Study on the influence of Typhoon “Muifa” on the macrobenthic community of tidal flat
-
摘要: 台风会对潮滩生态系统造成严重影响,特别是对大型底栖动物群落组成及分布影响显著。台风期间现场资料匮乏,导致人们对台风如何影响生态系统的认识仍十分有限。为此,本研究选取长江口崇明东滩盐沼-光滩断面于2022年9月台风“梅花”前、中、后进行水动力观测和大型底栖动物同步采样。研究发现:(1)台风“梅花”期间,盐沼中有效波高是正常天气下的2~4倍,浪流联合剪切应力是正常天气下的10倍;(2)台风“梅花”过后1周内,盐沼中底栖动物的物种数、丰度、生物量分别是台风前的1.9倍、3.8倍、3.0倍,优势种种类(谭氏泥蟹(Ilyoplax deschampsi)、拟沼螺(Assiminea sp.)、堇拟沼螺(Assiminea violacea)、河蚬(Corbicula fluminea))比台风过境前(拟沼螺、谭氏泥蟹、河蚬)增加了一种(堇拟沼螺),第一优势种由拟沼螺变为谭氏泥蟹;(3)台风“梅花”过后1周内,盐沼中大型底栖动物的物种数、丰度和生物量均增加,而盐沼前缘光滩上大型底栖动物的丰度降低,原因是盐沼前缘光滩上的底栖动物(谭氏泥蟹、拟沼螺、河蚬)在台风导致的强水动力胁迫下,迅速迁移至水动力相对弱的盐沼中;(4)台风“梅花”过后2周,盐沼中大型底栖动物的丰度恢复。本研究结果表明盐沼植被不仅具有消浪缓流、保滩护岸等生态服务功能,还可在台风期间为底栖动物提供避难所。Abstract: Typhoons can have serious impacts on tidal flat ecosystems, particularly on the composition and distribution of macrobenthic communities. However, there is a lack of field data during typhoons, and the understanding of how typhoons affect the ecosystem is still limited. Therefore, this study conducted hydrodynamic observations and synchronous sampling of macrobenthic organisms before, during, and after Typhoon “Muifa”in September 2022, along the salt marsh-mudflat transect in the Chongming Dongtan area of the Changjiang River estuary. The study found: (1) During Typhoon “Muifa”, the effective wave height in the salt marshes was 2−4 times that of normal weather, and the combined wave-current shear stress was 10 times higher. (2) Within a week after Typhoon “Muifa”, the species number, abundance, and biomass of macrobenthic organisms in the salt marshes were 1.9, 3.8, and 3.0 times higher than before the typhoon, respectively. The dominant species of the salt marsh (Ilyoplax deschampsi, Assiminea sp., Assiminea violacea, Corbicula fluminea) increased by one (Assiminea violacea) compared with that before the typhoon (Assiminea sp., Ilyoplax deschampsi, Corbicula fluminea), and the primary dominant species shifting from Assiminea sp. to Ilyoplax deschampsi. (3) Within a week after Typhoon “Muifa”, the indicators of species number, abundance, and biomass of macrobenthos in the salt marsh increased, while the abundance of macrobenthic organisms on the mudflats at the forefront of the salt marsh decreased. This is attributed to the macrobenthic organisms (Ilyoplax deschampsi, Assiminea sp., Corbicula fluminea) on the mudflats migrating rapidly to the relatively less hydrodynamically stressed salt marshes during the strong hydrodynamic stress caused by the typhoon. (4) Two weeks after Typhoon “Muifa”, the abundance of macrobenthos in salt marshes recovered. The results of this study indicate that salt marsh vegetation not only provides ecological services such as wave attenuation, flow reduction, and shoreline protection, but also serves as a refuge for macrobenthic organisms during typhoons.
-
Key words:
- typhoon /
- hydrodynamic force /
- microbenthic community /
- Chongming Dongtan
-
图 1 研究区位置和台风路径(a),崇明东滩示意图(红色矩形中)(b),盐沼−光滩大型底栖动物采样站点A、站点B和水动力观测点(c)
Fig. 1 Location of the study area and typhoon path (a), schematic diagram of Chongming Dongtan (within the red rectangle) (b), and the macrobenthic sampling stations A and B, as well as the hydrodynamic observation point in the salt marsh-mudflat (c)
图 3 2022年台风“梅花”前、中、后崇明东滩盐沼站点A水动力变化
a. 风速和风向;b. 水深和波高;c. 流致剪切应力$ {\tau }_{c} $和浪致剪切应力$ {\tau }_{w} $;d. 浪流联合剪切应力$ {\tau }_{cw} $;灰色部分表示台风期间
Fig. 3 Hydrodynamic variation diagram of Chongming Dongtan Salt Marsh Site A before, during and after Typhoon “Muifa” in 2022
a. Wind speed and direction; b. water depth and wave height; c. flow-induced shear stress and wave-induced shear stress; d. combined wave-current shear stress; the gray part indicating the typhoon period
图 4 2022年台风“梅花”前、后崇明东滩盐沼站点A大型底栖动物的物种数(A)、丰度(B)、生物量(C)
柱状图顶部的字母表示ANOVA检验结果,不同的字母表示两次采样结果差异显著(p < 0.05)
Fig. 4 Species number (A), abundance (B) and biomass (C) of macrobenthos at Chongming Dongtan Salt Marsh Site A before and after Typhoon “Muifa” in 2022
The letters at the top of the bar chart represent ANOVA test results, and different letters indicate significant differences between the two sampling results (p < 0.05)
表 1 水动力观测仪器的设置参数
Tab. 1 Setting parameters of hydrodynamic observation instruments
仪器 距底床
高度/cm频率/Hz 测量物理
参数间隔/min 每burst
采样数量ADV 25 64 流速 5 3 840 RBR-wave 10 16 水深、波高 5 1 024 表 2 2022年台风“梅花”前、中、后崇明东滩盐沼站点A各潮周期风速、最大水深、有效波高、流致剪切应力、浪致剪切应力、浪流联合剪切应力
Tab. 2 Wind speed, maximum water depth, effective wave height, flow-induced shear stress, wave-induced shear stress, and combined wave-current shear stress for different tidal cycles before, during, and after Typhoon Muifa in 2022 at Site A in the Chongming Dongtan salt marsh
潮 风速/(m∙s−1) 最大水深/m 有效波高/m 流致剪切应力/(10−2 N∙m−2) 浪致剪切应力/(10−2 N∙m−2) 浪流联合剪切应力/(10−2 N∙m−2) 变化范围 平均 变化范围 平均 变化范围 平均 变化范围 平均 变化范围 平均 变化范围 平均 台风前 T1 3.4~5.8 4.7 0.0~1.1 0.7 0.0~0.1 0.1 0~1 0 2~8 4 0~2 0 T2 3.9~5.7 4.6 0.0~0.4 0.3 0.0~0.1 0.1 0 0 2~8 4 0~1 0 T3 1.7~5.1 3.1 0.0~1.3 0.8 0.0~0.1 0.1 0~3 1 3~12 7 0~4 1 T4 3.2~4.5 3.7 0.0~0.7 0.4 0.0~0.1 0.1 0~1 0 2~13 6 0~2 1 T5 3.4~6.0 4.4 0.0~1.4 0.9 0.0~0.2 0.1 0~8 2 2~9 5 0~9 2 T6 3.8~4.9 4.4 0.0~1.0 0.6 0.0~0.2 0.1 0~1 0 2~8 4 0~1 1 T7 4.0~5.3 4.5 0.0~1.4 0.9 0.0~0.2 0.1 0~5 2 3~24 15 0~8 2 T8 4.0~5.9 4.6 0.0~1.1 0.7 0.0~0.2 0.1 0~2 1 2~26 17 0~3 1 台风期间 T9 2.6~12.3 5.5 0.0~1.3 0.9 0.0~0.4 0.2 0~4 1 5~38 19 0~6 3 T10 11.0~12.0 11.5 0.0~1.3 0.8 0.0~0.4 0.2 0~3 1 0~44 19 0~5 2 T11 2.9~12.4 8.6 0.0~1.4 0.9 0.0~0.4 0.3 0~3 1 4~73 37 0~6 3 T12 1.1~6.1 4.2 0.0~1.2 0.7 0.0~0.4 0.2 0~3 1 3~24 15 0~4 2 T13 8.6~29.6 21.2 0.0~1.8 1.1 0.0~0.8 0.4 2~24 12 1~12 8 0~25 13 台风后 T14 6.9~9.6 8.4 0.0~0.7 0.3 0.0~0.2 0.1 0~4 2 4~10 7 0~5 3 T15 3.3~6.1 4.8 0.0~0.4 0.2 0.0~0.1 0.1 0~3 1 — — 0~3 1 T16 1.0~3.1 2.0 0.0~0.6 0.4 0.0~0.1 0.1 0~1 0 1~15 8 0~1 0 T17 1.5~3.2 2.2 0.0~0.1 0.1 0.0 0.0 — — — — — — T18 5.4~6.8 6.0 0.0~0.6 0.3 0.0~0.2 0.1 0~1 1 1~10 7 0~2 1 T19 12~13.9 13.1 0.0~0.3 0.2 0.0~0.1 0.1 0~6 1 2~12 6 0~6 2 注:—表示数据缺失,加粗字体表示台风期间。 表 3 2022年台风“梅花”前、后崇明东滩光滩站点B大型底栖动物的丰度(ind./m2)、生物量(g/m2)
Tab. 3 Abundance (ind./m2) and biomass (g/m2) of macrobenthos at Chongming Dongtan mudflat Station B before and after Typhoon “Muifa” in 2022.
门类 物种 台风前 台风后 2022年9月10日 2022年9月18日 丰度 生物量 丰度 生物量 软体动物 河蚬 107 37.477 32 11.263 拟沼螺 11 0.007 / / 缢蛏 16 67.840 27 162.330 节肢动物 谭氏泥蟹 27 0.277 / / 安氏白虾 / / 16 0.673 日本旋卷蜾蠃蜚 11 0.060 13 0.047 环节动物 背蚓虫 43 0.133 11 0.007 小头虫 / / 11 0.007 足刺拟单指虫 / / 5 0.233 疣吻沙蚕 5 0.087 11 0.267 总数 220 105.881 126 174.827 注:/表示未采集到该物种。 表 4 2022年台风“梅花”前、后崇明东滩盐沼站点A大型底栖动物的丰度(单位:ind./m2)、生物量(单位:g/m2)、相对重要性指数IRI
Tab. 4 Abundance (unit: ind./m2), biomass (unit: g/m2) and relative importance index (IRI) of macrobenthos at Chongming Dongtan Salt Marsh Site A before and after Typhoon “Muifa” in 2022
门类 物种 台风前 台风后 2022年9月8日 2022年9月10日 2022年9月18日 2022年9月27日 丰度 生物量 IRI 丰度 生物量 IRI 丰度 生物量 IRI 丰度 生物量 IRI 软体动物 绯拟沼螺 64 0.181 1 067 5 0.005 58 80 0.027 222 155 0.245 1876 光滑狭口螺 27 0.123 489 27 0.186 376 75 0.187 235 21 0.021 252 河蚬 59 4.085 4 604 43 7.915 4 602 107 12.315 2 427 107 9.499 6 191 堇拟沼螺 85 0.656 1 810 11 0.005 114 960 7.680 3 938 149 0.811 2 112 拟沼螺 373 1.819 6 945 672 4.741 9 491 1 696 8.133 6 014 336 2.811 5 271 微小螺 / / / / / / 133 0.005 363 / / / 节肢动物 谭氏泥蟹 91 3.883 4 868 181 5.851 4 963 544 29.205 6 546 117 5.664 4 298 安氏白虾 / / / 5 0.096 106 / / / / / / 环节动物 多眼虫 11 0.069 214 11 0.064 145 / / / / / / 白毛钩虫 / / / 5 0.171 145 / / / / / / 背蚓虫 / / / / / / 16 0.011 45 / / / 多齿围沙蚕 / / / / / / 5 0.005 15 / / / 尖叶长手沙蚕 / / / / / / 5 0.005 15 / / / 软背鳞虫 / / / / / / 59 0.021 163 / / / 小头虫 / / / / / / 5 0.005 15 / / / 注:/表示未采集到该物种;IRI > 2 000时为优势种,IRI列字体加粗的物种为优势种。 -
[1] Mei Wei, Xie Shangping, Primeau F, et al. Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures[J]. Science Advances, 2015, 1(4): e1500014. doi: 10.1126/sciadv.1500014 [2] Chen Xiaolong, Zhou Tianjun, Wu Peili, et al. Emergent constraints on future projections of the western North Pacific Subtropical High[J]. Nature Communications, 2020, 11(1): 2802. doi: 10.1038/s41467-020-16631-9 [3] Wang Haili, Wang Chunzai. What caused the increase of tropical cyclones in the western North Pacific during the period of 2011–2020?[J]. Climate Dynamics, 2023, 60(1/2): 165−177. [4] Yin Jie, Yin Zhane, Xu Shiyuan. Composite risk assessment of typhoon-induced disaster for China’s coastal area[J]. Natural Hazards, 2013, 69(3): 1423−1434. doi: 10.1007/s11069-013-0755-2 [5] Hawkes D D. Erosion of tidal flats near Georgetown, British Guiana[J]. Nature, 1962, 196(4850): 128−130. doi: 10.1038/196128a0 [6] Xu Chao, Liu Weibo. Integrating a three-Level GIS framework and a graph model to Track, represent, and analyze the dynamic activities of tidal flats[J]. ISPRS International Journal of Geo-Information, 2021, 10(2): 61. doi: 10.3390/ijgi10020061 [7] Egres A G, Martins C C, de Oliveira V M, et al. Effects of an experimental in situ diesel oil spill on the benthic community of unvegetated tidal flats in a subtropical estuary (Paranaguá Bay, Brazil)[J]. Marine Pollution Bulletin, 2012, 64(12): 2681−2691. doi: 10.1016/j.marpolbul.2012.10.007 [8] Gao Shu, Du Yongfen, Xie Wenjing, et al. Environment-ecosystem dynamic processes of Spartina alterniflora salt-marshes along the eastern China coastlines[J]. Science China Earth Sciences, 2014, 57(11): 2567−2586. doi: 10.1007/s11430-014-4954-9 [9] Jung R, Adolph W, Ehlers M, et al. A multi-sensor approach for detecting the different land covers of tidal flats in the German Wadden Sea—A case study at Norderney[J]. Remote Sensing of Environment, 2015, 170: 188−202. doi: 10.1016/j.rse.2015.09.018 [10] Hallberg R O. Metal distribution along a profile of an inter-tidal area[J]. Estuarine and Coastal Marine Science, 1974, 2(2): 153−170. doi: 10.1016/0302-3524(74)90037-1 [11] Pilotto F, Harvey G L, Wharton G, et al. Simple large wood structures promote hydromorphological heterogeneity and benthic macroinvertebrate diversity in low-gradient rivers[J]. Aquatic Sciences, 2016, 78(4): 755−766. doi: 10.1007/s00027-016-0467-2 [12] Nehls G, Tiedemann R. What determines the densities of feeding birds on tidal flats? A case study on dunlin, Calidris alpina, in the Wadden Sea[J]. Netherlands Journal of Sea Research, 1993, 31(4): 375−384. doi: 10.1016/0077-7579(93)90054-V [13] Zhou Zhichao, Meng Han, Liu Yang, et al. Stratified bacterial and archaeal community in mangrove and intertidal wetland mudflats revealed by high throughput 16S rRNA gene sequencing[J]. Frontiers in Microbiology, 2017, 8: 2148. doi: 10.3389/fmicb.2017.02148 [14] Pichler H A, Spach H L, Gray C A, et al. Environmental influences on resident and transient fishes across shallow estuarine beaches and tidal flats in a Brazilian World Heritage area[J]. Estuarine, Coastal and Shelf Science, 2015, 164: 482−492. doi: 10.1016/j.ecss.2015.07.041 [15] Beukema J J. Biomass and species richness of the macro-benthic animals living on the tidal flats of the Dutch Wadden Sea[J]. Netherlands Journal of Sea Research, 1976, 10(2): 236−261. doi: 10.1016/0077-7579(76)90017-X [16] Li Haifu, Li Lifeng, Su Fangli, et al. Ecological stability evaluation of tidal flat in coastal estuary: a case study of Liaohe estuary wetland, China[J]. Ecological Indicators, 2021, 130: 108032. doi: 10.1016/j.ecolind.2021.108032 [17] Zhang Rong, Chen Yongping, Chen Peixiong, et al. Impacts of tidal flat reclamation on suspended sediment dynamics in the tidal-dominated Wenzhou Coast, China[J]. Frontiers in Marine Science, 2023, 10: 1097177. doi: 10.3389/fmars.2023.1097177 [18] Song Weiwei, Li Yi. Tidal flat microbial communities between the Huaihe estuary and Yangtze River estuary[J]. Environmental Research, 2023, 238: 117141. doi: 10.1016/j.envres.2023.117141 [19] Covich A P, Palmer M A, Crowl T A. The role of benthic invertebrate species in freshwater ecosystems: zoobenthic species influence energy flows and nutrient cycling[J]. BioScience, 1999, 49(2): 119−127. doi: 10.2307/1313537 [20] Devine J A, Vanni M J. Spatial and seasonal variation in nutrient excretion by benthic invertebrates in a eutrophic reservoir[J]. Freshwater Biology, 2002, 47(6): 1107−1121. doi: 10.1046/j.1365-2427.2002.00843.x [21] Ostendorp W, Hofmann H, Teufel L, et al. Effects of a retaining wall and an artificial embankment on nearshore littoral habitats and biota in a large Alpine lake[J]. Hydrobiologia, 2020, 847(2): 365−389. doi: 10.1007/s10750-019-04099-8 [22] Cozzoli F, Gjoni V, Del Pasqua M, et al. A process based model of cohesive sediment resuspension under bioturbators’ influence[J]. Science of the Total Environment, 2019, 670: 18−30. doi: 10.1016/j.scitotenv.2019.03.085 [23] Patrick C J, Yeager L, Armitage A R, et al. A system level analysis of coastal ecosystem responses to hurricane impacts[J]. Estuaries and Coasts, 2020, 43(5): 943−959. doi: 10.1007/s12237-019-00690-3 [24] Fan Daidu, Guo Yanxia, Wang Ping, et al. Cross-shore variations in morphodynamic processes of an open-coast mudflat in the Changjiang Delta, China: with an emphasis on storm impacts[J]. Continental Shelf Research, 2006, 26(4): 517−538. doi: 10.1016/j.csr.2005.12.011 [25] Corte G N, Schlacher T A, Checon H H, et al. Storm effects on intertidal invertebrates: increased beta diversity of few individuals and species[J]. PeerJ, 2017, 5: e3360. doi: 10.7717/peerj.3360 [26] Shi Benwei, Pratolongo P D, Du Yongfen, et al. Influence of macrobenthos (Meretrix meretrix Linnaeus) on erosion‐accretion processes in intertidal flats: a case study from a cultivation zone[J]. Journal of Geophysical Research: Biogeosciences, 2020, 125(1): e2019JG005345. doi: 10.1029/2019JG005345 [27] Escapa M, Minkoff D R, Perillo G M E, et al. Direct and indirect effects of burrowing crab Chasmagnathus granulatus activities on erosion of southwest Atlantic Sarcocornia‐dominated marshes[J]. Limnology and Oceanography, 2007, 52(6): 2340−2349. doi: 10.4319/lo.2007.52.6.2340 [28] Farron S J, Hughes Z J, FitzGerald D M, et al. The impacts of bioturbation by common marsh crabs on sediment erodibility: a laboratory flume investigation[J]. Estuarine, Coastal and Shelf Science, 2020, 238: 106710. doi: 10.1016/j.ecss.2020.106710 [29] 陈雪, 贺强, 辛沛, 等. 河口海岸潮滩蟹类生物扰动行为过程研究进展[J]. 海洋科学, 2021, 45(10): 113−122.Chen Xue, He Qiang, Xin Pei, et al. Research progress on the biological disturbed behavior process of crabs in the tidal flats of estuaries and coasts[J]. Marine Sciences, 2021, 45(10): 113−122. [30] Mistri M, Pitacco V, Granata T, et al. When the levee breaks: effects of flood on offshore water contamination and benthic community in the Mediterranean (Ionian Sea)[J]. Marine Pollution Bulletin, 2019, 140: 588−596. doi: 10.1016/j.marpolbul.2019.02.005 [31] Kon K, Goto A, Tanita I, et al. Multiple effects of a typhoon strike and wastewater effluent on benthic macrofaunal communities in a mangrove estuary[J]. Hydrobiologia, 2022, 849(11): 2569−2579. doi: 10.1007/s10750-022-04877-x [32] 杨明生. 武汉市南湖大型底栖动物群落结构与生态功能的研究[D]. 武汉: 华中农业大学, 2009.Yang Mingsheng. Studies on the community structure and ecological function of macrozoobenthos in Lake Nanhu, Wuhan City, China[D]. Wuhan: Huazhong Agricultural University, 2009. [33] 林良羽. 崇明东滩大型底栖动物功能群与沉积物理化因子关系研究[D]. 上海: 华东师范大学, 2015.Lin Liangyu. Study on the relationships between the benthic macroinvertebrate functional groups and sediment physicochemical factors in Chongming Dongtan[D]. Shanghai: East China Normal University, 2015. [34] Walsh W J. Stability of a coral reef fish community following a catastrophic storm[J]. Coral Reefs, 1983, 2(1): 49−63. doi: 10.1007/BF00304732 [35] van Rijn L C. Principles of sediment transport in rivers, estuaries and coastal seas[R]. Amsterdam, The Netherlands: Aqua Publications, 1993. [36] Hinchey E K, Schaffner L C, Hoar C C, et al. Responses of estuarine benthic invertebrates to sediment burial: the importance of mobility and adaptation[J]. Hydrobiologia, 2006, 556(1): 85−98. doi: 10.1007/s10750-005-1029-0 [37] Shi Benwei, Yang Shilun, Temmerman S, et al. Effect of typhoon‐induced intertidal‐flat erosion on dominant macrobenthic species (Meretrix meretrix)[J]. Limnology and Oceanography, 2021, 66(12): 4197−4209. doi: 10.1002/lno.11953 [38] Wiesebron L, Teeuw L, van Dalen J, et al. Contrasting strategies to cope with storm‐induced erosion events: a flume study comparing a native vs. introduced bivalve[J]. Limnology and Oceanography, 2022, 67(11): 2572−2585. doi: 10.1002/lno.12223 [39] Yang Shilun, Friedrichs C T, Shi Zhong, et al. Morphological response of tidal marshes, flats and channels of the outer Yangtze River mouth to a major storm[J]. Estuaries, 2003, 26(6): 1416−1425. doi: 10.1007/BF02803650 [40] 王爱军, 叶翔, 李云海. 台风期间港湾海岸湿地侵蚀、淤积的环境动力学机制初探——以福建罗源湾为例[J]. 沉积学报, 2013, 31(2): 315−324.Wang Aijun, Ye Xiang, Li Yunhai. Environmental dynamic mechanisms for sediment erosion and accretion over embayment coastal wetland during typhoon event: a case study from Luoyuan Bay, Fujian China[J]. Acta Sedimentologica Sinica, 2013, 31(2): 315−324. [41] 田家怡, 谢文军, 孙景宽. 黄河三角洲贝壳堤岛脆弱生态系统破坏现状及保护对策[J]. 环境科学与管理, 2009, 34(8): 138−143. doi: 10.3969/j.issn.1673-1212.2009.08.040Tian Jiayi, Xie Wenjun, Sun Jingkuan. Current status of vulnerable ecosystem of shell islands and protection measures in Yellow River Delta[J]. Environmental Science and Management, 2009, 34(8): 138−143. doi: 10.3969/j.issn.1673-1212.2009.08.040 [42] Price B A, Harvey E S, Mangubhai S, et al. Responses of benthic habitat and fish to severe tropical cyclone Winston in Fiji[J]. Coral Reefs, 2021, 40(3): 807−819. doi: 10.1007/s00338-021-02086-x [43] Chessman B C. Prediction of riverine fish assemblages through the concept of environmental filters[J]. Marine and Freshwater Research, 2006, 57(6): 601−609. doi: 10.1071/MF06091 [44] Voelz N J, McArthur J V. An exploration of factors influencing lotic insect species richness[J]. Biodiversity & Conservation, 2000, 9(11): 1543−1570. [45] Lu L, Goh B P L, Chou L M. Effects of coastal reclamation on riverine macrobenthic infauna (Sungei Punggol) in Singapore[J]. Journal of Aquatic Ecosystem Stress and Recovery, 2002, 9(2): 127−135. doi: 10.1023/A:1014483804331 [46] Suo Aning, Cao Ke, Zhao Jianhua, et al. Study on impacts of sea reclamation on fish community in adjacent waters: a case in Caofeidian, North China[J]. Journal of Coastal Research, 2015, 73(S1): 183−187. [47] 袁兴中, 陆健健. 围垦对长江口南岸底栖动物群落结构及多样性的影响[J]. 生态学报, 2001, 21(10): 1642−1647. doi: 10.3321/j.issn:1000-0933.2001.10.012Yuan Xingzhong, Lu Jianjian. Influence of diking on the benthic macro-invertebrate community structure and diversity in the south bank of the Changjiang Estuary[J]. Acta Ecologica Sinica, 2001, 21(10): 1642−1647. doi: 10.3321/j.issn:1000-0933.2001.10.012 [48] 杨世伦, 姚炎明, 贺松林. 长江口冲积岛岸滩剖面形态和冲淤规律[J]. 海洋与湖沼, 1999, 30(6): 764−769. doi: 10.3321/j.issn:0029-814X.1999.06.028Yang Shilun, Yao Yanming, He Songlin. Coastal profile shape and erosion-accretion changes of the sediment islands in the Changjiang River Estuary[J]. Oceanologia et Limnologia Sinica, 1999, 30(6): 764−769. doi: 10.3321/j.issn:0029-814X.1999.06.028 [49] 张衡, 何文珊, 童春富, 等. 长江口低盐淡水区潮间带鱼类群落结构季节及半月相变化[J]. 应用生态学报, 2008, 19(5): 1110−1116.Zhang Heng, He Wenshan, Tong Chunfu, et al. Seasonal and semi-lunar changes in fish community structure in low salinity intertidal area of Yangtze estuary[J]. Chinese Journal of Applied Ecology, 2008, 19(5): 1110−1116. [50] Yang Shilun, Li H, Ysebaert T, et al. Spatial and temporal variations in sediment grain size in tidal wetlands, Yangtze Delta: on the role of physical and biotic controls[J]. Estuarine, Coastal and Shelf Science, 2008, 77(4): 657−671. doi: 10.1016/j.ecss.2007.10.024 [51] 王琰, 童春富, 汤琳, 等. 崇明东滩盐沼湿地大型底栖动物功能群分布特征及其影响因子[J]. 生态学杂志, 2020, 39(3): 880−892.Wang Yan, Tong Chunfu, Tang Lin, et al. Distribution characteristics and influencing factors of the benthic macroinvertebrate functional groups in the salt marshes of Chongming Dongtan[J]. Chinese Journal of Ecology, 2020, 39(3): 880−892. [52] Poindexter C M, Rusello P J, Variano E A. Acoustic Doppler velocimeter-induced acoustic streaming and its implications for measurement[J]. Experiments in Fluids, 2011, 50(5): 1429−1442. doi: 10.1007/s00348-010-1001-2 [53] Soulsby R L, Clarke S. Bed shear-stresses under combined waves and currents on smooth and rough beds[R]. Oxford, UK: HR Wallingford, 2005. [54] Salehi M, Strom K. Measurement of critical shear stress for mud mixtures in the San Jacinto estuary under different wave and current combinations[J]. Continental Shelf Research, 2012, 47: 78−92. doi: 10.1016/j.csr.2012.07.004 [55] Pinkas L, Oliphant M S, Iverson I L K. Fish bulletin 152. Food habits of albacore, Bluefin tuna, and bonito in California waters[J]. UC San Diego: Library-Scripps Collection, 1970. [56] Harley M D, Turner I L, Kinsela M A, et al. Extreme coastal erosion enhanced by anomalous extratropical storm wave direction[J]. Scientific Reports, 2017, 7(1): 6033. doi: 10.1038/s41598-017-05792-1 [57] Yin Chengtuan, Zhang Weisheng, Xiong Mengjie, et al. Storm surge responses to the representative tracks and storm timing in the Yangtze Estuary, China[J]. Ocean Engineering, 2021, 233: 109020. doi: 10.1016/j.oceaneng.2021.109020 [58] Liu Zhiquan, Fan Bin, Huang Youhui, et al. Assessing the ecological health of the Chongming Dongtan Nature Reserve, China, using different benthic biotic indices[J]. Marine Pollution Bulletin, 2019, 146: 76−84. doi: 10.1016/j.marpolbul.2019.06.006 [59] Boulenger A. Effects of a newly created mussel bed and hydrodynamic conditions on the biodiversity and functioning of macrobenthic communities[R]. Ghent: Ghent University, 2021. [60] 袁兴中, 陆健健, 刘红. 河口盐沼植物对大型底栖动物群落的影响[J]. 生态学报, 2002, 22(3): 326−333. doi: 10.3321/j.issn:1000-0933.2002.03.006Yuan Xingzhong, Lu Jianjian, Liu Hong. Influence of characteristics of scirpus mariqueter community on the benthic macro-invertebrate in a salt marsh of the Changjiang estuary[J]. Acta Ecologica Sinica, 2002, 22(3): 326−333. doi: 10.3321/j.issn:1000-0933.2002.03.006 [61] Wildsmith M D, Potter I C, Valesini F J, et al. Do the assemblages of benthic macroinvertebrates in nearshore waters of Western Australia vary among habitat types, zones and seasons?[J]. Journal of the Marine Biological Association of the United Kingdom, 2005, 85(2): 217−232. doi: 10.1017/S0025315405011100h [62] Zhang Longhui, Chen Dezhi, Gao Shu, et al. Distribution of benthic macrofaunal communities in intertidal flat under hydrodynamic influence: a case study of Jiangsu coast, East China[J]. Journal of Oceanology and Limnology, 2023, 41(3): 1024−1038. doi: 10.1007/s00343-022-1061-1 [63] 张衡, 张瑛瑛, 刁山洲, 等. 长江口盐沼湿地不同亚生境的大型底栖动物群落组成和多样性差异[J]. 生态学杂志, 2019, 38(10): 3102−3109.Zhang Heng, Zhang Yingying, Diao Shanzhou, et al. Difference of macrobenthos community composition and diversity in different sub-habitats in salt marsh wetland of the Yangtze River Estuary[J]. Chinese Journal of Ecology, 2019, 38(10): 3102−3109. [64] 廖一波, 曾江宁, 陆延, 等. 台风扰动后大渔湾大型底栖动物的生态特征[J]. 海洋学研究, 2009, 27(1): 50−55. doi: 10.3969/j.issn.1001-909X.2009.01.008Liao Yibo, Zeng Jiangning, Lu Yan, et al. Ecological characteristics of the macrobenthos in the Dayuwan Bay after the typhoon[J]. Journal of Marine Sciences, 2009, 27(1): 50−55. doi: 10.3969/j.issn.1001-909X.2009.01.008 [65] 杨泽华, 童春富, 陆健健. 长江口湿地三个演替阶段大型底栖动物群落特征[J]. 动物学研究, 2006, 27(4): 411−418. doi: 10.3321/j.issn:0254-5853.2006.04.012Yang Zehua, Tong Chunfu, Lu Jianjian. Characteristics of macrobenthic fauna communities in three successional stages of the new emergent salt marsh in an estuary of the Yangtze River[J]. Zoological Research, 2006, 27(4): 411−418. doi: 10.3321/j.issn:0254-5853.2006.04.012 [66] Pagès J F, Gera A, Romero J, et al. The Mediterranean benthic herbivores show diverse responses to extreme storm disturbances[J]. PLoS One, 2013, 8(5): e62719. doi: 10.1371/journal.pone.0062719 [67] Harris L, Nel R, Smale M, et al. Swashed away? Storm impacts on sandy beach macrofaunal communities[J]. Estuarine, Coastal and Shelf Science, 2011, 94(3): 210−221. doi: 10.1016/j.ecss.2011.06.013 [68] Gallucci F, Netto S A. Effects of the passage of cold fronts over acoastal site: an ecosystem approach[J]. Marine ecology progress series, 2004, 281: 79−92. doi: 10.3354/meps281079 [69] 张荷悦, 周怡, 孙涛, 等. 潮滩生物-物理互馈机制与系统稳态效应研究进展[J]. 科学通报, 2023, 68(5): 457−468. doi: 10.1360/TB-2022-0475Zhang Heyi, Zhou Yi, Sun Tao, et al. Advances in biophysical feedbacks and the resulting stable states in tidal flat systems[J]. Chinese Science Bulletin, 2023, 68(5): 457−468. doi: 10.1360/TB-2022-0475