Numerical simulation of the impact of coastal urbanization on sea breeze front penetration over the Hainan Island
-
摘要: 本文利用中尺度模式WRF-ARW(Weather Research and Forecasting Model-Advanced Research WRF)(Version 4.0)对海南岛不同天气条件下的典型海风锋个例进行了高分辨率数值模拟,通过设计局地城镇化的敏感性试验, 重点分析了海南岛沿海城镇化对海风锋推进的影响及其可能机制。研究结果表明:海南岛沿海城镇化造成的海风锋结构差异是热力作用和动力作用共同影响的结果;城镇下垫面的摩擦效应与城市热岛的增强阻碍海风向内陆推进, 减弱了海风锋途经地区的降温增湿效应, 造成海风锋位置相对滞后;而城镇化所引起的高海陆热力差异增强了海风风速及海风辐合, 同时导致海风锋前的垂直上升气流和海风环流厚度也明显增强。海风锋发展不同时期,城镇化对海风锋的推进影响有所不同。海风锋发展初期, 海陆热力差异引起的推动作用与摩擦效应的阻碍作用相抵消, 导致海风锋的推进无明显影响;海风锋发展强盛阶段, 城镇化条件下内陆城市与非城市之间的热力差异有所增强, 阻碍了海风锋向内陆推进,导致海风锋内陆渗透距离减小。不同天气条件下城市化对海风锋推进的影响有所不同,相比于晴空天气, 多云天气下城市与非城市的热力差异稍强,加强了城市热岛效应对海风推进的阻碍作用,导致海风锋滞后距离稍远。此外,当土地利用类型更换为城镇后, 净辐射与陆气间交换能量减少, 导致其潜热通量显著减小, 感热通量值变大,从而升高了下垫面温度, 增强了海风的垂直上升运动, 进而造成边界层高度的升高。Abstract: In this paper, the mesoscale model WRF-ARW (Weather Research and Forecasting Model-Advanced Research WRF)(Version 4.0) is used to simulate a typical sea breeze front case in Hainan Island under different weather conditions with high numerical resolution. By designing sensitivity tests for local urbanization, the influence of coastal urbanization on sea breeze fronts in Hainan Island and its possible influencing mechanism are analyzed. The results show that the sea breeze front structure difference caused by urbanization is the result of thermal and dynamic effects. The friction effect of the underlying surface and the enhancement of urban heat island hinder the sea breeze from advancing inland, weaken the cooling and humidification effect of the sea breeze front, and result in a relative lagging of the sea breeze front. The high sea-land thermal difference caused by urbanization enhances the sea breeze wind speed and amplitude, and the vertical updraft and sea breeze circulation thickness in front of the sea breeze front are significantly enhanced. The influence of urbanization on the advance of sea breeze fronts varies during different stages of development. In the early stages of the development of sea breeze fronts, the driving effect of the thermal difference between land and sea is offset by the hindering effect of friction, resulting in no significant impact on the advance of sea breeze fronts. In the strong stage of development of sea breeze fronts, the thermal difference between inland cities and non-urban areas under urbanization conditions has increased, hindering the advance of sea breeze fronts towards inland areas, resulting in a decrease in the penetration distance of sea breeze fronts inland. The influence of urbanization on the advance of sea breeze fronts varies under different weather conditions. Compared to clear weather, the thermal difference between urban and non-urban areas under cloudy weather is slightly stronger, strengthening the hindering effect of urban heat island effect on the advance of sea breeze fronts towards inland areas, resulting in a slightly longer lag distance of sea breeze fronts. Furthermore, when land use transitions to towns occur, net radiation energy exchange with atmospheric air decreases leading to notable declines in latent heat flux alongside increases in sensible heat flux levels. This increased the underlying surface temperature, enhanced the vertical upward movement of sea breeze, and thus caused the increase in boundary layer height.
-
Key words:
- sea breeze front /
- urbanization /
- land cover change /
- complex terrain /
- tropical island
-
图 1 ERA5再分析资料2020年3月22日08:00各层次环流场:500 hPa(a),700 hPa(b); 08:00卫星云图(c)及16:00
1000 hPa风场和散度场(d)图1a,1b中矢量为风场,蓝色等值线为位势高度线(单位: dagpm); 图1d中矢量为风场, 阴影为散度(单位: 10−4 s−1)
Fig. 1 ERA5 reanalysis data for circulation field at 08:00 LST 22 March 2020:500 hPa (a), 700 hPa (b); satellite cloud imagery (c) at 08:00 LST 22 March 2020 and ERA5 reanalysis data for
1000 hPa wind field and divergence field at 16:00 LST (d)In Fig.1a,1b, the vector is wind field, the blue contour line is the geopotential height (unit: dagpm); in Fig.1d, the vector is wind field, the shaded is divergence (unit: 10−4 s−1)
图 2 ERA5再分析资料2020年7月16日08:00各层次环流场:500 hPa(a),700 hPa(b); 08:00卫星云图(c)及16:00
1000 hPa风场和散度场(d)图2a,2b中矢量为风场, 蓝色等值线为位势高度线(单位: dagpm); 图2d中矢量为风场, 阴影为散度(单位: 10−4 s−1)
Fig. 2 ERA5 reanalysis data for circulation field at 08:00 LST 16 July 2020:500 hPa (a), 700 hPa (b); satellite cloud imagery (c) at 08:00 LST 16 July 2020 and ERA5 reanalysis data for
1000 hPa wind field and divergence field at 16:00 LST (d)In Fig.2a,2b, the vector is wind field, the blue contour line is the geopotential height (unit: dagpm); in Fig.2d, the vector is wind field, the shaded is divergence (unit: 10−4 s−1)
图 8 2020 年3月22日14:00、16:00、18:00 CNTL试验(左)与URBAN试验(右)模拟的10 m风场和温度场
矢量为风场, 阴影代表温度,黑色线为风场散度等于1.8 × 10−3 s−1的等值线
Fig. 8 Simulated 10 m wind field and temperature field by CNTL (left), URBAN (right) at 14:00 LST, 16:00 LST, 18:00 LST 22 March 2020
The vector is wind field, the shaded is temperature, and the black line represents the contour line of wind field divergence equal to 1.8 × 10−3 s−1
图 9 2020 年7月16日14:00、16:00、18:00 CNTL试验(左)与URBAN试验(右)模拟的10 m风场和温度场
矢量为风场, 阴影代表温度,黑色线为风场散度等于1.8 × 10−3 s−1的等值线
Fig. 9 Simulated 10 m wind field and temperature field by CNTL (left), URBAN (right) at 14:00 LST, 16:00 LST, 18:00 LST 16 July 2020
The vector is wind field, the shaded is temperature, and the black line represents the contour line of wind field divergence equal to 1.8 × 10−3 s−1
图 11 2020 年3月22日(左)、7月16日(右)14:00、16:00、18:00 URBAN试验-CNTL试验的温度和散度分布
阴影代表温度,黑色线为风场散度差等于1.8 × 10−3 s−1的等值线
Fig. 11 Simulated 10 m wind field and divergence field by CNTL (left),URBAN (right) at 14:00 LST,16:00 LST,18:00 LST 16 July 2020
The shaded is temperature difference of wind field, and the black line represents the contour line of wind field divergence difference equal to 1.8 × 10−3 s−1
图 12 2020年3月22日CNTL试验和URBAN试验海南岛100 m以下区域平均2 m温度(单位:℃)、相对湿度(%)、10 m风速(单位:m/s)(左)及其偏差(URBAN−CNTL)(右)随时间的演变
Fig. 12 Time evolution of simulated 2 m temperature (unit: ℃), relative humidity (%), and 10 m wind speed (unit: m/s) (left)and their deviations (right)in areas below 100 m on Hainan Island in CNTL and URBAN tests on 22 March 2020
图 13 2020年7月16日CNTL试验和URBAN试验海南岛100 m以下区域平均2 m温度(单位:℃)、相对湿度(%)、10 m风速(单位:m/s)(左)及其偏差(URBAN−CNTL)(右)随时间的演变
Fig. 13 Time evolution of simulated 2 m temperature (unit: ℃), relative humidity (%), and 10 m wind speed (unit: m/s) (left) and their deviations(right) in areas below 100 m on Hainan Island in CNTL and URBAN tests on 16 July 2020
图 14 2020年 3月22日16:00、18:00 CNTL试验(左)、URBAN试验(右)沿109.8°E的风场垂直剖面
矢量为(v, w)风场,其中w扩大10倍,阴影为径向风v,红色线为经向风零线
Fig. 14 Simulated vertical profile along the wind field at 109.8°E by CNTL (left), URBAN (right) at 16:00 LST, 18:00 LST 22 March 2020
The vector is (v, w) wind field, where the w-component is multiplied by a factor of 10, the shaded is v wind speed,and the red contour line is the zero line of v wind speed
图 15 2020年7月16日16:00、18:00 CNTL试验(左)、URBAN试验(右)沿109.5° E的风场垂直剖面
矢量为(v, w)风场,其中w扩大10倍,阴影为径向风v,红色线为经向风速零线
Fig. 15 Simulated vertical profile along the wind field at 109.5°E by CNTL(left), URBAN(right)at 16:00 LST, 18:00 LST 16 July 2020
The vector is (v,w) wind field, where the w-component is multiplied by a factor of 10, the shaded is v wind speed,and the red contour line is the zero line of v wind speed
表 1 模式主要物理参数化方案的设置
Tab. 1 Settings of the main physical parameterizations
物理过程参数化 选用的参数化方案 短波辐射 RRTMG 长波辐射 RRTMG 微物理学 Lin 积云对流(仅D1、D2) Kain-Fritsch 边界层 YSU 近地面层 MM5 Revised 城市冠层方案 UCM 陆面过程 Noah -
[1] Miller S T K, Keim B D, Talbot R W, et al. Sea breeze: structure, forecasting, and impacts[J]. Reviews of Geophysics, 2003, 41(3): 1011. [2] Crosman E T, Horel J D. Sea and lake breezes: a review of numerical studies[J]. Boundary-Layer Meteorology, 2010, 137(1): 1−29. doi: 10.1007/s10546-010-9517-9 [3] Simpson J E, Mansfield D A, Milford J R. Inland penetration of sea-breeze fronts[J]. Quarterly Journal of the Royal Meteorological Society, 1977, 103(435): 47−76. [4] Miao J F, Kroon L J M, de Arellano J V G, et al. Impacts of topography and land degradation on the sea breeze over eastern Spain[J]. Meteorology and Atmospheric Physics, 2003, 84(3/4): 157−170. [5] 徐绍杰, 苗峻峰. 海风锋的雷达观测分析研究进展[J]. 海洋预报, 2022, 39(5): 100−109. doi: 10.11737/j.issn.1003-0239.2022.05.011Xu Shaojie, Miao Junfeng. An overview of radar-based observational study of sea breeze front[J]. Marine Forecasts, 2022, 39(5): 100−109. doi: 10.11737/j.issn.1003-0239.2022.05.011 [6] 段懿轩, 苗峻峰. 海风锋的遥感分析研究进展[J]. 海洋预报, 2022, 39(6): 102−109. doi: 10.11737/j.issn.1003-0239.2022.06.011Duan Yixuan, Miao Junfeng. An overview of remote sensing study of sea breeze front[J]. Marine Forecasts, 2022, 39(6): 102−109. doi: 10.11737/j.issn.1003-0239.2022.06.011 [7] 东高红, 刘一玮, 孙蜜娜, 等. 城市热岛与海风锋叠加作用对一次局地强降水的影响[J]. 气象, 2013, 39(11): 1422−1430. doi: 10.7519/j.issn.1000-0526.2013.11.005Dong Gaohong, Liu Yiwei, Sun Mina, et al. Effect of urban heat island and sea breeze front superimposition on a local heavy rainfall[J]. Meteorological Monthly, 2013, 39(11): 1422−1430. doi: 10.7519/j.issn.1000-0526.2013.11.005 [8] Hu Xiaoming, Xue Ming. Influence of synoptic sea-breeze fronts on the urban heat island intensity in Dallas–Fort Worth, Texas[J]. Monthly Weather Review, 2016, 144(4): 1487−1507. doi: 10.1175/MWR-D-15-0201.1 [9] Zhou Xilin, Okaze T, Ren Chao, et al. Evaluation of urban heat islands using local climate zones and the influence of sea-land breeze[J]. Sustainable Cities and Society, 2020, 55: 102060. doi: 10.1016/j.scs.2020.102060 [10] Hu Yan, Tan Jianguo, Grimmond S, et al. Observed and modeled urban heat island and sea-breeze circulation interactions: a Shanghai case study[J]. Journal of Applied Meteorology and Climatology, 2022, 61(3): 239−259. doi: 10.1175/JAMC-D-20-0246.1 [11] 刘树华, 刘振鑫, 李炬, 等. 京津冀地区大气局地环流耦合效应的数值模拟[J]. 中国科学: 地球科学, 2009, 39(1): 88-98.Liu Shuhua, Liu Zhenxin, Li Ju, et al. Numerical simulation for the coupling effect of local atmospheric circulations over the area of Beijing, Tianjin and Hebei province[J]. Science in China Series D: Earth Sciences, 2009, 52(3): 382-392. [12] Miao Yucong, Liu Shuhua, ZhengYijia, et al. Numerical study of the effects of topography and urbanization on the local atmospheric circulations over the Beijing-Tianjin-Hebei, China[J]. Advances in Meteorology, 2015, 2015: 397070. [13] Miao Yucong, Hu Xiaoming, Liu Shuhua, et al. Seasonal variation of local atmospheric circulations and boundary layer structure in the Beijing-Tianjin-Hebei region and implications for air quality[J]. Journal of Advances in Modeling Earth Systems, 2015, 7(4): 1602−1626. doi: 10.1002/2015MS000522 [14] Wissmeier U, Smith R K, Goler R. The formation of a multicell thunderstorm behind a sea-breeze front[J]. Quarterly Journal of the Royal Meteorological Society, 2010, 136(653): 2176−2188. doi: 10.1002/qj.691 [15] 梁钊明, 高守亭, 王彦. 渤海湾地区一次碰撞型海风锋天气过程的数值模拟分析[J]. 气候与环境研究, 2013, 18(6): 733−745. doi: 10.3878/j.issn.1006-9585.2013.12027Liang Zhaoming, Gao Shouting, Wang Yan. Numerical simulation study of a collision-type sea breeze front case in the Bohai Bay region[J]. Climatic and Environmental Research, 2013, 18(6): 733−745. doi: 10.3878/j.issn.1006-9585.2013.12027 [16] Zhu Lei, Chen Xingchao, BaiLanqiang. Relative roles of low-level wind speed and moisture in the diurnal cycle of rainfall over a tropical island under monsoonal flows[J]. Geophysical Research Letters, 2020, 47(8): e2020GL087467. doi: 10.1029/2020GL087467 [17] Park J M, van den Heever S C, Igel A L, et al. Environmental controls on tropical sea breeze convection and resulting aerosol redistribution[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(6): e2019JD031699. doi: 10.1029/2019JD031699 [18] Di Bernardino A, Iannarelli A M, Casadio S, et al. On the effect of sea breeze regime on aerosols and gases properties in the urban area of Rome, Italy[J]. Urban Climate, 2021, 37: 100842. doi: 10.1016/j.uclim.2021.100842 [19] 王子安, 孟庆岩, 张琳琳, 等. 基于CA-Markov模型的海口市城市热岛模拟预测[J]. 中国科学院大学学报, 2022, 39(6): 742−753.Wang Zi’an, Meng Qingyan, Zhang Linlin, et al. Simulation and prediction of urban heat island in Haikou City based on CA-Markov model[J]. Journal of University of Chinese Academy of Sciences, 2022, 39(6): 742−753. [20] 周海珠, 朱能, 王清勤. 基于城市冠层改进模型的三亚城市热岛效应模拟[J]. 生态城市与绿色建筑2021(1): 18-23.Zhou Haizhu, Zhu Neng, Wang Qingqin. Modeling and simulation of the urban heat island effect in Sanya City based on improved urban canopy model[J]. Eco-City and Green Building2021(1): 18-23. [21] 王中正, 李太君, 方锦文. 两种单波段反演算法的海口市城市热岛研究[J]. 测绘与空间地理信息, 2018, 41(12): 108−111. doi: 10.3969/j.issn.1672-5867.2018.12.030Wang Zhongzheng, Li Taijun, Fang Jinwen. Research on two kinds of single-band inversional gorithm for Haikou City[J]. Geomatics and Spatial Information Technology, 2018, 41(12): 108−111. doi: 10.3969/j.issn.1672-5867.2018.12.030 [22] 李玉杰, 马昊, 邓涛, 等. 基于“源–汇”理论的海口城市景观格局与热岛效应响应机制[J]. 西北林学院学报, 2021, 36(5): 223−232. doi: 10.3969/j.issn.1001-7461.2021.05.34Li Yujie, Ma Hao, Deng Tao, et al. Urban landscape pattern and response mechanism of Heat Island Effect based on“Source-Sink”theory of Haikou City[J]. Journal of Northwest Forestry University, 2021, 36(5): 223−232. doi: 10.3969/j.issn.1001-7461.2021.05.34 [23] 高操, 张方敏, 陈希, 等. 海口城市化对热岛效应的影响[J]. 气象与减灾研究, 2019, 42(4): 277−284. doi: 10.12013/qxyjzyj2019-044Gao Cao, Zhang Fangmin, Chen Xi, et al. Impact of urbanization on urban heat island effect in Haikou City[J]. Meteorology and Disaster Reduction Research, 2019, 42(4): 277−284. doi: 10.12013/qxyjzyj2019-044 [24] 张振州, 蔡旭晖, 宋宇, 等. 海南岛地区海陆风的统计分析和数值模拟研究[J]. 热带气象学报, 2014, 30(2): 270-280.Zhang Zhenzhou, Cai Xuhui, Song Yu, et al. Statistical characteristics and numerical simulation of sea land breezes in Hainan IslandJ]. Journal of Tropical Meteorology, 2014, 30(2): 270-280. [25] 王莹, 苗峻峰. 近地层参数化对海南岛海风降水模拟的影响[J]. 地球物理学报, 2019, 62(1): 32−48. doi: 10.6038/cjg2018K0551Wang Ying, Miao Junfeng. Impact of surface layer parameterizations on simulated sea breeze precipitation over the Hainan Island[J]. Chinese Journal of Geophysics, 2019, 62(1): 32−48. doi: 10.6038/cjg2018K0551 [26] 王静, 苗峻峰, 冯文. 海南岛海风演变特征的观测分析[J]. 气象科学, 2016, 36(2): 244−255. doi: 10.3969/2014jms.0091Wang Jing, Miao Junfeng, Feng Wen. An observational analysis of sea breeze characteristics over the Hainan Island[J]. Journalof the Meteorological Sciences, 2016, 36(2): 244−255. doi: 10.3969/2014jms.0091 [27] Liang Zhaoming, Wang Donghai, Liu Ying, et al. A numerical study of the convection triggering and propagation associated with sea breeze circulation over Hainan Island[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(16): 8567−8592. doi: 10.1002/2016JD025915 [28] 王语卉, 苗峻峰, 蔡亲波. 海南岛海风三维结构的数值模拟[J]. 热带气象学报, 2016, 32(1): 109−124.Wang Yuhui, Miao Junfeng, Cai Qinbo. Numerical simulation of the 3-D structure of sea breezes over the Hainan Island[J]. Journal of Tropical Meteorology, 2016, 32(1): 109−124. [29] 杨秋彦, 苗峻峰, 王语卉. 海南岛地形对局地海风环流结构影响的数值模拟[J]. 海洋学报, 2017, 39(3): 24−43.Yang Qiuyan, Miao Junfeng, Wang Yuhui. A numerical study of impact of topography on sea breeze circulation over the Hainan Island[J]. HaiyangXuebao, 2017, 39(3): 24−43. [30] 王凌梓, 苗峻峰, 管玉平. 多云天气下海南岛地形对局地海风环流结构影响的数值模拟[J]. 大气科学学报, 2020, 43(2): 322−335.Wang Lingzi, Miao Junfeng, Guan Yuping. Numerical simulation of impact of topography of Hainan Island on structure of local sea breeze circulation under cloudy weather[J]. Transactions of Atmospheric Sciences, 2020, 43(2): 322−335. [31] 依斯拉木•吾拉音, 苗峻峰, 吴冰雪. 海南岛土地覆盖变化对海风锋结构演变影响的数值模拟[J]. 大气科学, 2024, 48(2): 803−821. doi: 10.3878/j.issn.1006-9895.2308.23028Yisilamu W, Miao Junfeng, Wu Bingxue. Numerical study of the impact of land cover change on structure and evolution of the sea breeze front over Hainan Island[J]. Chinese Journal of Atmospheric Sciences, 2024, 48(2): 803−821. doi: 10.3878/j.issn.1006-9895.2308.23028 [32] 苗峻峰. 城市热岛和海风环流相互作用的数值模拟研究进展[J]. 大气科学学报, 2014, 37(4): 521−528.Miao Junfeng. An overview of numerical studies of interaction of urban heat island and sea breeze circulations[J]. Transactions of Atmospheric Sciences, 2014, 37(4): 521−528. [33] Yamamoto Y, Ishikawa H. Influence of urban spatial configuration and sea breeze on land surface temperature on summer clear-sky days[J]. Urban Climate, 2020, 31: 100578. doi: 10.1016/j.uclim.2019.100578 [34] 张亦洲, 苗世光, 戴永久, 等. 北京夏季晴天边界层特征及城市下垫面对海风影响的数值模拟[J]. 地球物理学报, 2013, 56(8): 2558−2573. doi: 10.6038/cjg20130806Zhang Yizhou, Miao Shiguang, Dai Yongjiu, et al. Numerical simulation of characteristics of summer clear day boundary layer in Beijing and the impact of urban underlying surface on seabreeze[J]. Chinese Journal of geophysics, 2013, 56(8): 2558−2573. doi: 10.6038/cjg20130806 [35] 梁钊明, 高守亭, 王东海, 等. 城市下垫面对渤海湾海风锋特征影响的一次数值试验[J]. 大气科学, 2013, 37(5): 1013−1024. doi: 10.3878/j.issn.1006-9895.2013.12153Liang Zhaoming, Gao Shouting, Wang Donghai, et al. A numerical study of the urban underlying surface effect on the characteristics of a sea breeze front in the Bohai Bay region[J]. Chinese Journal of Atmospheric Sciences, 2013, 37(5): 1013−1024. doi: 10.3878/j.issn.1006-9895.2013.12153 [36] ShenLidu, Sun Jianning, Yuan Renmin. Idealized large-eddy simulation study of interaction between urban heat island and sea breeze circulations[J]. Atmospheric Research, 2018, 214: 338−347. doi: 10.1016/j.atmosres.2018.08.010 [37] 黄利萍, 苗峻峰, 刘月琨, 等. 天津地区夏季海陆风对城市热岛日变化特征影响的观测分析[J]. 大气科学学报, 2013, 36(4): 417−425. doi: 10.3969/j.issn.1674-7097.2013.04.004Huang Liping, Miao Junfeng, Liu Yuekun, et al. Observational analysis of influence of sea-land breeze on diurnal characteristics of urban heat island in Tianjin during summer[J]. Transactions of Atmospheric Sciences, 2013, 36(4): 417−425. doi: 10.3969/j.issn.1674-7097.2013.04.004 [38] 许启慧, 苗峻峰, 刘月琨, 等. 渤海湾西岸海陆风特征对城市热岛响应的观测分析[J]. 气象科学, 2013, 33(4): 408−417. doi: 10.3969/j.issn.1009-0827.2013.04.008Xu Qihui, Miao Junfeng, Liu Yuekun, et al. Response of sea and land breeze characteristics to urban heat island over the west coast of Bohai Bay[J]. Journal of the Meteorological Sciences, 2013, 33(4): 408−417. doi: 10.3969/j.issn.1009-0827.2013.04.008 [39] 东高红, 尉英华, 解以扬, 等. 天津地区城市热岛环流与海风环流相互作用的研究[J]. 气象, 2015, 41(12): 1447−1455. doi: 10.7519/j.issn.1000-0526.2015.12.002Dong Gaohong, Wei Yinghua, XieYiyang, et al. Research on the interaction of Tianjin urban heat island circulation and sea breeze circulation[J]. Meteorological Monthly, 2015, 41(12): 1447−1455. doi: 10.7519/j.issn.1000-0526.2015.12.002 [40] 东高红, 李英华, 刘一玮, 等. 天津城市热岛效应对海风(锋)环流影响的数值模拟试验[J]. 气象, 2018, 44(6): 825−836. doi: 10.7519/j.issn.1000-0526.2018.06.010Dong Gaohong, Li Yinghua, Liu Yiwei, et al. Numerical simulation test of Tianjin urban heat island effect on sea breeze (front) circulation[J]. Meteorological Monthly, 2018, 44(6): 825−836. doi: 10.7519/j.issn.1000-0526.2018.06.010 [41] Bauer T J. Interaction of urban heat island effects and land–sea breezes during a New York City heat event[J]. Journal of Applied Meteorology and Climatology, 2020, 59(3): 477−495. doi: 10.1175/JAMC-D-19-0061.1 [42] Wang Wei, Shu Jiong. Impacts of spatiotemporally uneven urbanization on sea breeze fronts in a mega-river delta[J]. Landscape and Urban Planning, 2022, 218: 104287. doi: 10.1016/j.landurbplan.2021.104287 [43] 朱丽, 苗峻峰, 赵天良. 污染天气下成都城市热岛环流结构的数值模拟[J]. 地球物理学报, 2020, 63(1): 101−122. doi: 10.6038/cjg2020M0462Zhu Li, Miao Junfeng, Zhao Tianliang. Numerical simulation of urban breeze circulation in a heavy pollution event in Chengdu City[J]. Chinese Journal of Geophysics, 2020, 63(1): 101−122. doi: 10.6038/cjg2020M0462 [44] Kusaka H, Kimura F. Coupling a single-layer urban canopy model with a simple atmospheric model: impact on urban heat island simulation for an idealized case[J]. Journal of the Meteorological Society of Japan. Ser. II, 2004, 82(1): 67−80. doi: 10.2151/jmsj.82.67 [45] Physick W L. Numerical experiments on the inland penetration of the sea breeze[J]. Quarterly Journal of the Royal Meteorological Society, 1980, 106(450): 735−746. doi: 10.1002/qj.49710645007