waves, 2017, 36(1): 41−48,126−127.
    [7] 臧金霞, 刘建强, 殷晓斌, 等. 基于最优特征集的HY-1C卫星海岸带成像仪影像海冰分类方法研究[J]. 海洋学报, 2022, 44(5): 35−46.

    Zang Jinxia, Liu Jianqiang, Yin Xiaobin, et al. Study on sea ice classification of HY-1C satellite coastal zone imager images based on the optimal feature set[J]. Haiyang Xuebao, 2022, 44(5): 35−46.
    [8] 朱立先, 惠凤鸣, 张智伦, 等. 基于Sentinel-1A/B SAR数据的西北航道海冰分类研究[J]. 北京师范大学学报(自然科学版), 2019, 55(1): 66−76.

    Zhu Lixian, Hui Fengming, Zhang Zhilun, et al. Sea ice classification in northwest passage based on Sentinel-1A/B SAR data[J]. Journal of Beijing Normal University (Natural Science), 2019, 55(1): 66−76.
    [9] 王志勇, 孙培蕾, 刘健. 一种联合多特征的极化SAR海冰类型提取方法[J]. 遥感信息, 2020, 35(4): 23−29.

    Wang Zhiyong, Sun Peilei, Liu Jian. A sea ice classification method of polarimetric SAR data by multi-feature combination[J]. Remote Sensing Information, 2020, 35(4): 23−29.
    [10] 王志勇, 张梦悦, 于亚冉, 等. 一种融合纹理特征与NDVI的随机森林海冰精细分类方法[J]. 海洋学报, 2021, 43(10): 149−156.

    Wang Zhiyong, Zhang Mengyue, Yu Yaran, et al. A fine classification method for sea ice based on random forest combining texture feature and NDVI[J]. Haiyang Xuebao, 2021, 43(10): 149−156.
    [11] 吴斌, 王志勇, 李兴, 等. CryoSat-2雷达高度计海冰波形优选特征分类[J]. 测绘通报, 2023(5): 164−169.

    Wu Bin, Wang Zhiyong, Li Xing, et al. CryoSat-2 radar altimeter sea ice waveform preferred feature classification[J]. Bulletin of Surveying and Mapping, 2023(5): 164−169.
    [12] Zakhvatkina N, Korosov A, Muckenhuber S, et al. Operational algorithm for ice–water classification on dual-polarized RADARSAT-2 images[J]. The Cryosphere, 2017, 11(1): 33−46. doi: 10.5194/tc-11-33-2017
    [13] Li Xiaoming, Sun Yan, Zhang Qiang. Extraction of sea ice cover by sentinel-1 SAR based on support vector machine with unsupervised generation of training data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(4): 3040−3053. doi: 10.1109/TGRS.2020.3007789
    [14] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 3431−3440.
    [15] 崔艳荣, 邹斌, 韩震, 等. 卷积神经网络在卫星遥感海冰图像分类中的应用探究——以渤海海冰为例[J]. 海洋学报, 2020, 42(9): 100−109.

    Cui Yanrong, Zou Bin, Han Zhen, et al. Application of convolutional neural networks in satellite remote sensing sea ice image classification: a case study of sea ice in the Bohai Sea[J]. Haiyang Xuebao, 2020, 42(9): 100−109.
    [16] 郑付强, 匡定波, 胡勇, 等. 基于U-ASPP-Net的北极独立海冰精细识别方法[J]. 红外与毫米波学报, 2021, 40(6): 798−808.

    Zheng Fuqiang, Kuang Dingbo, Hu Yong, et al. Refined segmentation method based on U-ASPP-Net for Arctic independent sea ice[J]. Journal of Infrared and Millimeter Waves, 2021, 40(6): 798−808.
    [17] 黄冬梅, 李明慧, 宋巍, 等. 卷积神经网络和深度置信网络在SAR影像冰水分类的性能评估[J]. 中国图象图形学报, 2018, 23(11): 1720−1732. doi: 10.11834/jig.180226

    Huang Dongmei, Li Minghui, Song Wei, et al. Performance of convolutional neural network and deep belief network in sea ice-water classification using SAR imagery[J]. Journal of Image and Graphics, 2018, 23(11): 1720−1732. doi: 10.11834/jig.180226
    [18] 徐欢, 任沂斌. 基于混合损失U-Net的SAR图像渤海海冰检测研究[J]. 海洋学报, 2021, 43(6): 157−170.

    Xu Huan, Ren Yibin. Detecting sea ice of Bohai Sea using SAR images based on a hybrid loss U-Net model[J]. Haiyang Xuebao, 2021, 43(6): 157−170.
    [19] Sandler M, Howard A, Zhu Menglong, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE/CVFConference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510−4520.
    [20] Huang Gao, Liu Zhuang, Van Der MaatenL, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2261−2269.
    [21] Yang Maoke, Yu Kun, Zhang Chi, et al. DenseASPP for semantic segmentation in street scenes[C]//Proceedings of the IEEE/CVFConference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 3684−3692.
    [22] Hu Jie, Shen Li, Sun Gang. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVFConference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132−7141.
    [23] Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018: 3−19.
    [24] Hou Qibin, Zhou Daquan, Feng Jiashi. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 13708−13717.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  167
  • HTML全文浏览量:  53
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-12
  • 修回日期:  2024-06-05
  • 网络出版日期:  2024-08-09
  • 刊出日期:  2024-09-26

目录

    /

    返回文章
    返回