留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南海北部内波作用下声散射层垂直迁移特征研究

毕伟传 梁楚进 蔺飞龙 崔子健 汤俊辉

毕伟传,梁楚进,蔺飞龙,等. 南海北部内波作用下声散射层垂直迁移特征研究[J]. 海洋学报,2024,46(8):37–49 doi: 10.12284/hyxb2024073
引用本文: 毕伟传,梁楚进,蔺飞龙,等. 南海北部内波作用下声散射层垂直迁移特征研究[J]. 海洋学报,2024,46(8):37–49 doi: 10.12284/hyxb2024073
Bi Weichuan,Liang Chujin,Lin Feilong, et al. Study on the vertical migration characteristics of the acoustic scattering layer under the influence of internal waves in the northern South China Sea[J]. Haiyang Xuebao,2024, 46(8):37–49 doi: 10.12284/hyxb2024073
Citation: Bi Weichuan,Liang Chujin,Lin Feilong, et al. Study on the vertical migration characteristics of the acoustic scattering layer under the influence of internal waves in the northern South China Sea[J]. Haiyang Xuebao,2024, 46(8):37–49 doi: 10.12284/hyxb2024073

南海北部内波作用下声散射层垂直迁移特征研究

doi: 10.12284/hyxb2024073
详细信息
    作者简介:

    毕伟传(1999—),男,山东省日照市人,研究方向为深海动力过程。E-mail:biweichuan@foxmail.com

    通讯作者:

    梁楚进(1966—),男,湖南省蓝山县人,研究员,主要从事物理海洋学研究。E-mail:cjliang@sio.org.cn

  • 中图分类号: P733.2

Study on the vertical migration characteristics of the acoustic scattering layer under the influence of internal waves in the northern South China Sea

  • 摘要: 利用深海潜标搭载的声学多普勒流速剖面仪得到的后向散射强度,研究了南海北部声散射层的昼夜垂直迁移和内孤立波对其的影响。观测结果表明:受浮游动物影响,声散射层主要表现为“昼沉夜浮”,日出前约1 h至日出期间向下移动,日落至日落后约1 h期间向上移动,平均迁移速度为4.7 cm/s(上移)和5.8 cm/s(下移)。此外,经过观测海域的内孤立波引起一对先向下后向上的垂向流,最大垂向流速超过50 cm/s,导致声散射层发生数十至上百米的起伏,海洋上层的声学后向散射强度在内孤立波波谷处达到极大值。进一步的研究显示日间出现内孤立波垂向流速与深度平均后向散射强度变化幅度相关性比夜间的内孤立波高。在两种类型波动引起的垂向流速相当时,日间的深度平均后向散射强度变化幅度通常大于夜间。
  • 图  1  南海东北部地形(水深)及站位(三角形)分布(a)和潜标结构(b)

    Fig.  1  Topography (depth of water) of the northeastern South China Sea and locations of moorings (marked by triangles) (a)and structure of the moorings (b)

    图  2  观测期间的平均昼夜垂直迁移模式

    a. S1站位后向散射强度,b. S2站位后向散射强度,c. S1站位垂向流速,d. S2站位垂向流速。空白区域为两台ADCP的盲区,蓝色(红色)虚线代表观测期间的平均日出(日落)时刻

    Fig.  2  The average diel vertical migration patterns during the observation period

    a. MVBS of Station S1, b. MVBS of Station S2, c. vertical velocities of Stations S1, d. vertical velocities of Stations S2. The blank areas represent the blank distance of the two ADCPs. The blue (red) dashed lines indicate the average sunrise (sunset) times during the observation period

    图  3  海洋上层(100~270 m)深度平均垂向流速

    a. S1站位,b. S2站位。蓝色(红色)虚线代表日出(日落)时刻

    Fig.  3  Depth-averaged vertical velocities of the upper ocean layer (100 m to 270 m)

    a. Station S1, b. Station S2. The blue (red) dashed lines indicate the times of sunrise (sunset)

    图  4  S1站位昼夜平均后向散射强度剖面(a),S2站位昼夜平均后向散射强度剖面(b)(虚线部分为ADCP盲区);海洋上层50~270 m深度平均后向散射强度(c),海洋下层450~650 m深度平均后向散射强度(d)

    Fig.  4  Daytime and nighttime average MVBS profiles at Station S1 (a); daytime and nighttime average MVBS profiles at Station S2 (b) (the dashed sections represent the blank distance of two ADCPs); depth-averaged MVBS of the ocean’s upper layer from 50 m to 270 m depth (c); depth-averaged MVBS of the ocean’s lower layer from 450 m to 650 m depth (d)

    图  5  S1站位垂向流速在4月1日(a)、4月2日(b)、4月3日(c)、4月4日(d)的分布和东西向流速在4月1日(e)、4月2日(f)、4月3日(g)、4月4日(h)的分布(虚线框内标示了内孤立波)

    Fig.  5  Vertical velocities of Station S1 on April 1 (a), April 2 (b), April 3 (c), and April 4 (d), and the east-west velocities on April 1 (e), April 2 (f), April 3 (g), and April 4 (h) (dashed boxes mark the presence of internal solitary waves)

    图  6  S1站位后向散射强度在4月1日(a)、4月2日(b)、4月3日(c)、4月4日(d)的分布(虚线框内标示了内孤立波)

    Fig.  6  Distribution of MVBS at Station S1 on April 1 (a), April 2 (b), April 3 (c), and April 4 (d) (dashed boxes mark the presence of internal solitary waves)

    图  7  S1站位4月4日日间的内孤立波垂向流速(a),东西向流速(b),后向散射强度(c),海洋上层(50~270 m)的深度平均后向散射强度(d)

    空白区域为两台ADCP的盲区,棕色线表示13℃等温线,白色实线(虚线)为垂向流速15 cm/s(−15 cm/s)等值线

    Fig.  7  Internal solitary waves at Station S1 during daytime on April 4 vertical velocity (a), east-west velocityv (b), MVBS (c), depth-averaged MVBS of the ocean’s upper layer (50 m to 270 m) (d)

    Blank areas indicate the blank distance of the two ADCPs. The brown line represents the 13°C isotherm. The white solid line (dashed line) represents contour lines of vertical velocity at 15 cm/s (−15 cm/s)

    图  8  S1站位4月4日夜间的内孤立波垂向流速(a),东西向流速(b),后向散射强度(c),海洋上层(50~270 m)的深度平均后向散射强度(d)

    空白区域为两台ADCP的盲区,棕色线表示13℃等温线,白色实线(虚线)为垂向流速15 cm/s(−15 cm/s)等值线

    Fig.  8  Internal solitary waves at Station S1 during nighttime on April 4 vertical velocity (a), east-west velocity (b), MVBS (c), depth-averaged MVBS of the ocean’s upper layer (50 m to 270 m) (d)

    Blank areas indicate the blank distance of the two ADCPs. The brown line represents the 13°C isotherm. The white solid line (dashed line) represents contour lines of vertical velocity at 15 cm/s (−15 cm/s)

    图  9  4月4日内孤立波期间后向散射强度变化幅度深度剖面

    蓝色为日间的内孤立波,黄色为夜间的内孤立波,虚线部分为ADCP盲区

    Fig.  9  Depth profile of MVBS variation during internalsolitary waves on April 4

    Blue indicates daytime internal solitary waves and yellow indicatesnighttime internal solitary waves. The dashed sections representthe blank distance of two ADCPs

    图  10  内孤立波导致的深度平均后向散射强度变化幅度与最大垂向流速的关系

    绿色点为日间出现的内孤立波,红色点为夜间出现的内孤立波

    Fig.  10  Relationship between the depth-averaged MVBS variation induced by internal solitary waves andthe maximum vertical velocity

    Green dots represent internal solitary waves occurring during the daytime, while red dots represent those occurring during the nighttime

    图  11  S1站位6月15日至6月17日昼夜垂直迁移期间的垂向流速(a. 6月15日,b. 6月16日,c. 6月17日)和后向散射强度(d. 6月15日,e. 6月16日,f. 6月17日)

    Fig.  11  Vertical velocities from June 15 to June 17 (a. June 15, b. June 16, c. June 17) and MVBS (d. June 15, e. June 16, f. June 17during the DVM period at Station S1

  • [1] Tont S A. Deep scattering layers: patterns in the Pacific[J]. California Cooperative Oceanic Fisheries Investigations, 1976, 18: 112−117.
    [2] Steinberg D K, Carlson C A, Bates N R, et al. Zooplankton vertical migration and the active transport of dissolved organic and inorganic carbon in the Sargasso Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2000, 47(1): 137−158. doi: 10.1016/S0967-0637(99)00052-7
    [3] Al-Mutairi H, Landry M R. Active export of carbon and nitrogen at Station ALOHA by diel migrant zooplankton[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2001, 48(8/9): 2083−2103.
    [4] Hays G C. A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations[J]. Hydrobiologia, 2003, 503(1): 163−170.
    [5] Ianson D, Jackson G A, Angel M V, et al. Effect of net avoidance on estimates of diel vertical migration[J]. Limnology and Oceanography, 2004, 49(6): 2297−2303. doi: 10.4319/lo.2004.49.6.2297
    [6] Huntley M E, Zhou Meng. Influence of animals on turbulence in the sea[J]. Marine Ecology Progress Series, 2004, 273: 65−79. doi: 10.3354/meps273065
    [7] Dewar W K, Bingham R J, Iverson R L, et al. Does the marine biosphere mix the ocean?[J]. Journal of Marine Research, 2006, 64(4): 541−561. doi: 10.1357/002224006778715720
    [8] Katija K. Biogenic inputs to ocean mixing[J]. Journal of Experimental Biology, 2012, 215(6): 1040−1049. doi: 10.1242/jeb.059279
    [9] Dean C W. Biophysical interactions in the straits of Florida: turbulent mixing due to diel vertical migrations of zooplankton[D]. Fort Lauderdale: Nova Southeastern University, 2014.
    [10] Lü Liangang, Liu Jianjun, Yu Fei, et al. Vertical migration of sound scatterers in the southern Yellow Sea in summer[J]. Ocean Science Journal, 2007, 42(1): 1−8. doi: 10.1007/BF03020905
    [11] 陈钊, 吕连港, 杨光兵, 等. 基于船载ADCP和LADCP观测的南海声散射层[J]. 海洋科学进展, 2016, 34(2): 240−249. doi: 10.3969/j.issn.1671-6647.2016.02.009

    Chen Zhao, Lü Liangang, Yang Guangbing, et al. Research on sound scattering layer in the South China Sea observed with ship-board ADCP and LADCP[J]. Advances in Marine Science, 2016, 34(2): 240−249. doi: 10.3969/j.issn.1671-6647.2016.02.009
    [12] 王雨微, 黄二辉, 许德伟. 海洋生物声散射层研究现状综述[J]. 海洋开发与管理, 2021, 38(9): 43−48. doi: 10.3969/j.issn.1005-9857.2021.09.007

    Wang Yuwei, Huang Erhui, Xu Dewei. International research advances in marine biological acoustic scattering layer[J]. Ocean Development and Management, 2021, 38(9): 43−48. doi: 10.3969/j.issn.1005-9857.2021.09.007
    [13] Postel L, da Silva A J, Mohrholz V, et al. Zooplankton biomass variability off Angola and Namibia investigated by a lowered ADCP and net sampling[J]. Journal of Marine Systems, 2007, 68(1/2): 143−166.
    [14] Kaartvedt S, Staby A, Aksnes D L. Efficient trawl avoidance by mesopelagic fishes causes large underestimation of their biomass[J]. Marine Ecology Progress Series, 2012, 456: 1−6. doi: 10.3354/meps09785
    [15] Davison P, Lara-Lopez A, Koslow J A. Mesopelagic fish biomass in the southern California current ecosystem[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 112: 129−142. doi: 10.1016/j.dsr2.2014.10.007
    [16] Zhou Meng, Dorland R D. Aggregation and vertical migration behavior of Euphausiasuperba[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2004, 51(17/19): 2119−2137.
    [17] Radenac M H, Plimpton P E, Lebourges-Dhaussy A, et al. Impact of environmental forcing on the acoustic backscattering strength in the equatorial Pacific: diurnal, lunar, intraseasonal, and interannual variability[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2010, 57(10): 1314−1328. doi: 10.1016/j.dsr.2010.06.004
    [18] Menkès C E, Allain V, Rodier M, et al. Seasonal oceanography from physics to micronekton in the South-West Pacific[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 113: 125−144. doi: 10.1016/j.dsr2.2014.10.026
    [19] Smeti H, Pagano M, Menkes C, et al. Spatial and temporal variability of zooplankton off New Caledonia (southwestern Pacific) from acoustics and net measurements[J]. Journal of Geophysical Research: Oceans, 2015, 120(4): 2676−2700. doi: 10.1002/2014JC010441
    [20] Jiang Songnian, Dickey T D, Steinberg D K, et al. Temporal variability of zooplankton biomass from ADCP backscatter time series data at the Bermuda Testbed Mooring site[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2007, 54(4): 608−636. doi: 10.1016/j.dsr.2006.12.011
    [21] Haney J F. Diel patterns of zooplankton behavior[J]. Bulletin of Marine Science, 1988, 43(3): 583−603.
    [22] Heywood K J, Scrope-Howe S, Barton E D. Estimation of zooplankton abundance from shipborne ADCP backscatter[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1991, 38(6): 677−691. doi: 10.1016/0198-0149(91)90006-2
    [23] Cohen J H, Forward Jr R B. Spectral sensitivity of vertically migrating marine copepods[J]. The Biological Bulletin, 2002, 203(3): 307−314. doi: 10.2307/1543573
    [24] Zhou Meng, Huntley M E. The principle of biological attraction, demonstrated by the bio-continuum theory of zooplankton patch dynamics[J]. Journal of Marine Research, 1996, 54(5): 1017−1037. doi: 10.1357/0022240963213619
    [25] Lü Liangang, Wang Xiao, Wang Huiwu, et al. The variations of zooplankton biomass and their migration associated with the Yellow Sea Warm Current[J]. Continental Shelf Research, 2013, 64: 10−19. doi: 10.1016/j.csr.2013.05.007
    [26] Wang Zhankun, DiMarco S F, Ingle S, et al. Seasonal and annual variability of vertically migrating scattering layers in the northern Arabian Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2014, 90: 152−165. doi: 10.1016/j.dsr.2014.05.008
    [27] Inoue R, Kitamura M, Fujiki T. Diel vertical migration of zooplankton at the S1 biogeochemical mooring revealed from acoustic backscattering strength[J]. Journal of Geophysical Research: Oceans, 2016, 121(2): 1031−1050. doi: 10.1002/2015JC011352
    [28] Sandstrom H, Elliot J A, Cchrane N A. Observing groups of solitary internal waves and turbulence with BATFISH and echo-sounder[J]. Journal of Physical Oceanography, 1989, 19(7): 987−997. doi: 10.1175/1520-0485(1989)019<0987:OGOSIW>2.0.CO;2
    [29] Hebert D, Moum J N, Paulson C A, et al. Turbulence and internal waves at the equator. Part II: details of a single event[J]. Journal of Physical Oceanography, 1992, 22(11): 1346−1356. doi: 10.1175/1520-0485(1992)022<1346:TAIWAT>2.0.CO;2
    [30] Wallace B C, Wilkinson D L. Run-up of internal waves on a gentle slope in a two-layered system[J]. Journal of Fluid Mechanics, 1988, 191: 419−442. doi: 10.1017/S0022112088001636
    [31] Sangrá P, Basterretxea G, Pelegrí J L, et al. Chlorophyll increase due to internal waves on the shelf break of Gran Canaria (Canary Islands)[J]. Scientia Marina, 2001, 65(S1): 89−97. doi: 10.3989/scimar.2001.65s189
    [32] Greer A T, Cowen R K, Guigand C M, et al. The role of internal waves in larval fish interactions with potential predators and prey[J]. Progress in Oceanography, 2014, 127: 47−61. doi: 10.1016/j.pocean.2014.05.010
    [33] Yang Chenghao, Liao Guanghong, Yuan Yaochu, et al. The diel vertical migration of sound scatterers observed by an acoustic Doppler current profiler in the Luzon Strait from July 2009 to April 2011[J]. Acta Oceanologica Sinica, 2013, 32(11): 1−9.
    [34] 刘世刚, 汤勇, 陈国宝, 等. 南海深海声学散射层垂直分布和昼夜变化初步研究[J]. 海洋科学进展, 2015, 33(2): 173−181. doi: 10.3969/j.issn.1671-6647.2015.02.005

    Liu Shigang, Tang Yong, Chen Guobao, et al. Vertical distribution and diurnal movement of the deep scattering layer in the South China Sea[J]. Advances in Marine Science, 2015, 33(2): 173−181. doi: 10.3969/j.issn.1671-6647.2015.02.005
    [35] 王东旭. 南海中部深海散射层声学特性及时空分布研究[D]. 大连: 大连海洋大学, 2017.

    Wang Dongxu. Acoustic characteristics and Spatio-temporal distribution of deep scattering layer in the central South China Sea[D]. Dalian: Dalian Ocean University, 2017.
    [36] 陈钊. 南海声散射层和涡旋对其影响的研究[D]. 青岛: 国家海洋局第一海洋研究所, 2016.

    Chen Zhao. Study on the sound scattering layer in the South China Sea and the influence of eddies[D]. Qingdao: First Institute of Oceanography, State Oceanic Administration, 2016.
    [37] 李琦, 陈朝晖. 基于ADCP回声的黑潮−亲潮混合区浮游动物昼夜垂直迁移研究[J]. 海洋与湖沼, 2022, 53(2): 305−319. doi: 10.11693/hyhz20211000250

    Li Qi, Chen Zhaohui. Diel vertial migration of zooplankton in the Kuroshio-Oyashio mixed zone based on ADCP echo[J]. Oceanologia et Limnologia Sinica, 2022, 53(2): 305−319. doi: 10.11693/hyhz20211000250
    [38] Wang Bei, Yu Fei, Wang Ran, et al. Intraseasonal variability of the deep scattering layer induced by mesoscale eddy[J]. Frontiers in Marine Science, 2024, 11: 1367410. doi: 10.3389/fmars.2024.1367410
    [39] Yang Chenghao, Xu Dongfeng, Chen Zuozhi, et al. Diel vertical migration of zooplankton and micronekton on the northern slope of the South China Sea observed by a moored ADCP[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2019, 167: 93−104. doi: 10.1016/j.dsr2.2019.04.012
    [40] 刘明东, 杨光兵, 熊学军, 等. 天文大潮对南海北部浮游动物生物量的影响[J]. 海洋科学进展, 2023, 41(1): 123−134. doi: 10.12362/j.issn.1671-6647.20211220001

    Liu Mingdong, Yang Guangbing, Xiong Xuejun, et al. Effect of astronomical tide on the zooplankton biomass in the northern South China Sea[J]. Advances in Marine Science, 2023, 41(1): 123−134. doi: 10.12362/j.issn.1671-6647.20211220001
    [41] Cai Shuqun, Xie Jieshuo, He Jianling. An overview of internal solitary waves in the South China Sea[J]. Surveys in Geophysics, 2012, 33(5): 927−943. doi: 10.1007/s10712-012-9176-0
    [42] Tian Jiwei, Zhou Lei, Zhang Xiaoqian. Latitudinal distribution of mixing rate caused by the M2 internal tide[J]. Journal of Physical Oceanography, 2006, 36(1): 35−42. doi: 10.1175/JPO2824.1
    [43] Liu A K, Chang Y S, Hsu M K, et al. Evolution of nonlinear internal waves in the East and South China Seas[J]. Journal of Geophysical Research: Oceans, 1998, 103(C4): 7995−8008. doi: 10.1029/97JC01918
    [44] 蔡树群, 何建玲, 谢皆烁. 近10年来南海孤立内波的研究进展[J]. 地球科学进展, 2011, 26(7): 703−710.

    Cai Shuqun, He Jianling, Xie Jieshuo. Recent decadal progress of the study on internal solitonsin the South China Sea[J]. Advances in Earth Science, 2011, 26(7): 703−710.
    [45] Holligan P M, Pingree R D, Mardell G T. Oceanic solitons, nutrient pulses and phytoplankton growth[J]. Nature, 1985, 314(6009): 348−350. doi: 10.1038/314348a0
    [46] Pan Xiaoju, Wong G T F, Shiah F K, et al. Enhancement of biological productivity by internal waves: observations in the summertime in the northern South China Sea[J]. Journal of Oceanography, 2012, 68(3): 427−437. doi: 10.1007/s10872-012-0107-y
    [47] Guan Zhenyu, Ge Ruping, Li Yunxia, et al. Diel variation of phytoplankton communities in the northern South China Sea under the effect of internal solitary waves and its response to environmental factors[J]. Water, 2023, 15(13): 2422. doi: 10.3390/w15132422
    [48] Lennert-Cody C E, Franks P J S. Plankton patchiness in high-frequency internal waves[J]. Marine Ecology Progress Series, 1999, 186: 59−66. doi: 10.3354/meps186059
    [49] Ramp S R, Tang T Y, Duda T F, et al. Internal solitons in the northeastern South China Sea. Part I: Sources and deep water propagation[J]. IEEE Journal of Oceanic Engineering, 2004, 29(4): 1157−1181. doi: 10.1109/JOE.2004.840839
    [50] 黄晓冬. 南海内孤立波的空间分布与时间变化特征研究[D]. 青岛: 中国海洋大学, 2013.

    Huang Xiaodong. Study on the spatial distributions and temporal variations of internal solitary waves in the South China Sea[D]. Qingdao: Ocean University of China, 2013.
    [51] Gordon R L. Acoustic Doppler current profiler Principles of operation: a practical primer[M]. San Diego, California USA by RD Instruments, January 8, 1996, 7.
    [52] Deines K L. Backscatter estimation using broadband acoustic Doppler current profilers[C]//Proceedings of the IEEE Sixth Working Conference on Current Measurement (Cat. No. 99CH36331). San Diego, CA, USA: IEEE, 1999: 249−253.
    [53] Mullison J. Backscatter estimation using broadband acoustic Doppler current profilers-updated[C]//Proceedings of the ASCE Hydraulic Measurements & Experimental Methods Conference. Durham, NH, USA, 2017: 9−12.
    [54] Potiris E, Frangoulis C, Kalampokis A, et al. Acoustic Doppler current profiler observations of migration patterns of zooplankton in the Cretan Sea[J]. Ocean Science, 2018, 14(4): 783−800. doi: 10.5194/os-14-783-2018
    [55] 袁叔尧, 邓九仔. 南海北部内孤立波数学模型[J]. 热带海洋, 1999, 18(3): 16−23.

    Yuan Shuyao, Deng Jiuzi. Mathematical model of internal solitary waves in northern South China Sea[J]. Tropic Oceanology, 1999, 18(3): 16−23.
    [56] 徐亚军, 赵亮, 原野. 基于声学仪器与粒径分析仪研究东海浮游动物昼夜垂直迁移过程[J]. 海洋学报, 2016, 38(8): 123−130. doi: 10.3969/j.issn.0253-4193.2016.08.013

    Xu Yajun, Zhao Liang, Yuan Ye. The diel vertical migration of zooplankton observed by an acoustic Doppler current profiler and particle size analyzer in the East China Sea[J]. Haiyang Xuebao, 2016, 38(8): 123−130. doi: 10.3969/j.issn.0253-4193.2016.08.013
    [57] Luo Jiangang, Ortner P B, Forcucci D, et al. Diel vertical migration of zooplankton and mesopelagic fish in the Arabian Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2000, 47(7/8): 1451−1473.
    [58] Ariza A, Landeira J M, Escánez A, et al. Vertical distribution, composition and migratory patterns of acoustic scattering layers in the Canary Islands[J]. Journal of Marine Systems, 2016, 157: 82−91. doi: 10.1016/j.jmarsys.2016.01.004
    [59] Kaneko A, Zhu Xiaohua, Radenac M H. Dirunal variability and its quantification of subsurface sound scatterers in the western equatorial Pacific[J]. Journal of Oceanography, 1996, 52(5): 655−674. doi: 10.1007/BF02238326
    [60] Cisewski B, Strass V H, Rhein M, et al. Seasonal variation of diel vertical migration of zooplankton from ADCP backscatter time series data in the Lazarev Sea, Antarctica[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2010, 57(1): 78−94. doi: 10.1016/j.dsr.2009.10.005
    [61] Liu Yanliang, Guo Jingsong, Xue Yuhuan, et al. Seasonal variation in diel vertical migration of zooplankton and micronekton in the Andaman Sea observed by a moored ADCP[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2022, 179: 103663. doi: 10.1016/j.dsr.2021.103663
    [62] Haury L R, Briscoe M G, Orr M H. Tidally generated internal wave packets in Massachusetts Bay[J]. Nature, 1979, 278(5702): 312−317. doi: 10.1038/278312a0
    [63] Lennert-Cody C E, Franks P J S. Fluorescence patches in high-frequency internal waves[J]. Marine Ecology Progress Series, 2002, 235: 29−42. doi: 10.3354/meps235029
    [64] Haury L R, Wiebe P H, Orr M H, et al. Tidally generated high-frequency internal wave packets and their effects on plankton in Massachusetts Bay[J]. Journal of Marine Research, 1983, 41(1): 65−112. doi: 10.1357/002224083788223036
    [65] Hsu M K, Liu A K. Nonlinear internal waves in the South China Sea[C]//Proceedings of the Ninth (1999) International Offshore and Polar Engineering Conference. Brest, France: ISOPE, 1999: ISOPE-I-99-253.
    [66] Cheriton O M, McManus M A, Stacey M T, et al. Physical and biological controls on the maintenance and dissipation of a thin phytoplankton layer[J]. Marine Ecology Progress Series, 2009, 378: 55−69. doi: 10.3354/meps07847
    [67] Haney J C. Ocean internal waves as sources of small-scale patchiness in seabird distribution on the Blake Plateau[J]. The Auk, 1987, 104(1): 129−133. doi: 10.2307/4087244
    [68] Silber G K, Smultea M A. Harbor porpoises utilize tidally-induced internal waves[J]. Bulletin Southern California Academy of Sciences, 1990, 89(3): 139−142.
  • 加载中
图(11)
计量
  • 文章访问数:  212
  • HTML全文浏览量:  77
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-07
  • 修回日期:  2024-06-05
  • 网络出版日期:  2024-08-09
  • 刊出日期:  2024-09-26

目录

    /

    返回文章
    返回