留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海南岛沿海城镇化对海风锋推进影响的数值模拟

段懿轩 苗峻峰 冯文

段懿轩,苗峻峰,冯文. 海南岛沿海城镇化对海风锋推进影响的数值模拟[J]. 海洋学报,2024,46(6):66–83 doi: 10.12284/hyxb2024069
引用本文: 段懿轩,苗峻峰,冯文. 海南岛沿海城镇化对海风锋推进影响的数值模拟[J]. 海洋学报,2024,46(6):66–83 doi: 10.12284/hyxb2024069
Duan Yixuan,Miao Junfeng,Feng Wen. Numerical simulation of the impact of coastal urbanization on sea breeze front penetration over the Hainan Island[J]. Haiyang Xuebao,2024, 46(6):66–83 doi: 10.12284/hyxb2024069
Citation: Duan Yixuan,Miao Junfeng,Feng Wen. Numerical simulation of the impact of coastal urbanization on sea breeze front penetration over the Hainan Island[J]. Haiyang Xuebao,2024, 46(6):66–83 doi: 10.12284/hyxb2024069

海南岛沿海城镇化对海风锋推进影响的数值模拟

doi: 10.12284/hyxb2024069
基金项目: 海南省南海气象防灾减灾重点实验室开放基金(SCSF202305);海南省自然科学基金高层次人才项目(422RC803)。
详细信息
    作者简介:

    段懿轩(1998—),男,吉林省辽源市人,主要从事中尺度气象学研究。E-mail:1401853513@qq.com

    通讯作者:

    苗峻峰(1963—),男,内蒙古托克托县人,教授,博士生导师,主要从事边界层气象学研究。E-mail:miaoj@nuist.edu.cn

  • 中图分类号: P714+.2

Numerical simulation of the impact of coastal urbanization on sea breeze front penetration over the Hainan Island

  • 摘要: 本文利用中尺度模式WRF-ARW(Weather Research and Forecasting Model-Advanced Research WRF)(Version 4.0)对海南岛不同天气条件下的典型海风锋个例进行了高分辨率数值模拟,通过设计局地城镇化的敏感性试验, 重点分析了海南岛沿海城镇化对海风锋推进的影响及其可能机制。研究结果表明:海南岛沿海城镇化造成的海风锋结构差异是热力作用和动力作用共同影响的结果;城镇下垫面的摩擦效应与城市热岛的增强阻碍海风向内陆推进, 减弱了海风锋途经地区的降温增湿效应, 造成海风锋位置相对滞后;而城镇化所引起的高海陆热力差异增强了海风风速及海风辐合, 同时导致海风锋前的垂直上升气流和海风环流厚度也明显增强。海风锋发展不同时期,城镇化对海风锋的推进影响有所不同。海风锋发展初期, 海陆热力差异引起的推动作用与摩擦效应的阻碍作用相抵消, 导致海风锋的推进无明显影响;海风锋发展强盛阶段, 城镇化条件下内陆城市与非城市之间的热力差异有所增强, 阻碍了海风锋向内陆推进,导致海风锋内陆渗透距离减小。不同天气条件下城市化对海风锋推进的影响有所不同,相比于晴空天气, 多云天气下城市与非城市的热力差异稍强,加强了城市热岛效应对海风推进的阻碍作用,导致海风锋滞后距离稍远。此外,当土地利用类型更换为城镇后, 净辐射与陆气间交换能量减少, 导致其潜热通量显著减小, 感热通量值变大,从而升高了下垫面温度, 增强了海风的垂直上升运动, 进而造成边界层高度的升高。
  • 图  1  ERA5再分析资料2020年3月22日08:00各层次环流场:500 hPa(a),700 hPa(b); 08:00卫星云图(c)及16:00 1000 hPa风场和散度场(d)

    图1a1b中矢量为风场,蓝色等值线为位势高度线(单位: dagpm); 图1d中矢量为风场, 阴影为散度(单位: 10−4 s−1

    Fig.  1  ERA5 reanalysis data for circulation field at 08:00 LST 22 March 2020:500 hPa (a), 700 hPa (b); satellite cloud imagery (c) at 08:00 LST 22 March 2020 and ERA5 reanalysis data for 1000 hPa wind field and divergence field at 16:00 LST (d)

    In Fig.1a1b, the vector is wind field, the blue contour line is the geopotential height (unit: dagpm); in Fig.1d, the vector is wind field, the shaded is divergence (unit: 10−4 s−1)

    图  2  ERA5再分析资料2020年7月16日08:00各层次环流场:500 hPa(a),700 hPa(b); 08:00卫星云图(c)及16:00 1000 hPa风场和散度场(d)

    图2a2b中矢量为风场, 蓝色等值线为位势高度线(单位: dagpm); 图2d中矢量为风场, 阴影为散度(单位: 10−4 s−1

    Fig.  2  ERA5 reanalysis data for circulation field at 08:00 LST 16 July 2020:500 hPa (a), 700 hPa (b); satellite cloud imagery (c) at 08:00 LST 16 July 2020 and ERA5 reanalysis data for 1000 hPa wind field and divergence field at 16:00 LST (d)

    In Fig.2a2b, the vector is wind field, the blue contour line is the geopotential height (unit: dagpm); in Fig.2d, the vector is wind field, the shaded is divergence (unit: 10−4 s−1)

    图  3  模拟的四重嵌套区域(a); D4区域的地形和部分气象观测站分布(b); 数值试验CNTL的土地利用类型分布(c); 数值试验URBAN的土地利用类型分布(d)

    Fig.  3  Coverage of model domains (a); terrain height and distribution of partialmeteorological stations in D4 (b); land use categories of CNTL (c); land use categories of URBAN (d)

    图  4  2020年3月22日08:00 至 23日08:00儋州、临高、澄迈气象站模拟和观测的 10 m 风矢量对比

    Fig.  4  Comparisons between simulated and observed 10 m wind vectors of Danzhou、Lingao and Chengmai weather station from 08:00 LST 22 March to 08:00 LST 23 March

    图  5  2020年7月16日08:00 至17日08:00儋州、临高、澄迈气象站模拟和观测的 10 m 风矢量对比

    Fig.  5  Comparisons between simulated and observed 10 m wind vectors of Danzhou, Lingao and Chengmai weather station from 08:00 LST 16 July to 08:00 LST 17 July

    图  6  2020年3月22日(上)、7月16日(下) 08:00海口站模拟和实况的垂直廓线对比:温度(单位:℃);风速(单位:m/s),风向(单位:(°))

    Fig.  6  Comparison between simulated and observed profile of Haikou weather stationat at 08:00 LST 22 March 2020 (upper)、16 July 2020 (lower) : temperature (unit: ℃); wind speed (unit: m/s); wind direction (unit: (°))

    图  7  2020年3月22日(上)、7月16日(下)16:00 CNTL试验与URBAN试验模拟的温度水平分布(单位:℃)

    Fig.  7  Simulated temperature level distribution by CNTL and URBAN at 16:00 LST 22 March 2020 (upper), 16:00 LST 16 July 2020 (lower) (unit:℃)

    图  8  2020 年3月22日14:00、16:00、18:00 CNTL试验(左)与URBAN试验(右)模拟的10 m风场和温度场

    矢量为风场, 阴影代表温度,黑色线为风场散度等于1.8 × 10−3 s−1的等值线

    Fig.  8  Simulated 10 m wind field and temperature field by CNTL (left), URBAN (right) at 14:00 LST, 16:00 LST, 18:00 LST 22 March 2020

    The vector is wind field, the shaded is temperature, and the black line represents the contour line of wind field divergence equal to 1.8 × 10−3 s−1

    图  9  2020 年7月16日14:00、16:00、18:00 CNTL试验(左)与URBAN试验(右)模拟的10 m风场和温度场

    矢量为风场, 阴影代表温度,黑色线为风场散度等于1.8 × 10−3 s−1的等值线

    Fig.  9  Simulated 10 m wind field and temperature field by CNTL (left), URBAN (right) at 14:00 LST, 16:00 LST, 18:00 LST 16 July 2020

    The vector is wind field, the shaded is temperature, and the black line represents the contour line of wind field divergence equal to 1.8 × 10−3 s−1

    图  10  2020年3月22日(上)、7月16日(下),从CNTL试验与URBAN试验模拟风场中确定的海风锋的大致位置,标记为相应时间

    Fig.  10  The approximate position of the sea wind front, determined from CNTL and URBAN simulated wind field, marked as the corresponding time at 16:00 LST 22 March 2020 (upper), 16:00 LST 16 July 2020 (lower)

    图  11  2020 年3月22日(左)、7月16日(右)14:00、16:00、18:00 URBAN试验-CNTL试验的温度和散度分布

    阴影代表温度,黑色线为风场散度差等于1.8 × 10−3 s−1的等值线

    Fig.  11  Simulated 10 m wind field and divergence field by CNTL (left),URBAN (right) at 14:00 LST,16:00 LST,18:00 LST 16 July 2020

    The shaded is temperature difference of wind field, and the black line represents the contour line of wind field divergence difference equal to 1.8 × 10−3 s−1

    图  12  2020年3月22日CNTL试验和URBAN试验海南岛100 m以下区域平均2 m温度(单位:℃)、相对湿度(%)、10 m风速(单位:m/s)(左)及其偏差(URBAN−CNTL)(右)随时间的演变

    Fig.  12  Time evolution of simulated 2 m temperature (unit: ℃), relative humidity (%), and 10 m wind speed (unit: m/s) (left)and their deviations (right)in areas below 100 m on Hainan Island in CNTL and URBAN tests on 22 March 2020

    图  13  2020年7月16日CNTL试验和URBAN试验海南岛100 m以下区域平均2 m温度(单位:℃)、相对湿度(%)、10 m风速(单位:m/s)(左)及其偏差(URBAN−CNTL)(右)随时间的演变

    Fig.  13  Time evolution of simulated 2 m temperature (unit: ℃), relative humidity (%), and 10 m wind speed (unit: m/s) (left) and their deviations(right) in areas below 100 m on Hainan Island in CNTL and URBAN tests on 16 July 2020

    图  14  2020年 3月22日16:00、18:00 CNTL试验(左)、URBAN试验(右)沿109.8°E的风场垂直剖面

    矢量为(v, w)风场,其中w扩大10倍,阴影为径向风v,红色线为经向风零线

    Fig.  14  Simulated vertical profile along the wind field at 109.8°E by CNTL (left), URBAN (right) at 16:00 LST, 18:00 LST 22 March 2020

    The vector is (v, w) wind field, where the w-component is multiplied by a factor of 10, the shaded is v wind speed,and the red contour line is the zero line of v wind speed

    图  15  2020年7月16日16:00、18:00 CNTL试验(左)、URBAN试验(右)沿109.5° E的风场垂直剖面

    矢量为(v, w)风场,其中w扩大10倍,阴影为径向风v,红色线为经向风速零线

    Fig.  15  Simulated vertical profile along the wind field at 109.5°E by CNTL(left), URBAN(right)at 16:00 LST, 18:00 LST 16 July 2020

    The vector is (v,w) wind field, where the w-component is multiplied by a factor of 10, the shaded is v wind speed,and the red contour line is the zero line of v wind speed

    图  16  2020年3月22日(左)、7月16日(右) CNTL试验与URBAN试验海南岛100 m以下区域平均感热通量、潜热通量及土壤热通量随时间的演变

    Fig.  16  Time evolution of simulated average sensible heat flux, latent heat flux and soil heat flux in areas below 100 m on Hainan Island in CNTL and URBAN on 22 March 2020 (left), 16 July 2020 (right)

    表  1  模式主要物理参数化方案的设置

    Tab.  1  Settings of the main physical parameterizations

    物理过程参数化选用的参数化方案
    短波辐射RRTMG
    长波辐射RRTMG
    微物理学Lin
    积云对流(仅D1、D2)Kain-Fritsch
    边界层YSU
    近地面层MM5 Revised
    城市冠层方案UCM
    陆面过程Noah
    下载: 导出CSV
  • [1] Miller S T K, Keim B D, Talbot R W, et al. Sea breeze: structure, forecasting, and impacts[J]. Reviews of Geophysics, 2003, 41(3): 1011.
    [2] Crosman E T, Horel J D. Sea and lake breezes: a review of numerical studies[J]. Boundary-Layer Meteorology, 2010, 137(1): 1−29. doi: 10.1007/s10546-010-9517-9
    [3] Simpson J E, Mansfield D A, Milford J R. Inland penetration of sea-breeze fronts[J]. Quarterly Journal of the Royal Meteorological Society, 1977, 103(435): 47−76.
    [4] Miao J F, Kroon L J M, de Arellano J V G, et al. Impacts of topography and land degradation on the sea breeze over eastern Spain[J]. Meteorology and Atmospheric Physics, 2003, 84(3/4): 157−170.
    [5] 徐绍杰, 苗峻峰. 海风锋的雷达观测分析研究进展[J]. 海洋预报, 2022, 39(5): 100−109. doi: 10.11737/j.issn.1003-0239.2022.05.011

    Xu Shaojie, Miao Junfeng. An overview of radar-based observational study of sea breeze front[J]. Marine Forecasts, 2022, 39(5): 100−109. doi: 10.11737/j.issn.1003-0239.2022.05.011
    [6] 段懿轩, 苗峻峰. 海风锋的遥感分析研究进展[J]. 海洋预报, 2022, 39(6): 102−109. doi: 10.11737/j.issn.1003-0239.2022.06.011

    Duan Yixuan, Miao Junfeng. An overview of remote sensing study of sea breeze front[J]. Marine Forecasts, 2022, 39(6): 102−109. doi: 10.11737/j.issn.1003-0239.2022.06.011
    [7] 东高红, 刘一玮, 孙蜜娜, 等. 城市热岛与海风锋叠加作用对一次局地强降水的影响[J]. 气象, 2013, 39(11): 1422−1430. doi: 10.7519/j.issn.1000-0526.2013.11.005

    Dong Gaohong, Liu Yiwei, Sun Mina, et al. Effect of urban heat island and sea breeze front superimposition on a local heavy rainfall[J]. Meteorological Monthly, 2013, 39(11): 1422−1430. doi: 10.7519/j.issn.1000-0526.2013.11.005
    [8] Hu Xiaoming, Xue Ming. Influence of synoptic sea-breeze fronts on the urban heat island intensity in Dallas–Fort Worth, Texas[J]. Monthly Weather Review, 2016, 144(4): 1487−1507. doi: 10.1175/MWR-D-15-0201.1
    [9] Zhou Xilin, Okaze T, Ren Chao, et al. Evaluation of urban heat islands using local climate zones and the influence of sea-land breeze[J]. Sustainable Cities and Society, 2020, 55: 102060. doi: 10.1016/j.scs.2020.102060
    [10] Hu Yan, Tan Jianguo, Grimmond S, et al. Observed and modeled urban heat island and sea-breeze circulation interactions: a Shanghai case study[J]. Journal of Applied Meteorology and Climatology, 2022, 61(3): 239−259. doi: 10.1175/JAMC-D-20-0246.1
    [11] 刘树华, 刘振鑫, 李炬, 等. 京津冀地区大气局地环流耦合效应的数值模拟[J]. 中国科学: 地球科学, 2009, 39(1): 88-98.

    Liu Shuhua, Liu Zhenxin, Li Ju, et al. Numerical simulation for the coupling effect of local atmospheric circulations over the area of Beijing, Tianjin and Hebei province[J]. Science in China Series D: Earth Sciences, 2009, 52(3): 382-392.
    [12] Miao Yucong, Liu Shuhua, ZhengYijia, et al. Numerical study of the effects of topography and urbanization on the local atmospheric circulations over the Beijing-Tianjin-Hebei, China[J]. Advances in Meteorology, 2015, 2015: 397070.
    [13] Miao Yucong, Hu Xiaoming, Liu Shuhua, et al. Seasonal variation of local atmospheric circulations and boundary layer structure in the Beijing-Tianjin-Hebei region and implications for air quality[J]. Journal of Advances in Modeling Earth Systems, 2015, 7(4): 1602−1626. doi: 10.1002/2015MS000522
    [14] Wissmeier U, Smith R K, Goler R. The formation of a multicell thunderstorm behind a sea-breeze front[J]. Quarterly Journal of the Royal Meteorological Society, 2010, 136(653): 2176−2188. doi: 10.1002/qj.691
    [15] 梁钊明, 高守亭, 王彦. 渤海湾地区一次碰撞型海风锋天气过程的数值模拟分析[J]. 气候与环境研究, 2013, 18(6): 733−745. doi: 10.3878/j.issn.1006-9585.2013.12027

    Liang Zhaoming, Gao Shouting, Wang Yan. Numerical simulation study of a collision-type sea breeze front case in the Bohai Bay region[J]. Climatic and Environmental Research, 2013, 18(6): 733−745. doi: 10.3878/j.issn.1006-9585.2013.12027
    [16] Zhu Lei, Chen Xingchao, BaiLanqiang. Relative roles of low-level wind speed and moisture in the diurnal cycle of rainfall over a tropical island under monsoonal flows[J]. Geophysical Research Letters, 2020, 47(8): e2020GL087467. doi: 10.1029/2020GL087467
    [17] Park J M, van den Heever S C, Igel A L, et al. Environmental controls on tropical sea breeze convection and resulting aerosol redistribution[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(6): e2019JD031699. doi: 10.1029/2019JD031699
    [18] Di Bernardino A, Iannarelli A M, Casadio S, et al. On the effect of sea breeze regime on aerosols and gases properties in the urban area of Rome, Italy[J]. Urban Climate, 2021, 37: 100842. doi: 10.1016/j.uclim.2021.100842
    [19] 王子安, 孟庆岩, 张琳琳, 等. 基于CA-Markov模型的海口市城市热岛模拟预测[J]. 中国科学院大学学报, 2022, 39(6): 742−753.

    Wang Zi’an, Meng Qingyan, Zhang Linlin, et al. Simulation and prediction of urban heat island in Haikou City based on CA-Markov model[J]. Journal of University of Chinese Academy of Sciences, 2022, 39(6): 742−753.
    [20] 周海珠, 朱能, 王清勤. 基于城市冠层改进模型的三亚城市热岛效应模拟[J]. 生态城市与绿色建筑2021(1): 18-23.

    Zhou Haizhu, Zhu Neng, Wang Qingqin. Modeling and simulation of the urban heat island effect in Sanya City based on improved urban canopy model[J]. Eco-City and Green Building2021(1): 18-23.
    [21] 王中正, 李太君, 方锦文. 两种单波段反演算法的海口市城市热岛研究[J]. 测绘与空间地理信息, 2018, 41(12): 108−111. doi: 10.3969/j.issn.1672-5867.2018.12.030

    Wang Zhongzheng, Li Taijun, Fang Jinwen. Research on two kinds of single-band inversional gorithm for Haikou City[J]. Geomatics and Spatial Information Technology, 2018, 41(12): 108−111. doi: 10.3969/j.issn.1672-5867.2018.12.030
    [22] 李玉杰, 马昊, 邓涛, 等. 基于“源–汇”理论的海口城市景观格局与热岛效应响应机制[J]. 西北林学院学报, 2021, 36(5): 223−232. doi: 10.3969/j.issn.1001-7461.2021.05.34

    Li Yujie, Ma Hao, Deng Tao, et al. Urban landscape pattern and response mechanism of Heat Island Effect based on“Source-Sink”theory of Haikou City[J]. Journal of Northwest Forestry University, 2021, 36(5): 223−232. doi: 10.3969/j.issn.1001-7461.2021.05.34
    [23] 高操, 张方敏, 陈希, 等. 海口城市化对热岛效应的影响[J]. 气象与减灾研究, 2019, 42(4): 277−284. doi: 10.12013/qxyjzyj2019-044

    Gao Cao, Zhang Fangmin, Chen Xi, et al. Impact of urbanization on urban heat island effect in Haikou City[J]. Meteorology and Disaster Reduction Research, 2019, 42(4): 277−284. doi: 10.12013/qxyjzyj2019-044
    [24] 张振州, 蔡旭晖, 宋宇, 等. 海南岛地区海陆风的统计分析和数值模拟研究[J]. 热带气象学报, 2014, 30(2): 270-280.

    Zhang Zhenzhou, Cai Xuhui, Song Yu, et al. Statistical characteristics and numerical simulation of sea land breezes in Hainan IslandJ]. Journal of Tropical Meteorology, 2014, 30(2): 270-280.
    [25] 王莹, 苗峻峰. 近地层参数化对海南岛海风降水模拟的影响[J]. 地球物理学报, 2019, 62(1): 32−48. doi: 10.6038/cjg2018K0551

    Wang Ying, Miao Junfeng. Impact of surface layer parameterizations on simulated sea breeze precipitation over the Hainan Island[J]. Chinese Journal of Geophysics, 2019, 62(1): 32−48. doi: 10.6038/cjg2018K0551
    [26] 王静, 苗峻峰, 冯文. 海南岛海风演变特征的观测分析[J]. 气象科学, 2016, 36(2): 244−255. doi: 10.3969/2014jms.0091

    Wang Jing, Miao Junfeng, Feng Wen. An observational analysis of sea breeze characteristics over the Hainan Island[J]. Journalof the Meteorological Sciences, 2016, 36(2): 244−255. doi: 10.3969/2014jms.0091
    [27] Liang Zhaoming, Wang Donghai, Liu Ying, et al. A numerical study of the convection triggering and propagation associated with sea breeze circulation over Hainan Island[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(16): 8567−8592. doi: 10.1002/2016JD025915
    [28] 王语卉, 苗峻峰, 蔡亲波. 海南岛海风三维结构的数值模拟[J]. 热带气象学报, 2016, 32(1): 109−124.

    Wang Yuhui, Miao Junfeng, Cai Qinbo. Numerical simulation of the 3-D structure of sea breezes over the Hainan Island[J]. Journal of Tropical Meteorology, 2016, 32(1): 109−124.
    [29] 杨秋彦, 苗峻峰, 王语卉. 海南岛地形对局地海风环流结构影响的数值模拟[J]. 海洋学报, 2017, 39(3): 24−43.

    Yang Qiuyan, Miao Junfeng, Wang Yuhui. A numerical study of impact of topography on sea breeze circulation over the Hainan Island[J]. HaiyangXuebao, 2017, 39(3): 24−43.
    [30] 王凌梓, 苗峻峰, 管玉平. 多云天气下海南岛地形对局地海风环流结构影响的数值模拟[J]. 大气科学学报, 2020, 43(2): 322−335.

    Wang Lingzi, Miao Junfeng, Guan Yuping. Numerical simulation of impact of topography of Hainan Island on structure of local sea breeze circulation under cloudy weather[J]. Transactions of Atmospheric Sciences, 2020, 43(2): 322−335.
    [31] 依斯拉木•吾拉音, 苗峻峰, 吴冰雪. 海南岛土地覆盖变化对海风锋结构演变影响的数值模拟[J]. 大气科学, 2024, 48(2): 803−821. doi: 10.3878/j.issn.1006-9895.2308.23028

    Yisilamu W, Miao Junfeng, Wu Bingxue. Numerical study of the impact of land cover change on structure and evolution of the sea breeze front over Hainan Island[J]. Chinese Journal of Atmospheric Sciences, 2024, 48(2): 803−821. doi: 10.3878/j.issn.1006-9895.2308.23028
    [32] 苗峻峰. 城市热岛和海风环流相互作用的数值模拟研究进展[J]. 大气科学学报, 2014, 37(4): 521−528.

    Miao Junfeng. An overview of numerical studies of interaction of urban heat island and sea breeze circulations[J]. Transactions of Atmospheric Sciences, 2014, 37(4): 521−528.
    [33] Yamamoto Y, Ishikawa H. Influence of urban spatial configuration and sea breeze on land surface temperature on summer clear-sky days[J]. Urban Climate, 2020, 31: 100578. doi: 10.1016/j.uclim.2019.100578
    [34] 张亦洲, 苗世光, 戴永久, 等. 北京夏季晴天边界层特征及城市下垫面对海风影响的数值模拟[J]. 地球物理学报, 2013, 56(8): 2558−2573. doi: 10.6038/cjg20130806

    Zhang Yizhou, Miao Shiguang, Dai Yongjiu, et al. Numerical simulation of characteristics of summer clear day boundary layer in Beijing and the impact of urban underlying surface on seabreeze[J]. Chinese Journal of geophysics, 2013, 56(8): 2558−2573. doi: 10.6038/cjg20130806
    [35] 梁钊明, 高守亭, 王东海, 等. 城市下垫面对渤海湾海风锋特征影响的一次数值试验[J]. 大气科学, 2013, 37(5): 1013−1024. doi: 10.3878/j.issn.1006-9895.2013.12153

    Liang Zhaoming, Gao Shouting, Wang Donghai, et al. A numerical study of the urban underlying surface effect on the characteristics of a sea breeze front in the Bohai Bay region[J]. Chinese Journal of Atmospheric Sciences, 2013, 37(5): 1013−1024. doi: 10.3878/j.issn.1006-9895.2013.12153
    [36] ShenLidu, Sun Jianning, Yuan Renmin. Idealized large-eddy simulation study of interaction between urban heat island and sea breeze circulations[J]. Atmospheric Research, 2018, 214: 338−347. doi: 10.1016/j.atmosres.2018.08.010
    [37] 黄利萍, 苗峻峰, 刘月琨, 等. 天津地区夏季海陆风对城市热岛日变化特征影响的观测分析[J]. 大气科学学报, 2013, 36(4): 417−425. doi: 10.3969/j.issn.1674-7097.2013.04.004

    Huang Liping, Miao Junfeng, Liu Yuekun, et al. Observational analysis of influence of sea-land breeze on diurnal characteristics of urban heat island in Tianjin during summer[J]. Transactions of Atmospheric Sciences, 2013, 36(4): 417−425. doi: 10.3969/j.issn.1674-7097.2013.04.004
    [38] 许启慧, 苗峻峰, 刘月琨, 等. 渤海湾西岸海陆风特征对城市热岛响应的观测分析[J]. 气象科学, 2013, 33(4): 408−417. doi: 10.3969/j.issn.1009-0827.2013.04.008

    Xu Qihui, Miao Junfeng, Liu Yuekun, et al. Response of sea and land breeze characteristics to urban heat island over the west coast of Bohai Bay[J]. Journal of the Meteorological Sciences, 2013, 33(4): 408−417. doi: 10.3969/j.issn.1009-0827.2013.04.008
    [39] 东高红, 尉英华, 解以扬, 等. 天津地区城市热岛环流与海风环流相互作用的研究[J]. 气象, 2015, 41(12): 1447−1455. doi: 10.7519/j.issn.1000-0526.2015.12.002

    Dong Gaohong, Wei Yinghua, XieYiyang, et al. Research on the interaction of Tianjin urban heat island circulation and sea breeze circulation[J]. Meteorological Monthly, 2015, 41(12): 1447−1455. doi: 10.7519/j.issn.1000-0526.2015.12.002
    [40] 东高红, 李英华, 刘一玮, 等. 天津城市热岛效应对海风(锋)环流影响的数值模拟试验[J]. 气象, 2018, 44(6): 825−836. doi: 10.7519/j.issn.1000-0526.2018.06.010

    Dong Gaohong, Li Yinghua, Liu Yiwei, et al. Numerical simulation test of Tianjin urban heat island effect on sea breeze (front) circulation[J]. Meteorological Monthly, 2018, 44(6): 825−836. doi: 10.7519/j.issn.1000-0526.2018.06.010
    [41] Bauer T J. Interaction of urban heat island effects and land–sea breezes during a New York City heat event[J]. Journal of Applied Meteorology and Climatology, 2020, 59(3): 477−495. doi: 10.1175/JAMC-D-19-0061.1
    [42] Wang Wei, Shu Jiong. Impacts of spatiotemporally uneven urbanization on sea breeze fronts in a mega-river delta[J]. Landscape and Urban Planning, 2022, 218: 104287. doi: 10.1016/j.landurbplan.2021.104287
    [43] 朱丽, 苗峻峰, 赵天良. 污染天气下成都城市热岛环流结构的数值模拟[J]. 地球物理学报, 2020, 63(1): 101−122. doi: 10.6038/cjg2020M0462

    Zhu Li, Miao Junfeng, Zhao Tianliang. Numerical simulation of urban breeze circulation in a heavy pollution event in Chengdu City[J]. Chinese Journal of Geophysics, 2020, 63(1): 101−122. doi: 10.6038/cjg2020M0462
    [44] Kusaka H, Kimura F. Coupling a single-layer urban canopy model with a simple atmospheric model: impact on urban heat island simulation for an idealized case[J]. Journal of the Meteorological Society of Japan. Ser. II, 2004, 82(1): 67−80. doi: 10.2151/jmsj.82.67
    [45] Physick W L. Numerical experiments on the inland penetration of the sea breeze[J]. Quarterly Journal of the Royal Meteorological Society, 1980, 106(450): 735−746. doi: 10.1002/qj.49710645007
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  133
  • HTML全文浏览量:  61
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-24
  • 修回日期:  2024-05-30
  • 网络出版日期:  2024-07-15
  • 刊出日期:  2024-06-01

目录

    /

    返回文章
    返回