留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄、渤海沉积物耗氧速率的时空分布特征和环境影响因素

朱若思 宋国栋 刘素美

朱若思,宋国栋,刘素美. 黄、渤海沉积物耗氧速率的时空分布特征和环境影响因素[J]. 海洋学报,2024,46(5):16–26 doi: 10.12284/hyxb2024074
引用本文: 朱若思,宋国栋,刘素美. 黄、渤海沉积物耗氧速率的时空分布特征和环境影响因素[J]. 海洋学报,2024,46(5):16–26 doi: 10.12284/hyxb2024074
Zhu Ruosi,Song Guodong,Liu Sumei. Characteristics of spatial and temporal distribution of sediment oxygen consumption rate and environmental influence factors in the Yellow Sea and Bohai Sea[J]. Haiyang Xuebao,2024, 46(5):16–26 doi: 10.12284/hyxb2024074
Citation: Zhu Ruosi,Song Guodong,Liu Sumei. Characteristics of spatial and temporal distribution of sediment oxygen consumption rate and environmental influence factors in the Yellow Sea and Bohai Sea[J]. Haiyang Xuebao,2024, 46(5):16–26 doi: 10.12284/hyxb2024074

黄、渤海沉积物耗氧速率的时空分布特征和环境影响因素

doi: 10.12284/hyxb2024074
基金项目: 国家自然科学基金项目(42076035,42376044,U1806211);泰山学者项目。
详细信息
    作者简介:

    朱若思(1999—),男,江西省上饶市人,主要从事海洋生物地球化学研究。E-mail:rosezhu@stu.ouc.edu.cn

    通讯作者:

    宋国栋,男,副教授,主要从事海洋生物地球化学研究。E-mail: gsong@ouc.edu.cn

  • 中图分类号: P736.21

Characteristics of spatial and temporal distribution of sediment oxygen consumption rate and environmental influence factors in the Yellow Sea and Bohai Sea

  • 摘要: 沉积物耗氧(SOC)是海洋沉积物重要参数,是海底沉积物有机质矿化速率的重要表征参数,开展沉积物耗氧的研究有助于了解整个海洋的碳循环过程。陆架边缘海作为有机质矿化和埋藏最重要和最活跃的场所之一,在全世界已经受到广泛关注与研究,但是对于具有海洋环境典型季节变化的中国边缘海区域,尤其是黄、渤海仍然缺乏相应的关注。本文使用整柱培养法,分别于2022年4月、7月和10月对黄、渤海沉积物耗氧进行研究,结果表明黄、渤海沉积物耗氧速率为7.11~17.33 mmol/(m2·d)。黄海春季沉积物耗氧速率与渤海无显著差异(ANOVA,p > 0.05),夏季(ANOVA,p < 0.01)和秋季(ANOVA,p < 0.01)黄海沉积物耗氧速率低于渤海;黄海春季沉积物耗氧速率最高,秋季次之,夏季最小,渤海夏季和秋季接近,显著高于春季(ANOVA,p < 0.05),温度和沉积物Chl a浓度是主要影响因素。同时,用沉积物耗氧速率来评估海底有机质矿化速率,并与初级生产力相比较,结果表明渤海海底有机质矿化与初级生产力的占比范围为42.8%~74.5%,是渤海碳循环的关键环节之一,黄海海底沉积物有机质矿化在黄海碳循环中作用不如渤海显著。本文系统研究了黄、渤海沉积物耗氧速率及其时空分布特征,探究了黄、渤海地区有机质矿化对初级生产力的贡献,为理解黄、渤海区域有机质矿化和埋藏提供理论支持。
  • 图  1  春季(a)、夏季(b)和秋季(c)背景叶绿素a浓度及黄、渤海取样站点(d)

    数据源于NASA Ocean Color(https://oceancolor.gsfc.nasa.gov/l3/

    Fig.  1  Background chlorophyll a concentration in the Yellow Sea and Bohai Sea in spring (a), summer (b), autumn (c) and sampling stations (d)

    The data are based on the online data of NASA Ocean Color (https://oceancolor.gsfc.nasa.gov/l3/)

    图  2  黄、渤海沉积物耗氧速率空间分布(春季(a)、夏季(b)和秋季(c))和季节变化(d)(单位:mmol/(m2·d))

    Fig.  2  Spatial distribution (spring (a), summer (b) and autumn (c))and seasonal variation (d) of SOC in the Yellow Sea and Bohai Sea (unit: mmol/(m2·d))

    图  3  黄、渤海沉积物耗氧速率与环境因子相关性分析

    叶绿素比值:沉积物中Chl a/脱镁叶绿酸;圆圈的颜色和大小代表着两个变量之间的相关程度,其值介于−1与1之间,与色标对应;“*”代表着两个变量之间存在显著的相关性(p < 0.05)

    Fig.  3  Correlation analysis between sediment oxygen consumption rates and environmental factors in the Yellow Sea and Bohai Sea

    Chlorophyll ratio: Chl a/pheophytin in sediment; the color and size of the circles represent the degree of correlation between the two variables, which ranges from −1 to 1, corresponding to the color scale; the “*” represents a significant correlation between the two variables ( p < 0.05)

    图  4  多元线性回归中不同环境因子的决定系数(Chl a为沉积物Chl a含量)

    Fig.  4  Coefficients of determination of different environmental factors in multiple linear regression (Chl a content is the sediment Chl a)

    图  5  黄、渤海海底有机质矿化速率(以碳计)(TCoxid)与初级生产力(PP)的关系

    渤海PP平均值(图a)来源于费尊乐等[42]、王俊等[43]和吕培顶等[44],黄海PP平均值(图b)来源于Zhang 等[45]

    Fig.  5  Relationship between benthic organic carbon mineralization (TCoxid) and primary productivity (PP) in the Yellow Sea and Bohai Sea

    The mean values of PP (Fig. a) in the Bohai Sea are obtained from Fei et al.[42], Wang et al.[43], and Lv et al.[44], and the mean values of PP (Fig. b) in the Yellow Sea are obtained from Zhang et al.[45]

    图  6  春季、夏季和秋季黄、渤海水体Chl a浓度(白色)和温度(灰色)随水深变化

    Fig.  6  Variation of water column Chl a concentration (white) and temperature (gray) with water depth in spring, summer and autumn in the Yellow Sea and Bohai Sea

    表  1  培养站位沉积物和底层水基本性质

    Tab.  1  Basic properties of sediment and bottom water at incubation stations

    站位 时间 水深/m 水温/℃ 盐度 底层水DO浓度/
    (μmol·L−1)
    孔隙
    度/%
    含水
    率/%
    TOC/% TN/% C/N
    (mol/mol)
    沉积物Chl a浓度/
    (μg·g−1)
    沉积物Chl a/
    脱镁叶绿酸
    Chl a水柱积分/
    (mg· m−2)
    H12 2022年春 69 10.58 33.00 226.9 81 55 0.77 0.13 5.1 3.9 0.61 164.1
    2022年夏 10.88 33.11 185.4 73 49 0.78 0.09 7.4 0.9 0.26 57.4
    2022年秋 12.08 32.23 138.2 81 54 0.81 0.09 7.7 1.7 0.77 120.9
    H23 2022年春 77 9.86 32.96 222.8 66 47 0.71 0.12 5.1 6.4 1.17 101.2
    2022年夏 10.10 32.97 189.7 70 50 0.72 0.09 6.9 0.6 0.24 126.6
    2022年秋 10.32 32.90 156.7 66 46 0.65 0.09 6.2 0.8 0.51 108.3
    H27 2022年春 68 9.52 32.87 214.9 81 61 1.21 0.20 5.2 12.7 1.56 168.3
    2022年夏 9.22 32.68 165.8 93 69 1.36 0.16 7.3 1.3 0.23 181.1
    2022年秋 9.46 32.46 135.1 81 60 1.45 0.22 5.6 4.1 0.93 241.3
    H36 2022年春 72 8.63 32.52 238.8 50 30 0.34 0.04 7.3 5.2 1.33 277.9
    2022年秋 9.55 32.47 161.1 50 29 0.34 0.03 9.7 1.1 0.79 172.2
    N17 2022年春 54 6.69 31.70 262.6 84 59 1.43 0.23 5.3 4.6 0.40 124.3
    2022年夏 8.24 31.80 226.3 82 59 1.67 0.19 7.5 4.1 0.64 302.3
    2022年秋 12.2 31.56 134.4 84 58 1.52 0.19 6.9 5.4 0.67 135.1
    B03 2022年春 21 7.79 30.13 278.6 69 43 0.74 0.12 5.3 18.1 3.50 115.4
    2022年夏 17.25 29.92 105.6 78 54 0.66 0.09 6.3 2.5 0.47 155.4
    2022年秋 17.78 29.49 206.0 69 42 0.54 0.06 7.7 3.1 2.41 85.4
    B11 2022年春 23 7.37 31.28 272.1 70 44 0.59 0.10 5.1 3.0 1.13 38.2
    2022年夏 16.36 30.62 100.7 73 46 0.65 0.06 9.3 1.2 0.35 93.1
    2022年秋 17.39 30.14 193.7 70 43 0.56 0.06 8.0 3.1 1.40 0.5
    下载: 导出CSV
  • [1] Caldeira K, Wickett M E. Anthropogenic carbon and ocean pH[J]. Nature, 2003, 425(6956): 365−365. doi: 10.1038/425365a
    [2] Orr J C, Fabry V J, Aumont O, et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms[J]. Nature, 2005, 437(7059): 681−686. doi: 10.1038/nature04095
    [3] Doney S C, Fabry V J, Feely R A, et al. Ocean acidification: the other CO2 problem[J]. Annual Review of Marine Science, 2009, 1: 169−192. doi: 10.1146/annurev.marine.010908.163834
    [4] Paulmier A, Ruiz-Pino D. Oxygen minimum zones (OMZs) in the modern ocean[J]. Progress in Oceanography, 2009, 80(3/4): 113−128.
    [5] Colijn F, de Jonge V N. Primary production of microphytobenthos in the Ems-Dollard Estuary[J]. Marine Ecology Progress Series, 1984, 14(2/3): 185−196.
    [6] Glud R N, Kühl M, Wenzhöfer F, et al. Benthic diatoms of a high Arctic fjord (Young Sound, NE Greenland): importance for ecosystem primary production[J]. Marine Ecology Progress Series, 2002, 238: 15−29. doi: 10.3354/meps238015
    [7] Dunne J P, Sarmiento J L, Gnanadesikan A. A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor[J]. Global Biogeochemical Cycles, 2007, 21(4): GB4006.
    [8] Menard H W, Smith S M. Hypsometry of ocean basin provinces[J]. Journal of Geophysical Research, 1966, 71(18): 4305−4325. doi: 10.1029/JZ071i018p04305
    [9] Jørgensen B B, Wenzhöfer F, Egger M, et al. Sediment oxygen consumption: role in the global marine carbon cycle[J]. Earth-Science Reviews, 2022, 228: 103987. doi: 10.1016/j.earscirev.2022.103987
    [10] Middelburg J J, Soetaert K, Herman P M J. Empirical relationships for use in global diagenetic models[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1997, 44(2): 327−344. doi: 10.1016/S0967-0637(96)00101-X
    [11] Glud R N. Oxygen dynamics of marine sediments[J]. Marine Biology Research, 2008, 4(4): 243−289. doi: 10.1080/17451000801888726
    [12] Wallmann K, Pinero E, Burwicz E, et al. The global inventory of methane hydrate in marine sediments: a theoretical approach[J]. Energies, 2012, 5(7): 2449−2498. doi: 10.3390/en5072449
    [13] Song Guodong, Liu Sumei, Zhu Zhuoyi, et al. Sediment oxygen consumption and benthic organic carbon mineralization on the continental shelves of the East China Sea and the Yellow Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2016, 124: 53−63. doi: 10.1016/j.dsr2.2015.04.012
    [14] Reimers C E, Özkan-Haller H T, Berg P, et al. Benthic oxygen consumption rates during hypoxic conditions on the Oregon continental shelf: evaluation of the eddy correlation method[J]. Journal of Geophysical Research: Oceans, 2012, 117(C2): C02021.
    [15] Laursen A E, Seitzinger S P. The role of denitrification in nitrogen removal and carbon mineralization in Mid-Atlantic Bight sediments[J]. Continental Shelf Research, 2002, 22(9): 1397−1416. doi: 10.1016/S0278-4343(02)00008-0
    [16] Boon A R, Duineveld G C A, Kok A. Benthic organic matter supply and metabolism at depositional and non-depositional areas in the North Sea[J]. Estuarine, Coastal and Shelf Science, 1999, 49(5): 747−761. doi: 10.1006/ecss.1999.0555
    [17] Lohse L, Epping E H G, Helder W, et al. Oxygen pore water profiles in continental shelf sediments of the North Sea: turbulent versus molecular diffusion[J]. Marine Ecology Progress Series, 1996, 145: 63−75. doi: 10.3354/meps145063
    [18] Devol A H, Codispoti L A, Christensen J P. Summer and winter denitrification rates in western Arctic shelf sediments[J]. Continental Shelf Research, 1997, 17(9): 1029−1050. doi: 10.1016/S0278-4343(97)00003-4
    [19] Wei Qinsheng, Yao Qingzhen, Wang Baodong, et al. Long-term variation of nutrients in the southern Yellow Sea[J]. Continental Shelf Research, 2015, 111: 184−196. doi: 10.1016/j.csr.2015.08.003
    [20] Wang Junjie, Yu Zhigang, Wei Qinsheng, et al. Long-term nutrient variations in the Bohai Sea over the past 40 years[J]. Journal of Geophysical Research: Oceans, 2019, 124(1): 703−722. doi: 10.1029/2018JC014765
    [21] 张学雷, 朱明远, 陈尚, 等. 桑沟湾和胶州湾沉积物耗氧率研究[J]. 海洋科学进展, 2006, 24(1): 91−96. doi: 10.3969/j.issn.1671-6647.2006.01.012

    Zhang Xuelei, Zhu Mingyuan, Chen Shang, et al. Study on sediment oxygen consumption rate in the Sanggou Bay and Jiaozhou Bay[J]. Advances in Marine Science, 2006, 24(1): 91−96. doi: 10.3969/j.issn.1671-6647.2006.01.012
    [22] Rysgaard S, Glud R N, Risgaard-Petersen N, et al. Denitrification and anammox activity in Arctic marine sediments[J]. Limnology and Oceanography, 2004, 49(5): 1493−1502. doi: 10.4319/lo.2004.49.5.1493
    [23] Zhang Guosen, Zhang Jing, Liu Sumei. Characterization of nutrients in the atmospheric wet and dry deposition observed at the two monitoring sites over Yellow Sea and East China Sea[J]. Journal of Atmospheric Chemistry, 2007, 57(1): 41−57. doi: 10.1007/s10874-007-9060-3
    [24] 李肖娜, 刘素美, 吕瑞华, 等. 东、黄海沉积物中叶绿素的分析[J]. 中国海洋大学学报, 2004, 34(4): 603−610.

    Li Xiaona, Liu Sumei, Lv Ruihua, et al. An analysis of chlorophyll in the sediments of East China Sea and Yellow Sea[J]. Periodical of Ocean University of China, 2004, 34(4): 603−610.
    [25] 陈莹. 海洋环境变化对南海叶绿素a浓度的影响[D]. 湛江: 广东海洋大学, 2022.

    Cheng Ying. Effects of marine environmental changes on chlorophyll a in the South China Sea[D]. Zhanjiang: Guangdong Ocean University, 2022.
    [26] Lehrter J C, Beddick D L, Devereux R, et al. Sediment-water fluxes of dissolved inorganic carbon, O2, nutrients, and N2 from the hypoxic region of the Louisiana continental shelf[J]. Biogeochemistry, 2012, 109(1/3): 233−252.
    [27] Murrell M C, Lehrter J C. Sediment and lower water column oxygen consumption in the seasonally hypoxic region of the Louisiana continental shelf[J]. Estuaries and Coasts, 2011, 34(5): 912−924. doi: 10.1007/s12237-010-9351-9
    [28] Rowe G T, Kaegi M E C, Morse J W, et al. Sediment community metabolism associated with continental shelf hypoxia, northern Gulf of Mexico[J]. Estuaries, 2002, 25(6): 1097−1106. doi: 10.1007/BF02692207
    [29] Josiam R M, Stefan H G. Effect of flow velocity on sediment oxygen demand: comparison of theory and experiments[J]. JAWRA Journal of the American Water Resources Association, 1999, 35(2): 433−439. doi: 10.1111/j.1752-1688.1999.tb03601.x
    [30] O'Connor B L, Hondzo M. Dissolved oxygen transfer to sediments by sweep and eject motions in aquatic environments[J]. Limnology and Oceanography, 2008, 53(2): 566−578. doi: 10.4319/lo.2008.53.2.0566
    [31] Giles H, Pilditch C A, Nodder S D, et al. Benthic oxygen fluxes and sediment properties on the northeastern New Zealand continental shelf[J]. Continental Shelf Research, 2007, 27(18): 2373−2388. doi: 10.1016/j.csr.2007.06.007
    [32] Utley B C, Vellidis G, Lowrance R, et al. Factors affecting sediment oxygen demand dynamics in blackwater streams of Georgia’s coastal plain[J]. JAWRA Journal of the American Water Resources Association, 2008, 44(3): 742−753. doi: 10.1111/j.1752-1688.2008.00202.x
    [33] Zhang Yan, Li Jintao, Xu Xiao, et al. Temperature fluctuation promotes the thermal adaptation of soil microbial respiration[J]. Nature Ecology & Evolution, 2023, 7(2): 205−213.
    [34] Seiter K, Hensen C, Zabel M. Benthic carbon mineralization on a global scale[J]. Global Biogeochemical Cycles, 2005, 19(1): GB1010.
    [35] Canfield D E, Jørgensen B B, Fossing H, et al. Pathways of organic carbon oxidation in three continental margin sediments[J]. Marine Geology, 1993, 113(1/2): 27−40.
    [36] Canfield D E, Kristensen E, Thamdrup B. Aquatic geomicrobiology[J]. Advances in Marine Biology, 2005, 48: 1−599. doi: 10.1016/S0065-2881(05)48001-3
    [37] Anderson L A, Sarmiento J L. Redfield ratios of remineralization determined by nutrient data analysis[J]. Global Biogeochemical Cycles, 1994, 8(1): 65−80. doi: 10.1029/93GB03318
    [38] Middelburg J J, Duarte C M, Gattuso J P. Respiration in coastal benthic communities[M]//del Giorgio P, Williams P. Respiration in Aquatic Ecosystems. Oxford: Oxford University Press, 2005: 206−224.
    [39] Park M G, Yang S R, Shim J H, et al. Apparent dominance of regenerated primary production in the Yellow Sea[J]. Journal of the Korean Society of Oceanography, 2004, 39(1): 20−25.
    [40] Liu Sumei, Zhang Jing, Chen Shuzhu, et al. Inventory of nutrient compounds in the Yellow Sea[J]. Continental Shelf Research, 2003, 23(11/13): 1161−1174.
    [41] Shi Jinhui, Gao Huiwang, Zhang Jing, et al. Examination of causative link between a spring bloom and dry/wet deposition of Asian dust in the Yellow Sea, China[J] Journal of Geophysical Research: Atmospheres, 2012, 117(D17): D17304.
    [42] 费尊乐, 毛兴华, 朱明运, 等. 渤海生产力研究—Ⅱ. 初级生产力及潜在渔获量的估算[J]. 海洋学报, 1988, 10(4): 481−489.

    Fei Zunle, Mao Xinghua, Zhu Mingyun, et al. Productivity studies in the Bohai Sea-Ⅱ Estimation of primary productivity and potential catch[J]. Haiyang Xuebao, 1988, 10(4): 481−489.
    [43] 王俊, 李洪志. 渤海近岸叶绿素和初级生产力研究[J]. 海洋水产研究, 2002, 23(1): 23−28.

    Wang Jun, Li Hongzhi. Study on chlorophyll and primary production in inshore waters of the Bohai Sea[J]. Marine Fisheries Research, 2002, 23(1): 23−28.
    [44] 吕培顶, 费尊乐, 毛兴华, 等. 渤海水域叶绿素a的分布及初级生产力的估算[J]. 海洋学报, 1984, 6(1): 90−98.

    Lv Peiding, Fei Zunle, Mao Xinghua, et al. Distribution of chlorophyll a and estimation of primary productivity in Bohai Sea waters[J]. Haiyang Xuebao, 1984, 6(1): 90−98.
    [45] Zhang Jing, Zhang Guosen, Liu Sumei. Dissolved silicate in coastal marine rainwaters: comparison between the Yellow Sea and the East China Sea on the impact and potential link with primary production[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D16): D16304.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  138
  • HTML全文浏览量:  62
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-23
  • 修回日期:  2024-03-26
  • 网络出版日期:  2024-05-14
  • 刊出日期:  2024-05-01

目录

    /

    返回文章
    返回