Meiofaunal community and eco-environment quality evaluation in mangroves off Chaoshan coastal zone
-
摘要: 红树林是海岸带的重要生态屏障,也是气候变化和人类活动的敏感区;底栖动物是对环境变化最直接的响应群体。基于2021年4月在潮汕海岸带红树林分布区7个站位的现场观测和样品采集,对沉积物环境、小型底栖动物的群落特征、空间分布及生态环境质量进行了分析。研究区共发现15个小型底栖动物类群,自由生活海洋线虫占丰度上的绝对优势(90.32%);多毛类在生物量上居首(58.44%)。小型底栖动物平均丰度较其他红树林略高,其丰度分布和海洋线虫丰度,叶绿素a、脱镁叶绿酸、有机碳和重金属(Cd、Zn、Cu、Cr和Hg)含量具有相似的空间格局:中部区域莲阳河北岸最高,向南向北均降低。不同斑块间的动物群落相似性较高(70%),解释其群落结构差异分布的最佳环境因子是重金属Pb。海洋线虫与桡足类的丰度比(N/C)、潜在生态风险指数和沉积物质量分级结果均表明研究区环境质量整体较差。Abstract: Mangroves are a crucial ecological barrier for coastal zones, and sensitive areas to climate change and human activities, where benthic fauna responds directly to the sedimentary environment because of their intimate contact and relatively fixed settlement habitats. In-situ observations and sample collections were carried out at 7 stations in the mangrove area off the Chaoshan coastal zone, in April 2021, for further analysis of the sedimentary environment, meiofaunal communities, and eco-environment quality evaluation. A total of 15 meiofauna groups were identified. Free-living marine nematodes were the most dominant group, accounting for 90.32% of the total abundance of meiofauna; while polychaetes were the first in biomass (58.44%). The average abundance of meiofauna was slightly higher than that of the other mangrove forests. The spatial pattern of the meiofaunal abundance exhibited a similar distribution trend to that of the abundance of nematodes and the content of chlorophyll a (Chl a), phaeophorbide, organic carbon, and heavy metals (Cd, Zn, Cu, Cr, and Hg): all the parameters showed the highest values in the northern of the Lianyang River, and decreased towards the south and north. Meiofaunal communities in different patches shared a high similarity of 70%, and the best explanation factor for the differences in the meiofauna community was the content of heavy metal Pb. The abundance ratio of marine nematodes to copepods (N/C), the possible ecological risk index, and the sediment quality grading all indicated a poor environmental state in the area investigated.
-
Key words:
- mangrove /
- meiofauna /
- heavy metals pollution /
- ecological evaluation /
- Chaoshan coastal zone
-
图 6 小型底栖动物类群丰度、生物量等与环境因子相关性分析结果
Salt:盐度;DO:溶解氧含量;Md:中值粒径;Grave:砾含量;Sand:砂含量;Silt:粉砂含量;Clay:黏土含量;Chl a:叶绿素a含量;Pha:脱镁叶绿酸含量;TOC:总有机碳含量;NA. 线虫丰度(Nematoda abundance);CA. 桡足类丰度(Copepod abundance);PA. 多毛类丰度(Polychaeta abundance);MA. 小型底栖动物总丰度(meiofaunal abundance);MB.小型底栖动物总生物量(meiofaunal biomass)
Fig. 6 Results of correlation analysis between abundance and biomass of meiofauna and environmental factors
Salt: salinity; DO: Dissolved oxygen content; Md: nominal diameter; Grave: Gravel content; Sand: Sand content; Silt: Silt content; Clay: Clay content; Chl a: chlorophyll a content ; Pha: pheophorbide Content; TOC: Total organic carbon content; NA: Nematoda abundance; CA: Copepod abundance; PA: Polychaeta abundance; MA: meiofaunal abundance: MB: meiofaunal biomass
图 4 小型底栖动物丰度、生物量及垂直分布
a. 小型底栖动物丰度和生物量的分布,丰度单位为ind./(10 cm2),生物量单位为µg/(10 cm2);b. 小型底栖动物各类群的垂直分布(%)
Fig. 4 Abundance, biomass, and vertical distribution of meiofaunal abundance
a. Abundance [ind./(10 cm2)] and biomass [µg/(10 cm2)] of meiofauna; b. vertical distribution of meiofauna (Percentage from abundance data)
图 8 各指标评价沉积物质量结果
a. N/C以50以上为污染的评价结果;b. N/C > 10为污染的评价结果;c. 根据标准的有机碳评价结果;d. 根据标准的石油类评价结果;e. 所测8个指标 (重金属和石油类) 的海洋沉积物质量分级结果;f. 潜在生态风险指数(RI)评价结果
Fig. 8 Evaluation of sediment results by various indicators
a. Nematode copepod ratio (N/C greater than 50 indicates organic pollution); b. nematode copepod ratio (N/C greater than 10 indicates organic pollution); c. organic carbon evaluation results; d. petroleum evaluation results; e. the classification results of marine sediment quality; f. potential Ecological Risk Index (RI) evaluation results
表 1 重金属地球化学背景值(
$ {{C}}_{{n}}^{{i}} $ )和毒性响应系数($ {{T}}_{{r}}^{{i}} $ )Tab. 1 Geochemical background values (
$ {{C}}_{{n}}^{{i}} $ ) and toxicity response coefficients ($ {{T}}_{{r}}^{{i}} $ ) of heavy metalsCd Pb Zn Cu Cr Hg As ${ {{C}}_{{n}}^{{i}}} $/(mg·kg−1) 0.07 19.00 23.00 15.00 60.00 0.03 7.30 $ {{{T}}_{{r}}^{{i}}} $ 30.00 5.00 1.00 5.00 2.00 40.00 10.00 表 2 潜在生态风险指数与生态风险关系
Tab. 2 The potential Ecological Risk Index and Ecological Risk Relationship
轻微 中等 较强 强烈 极强 ${ {{C}}_{{d}} }$ $ {{{C}}_{{d}} }$ < 1 1 < $ {{{C}}_{{d}}} $ < 8 8 < $ {{{C}}_{{d}}} $ < 16 $ {{{C}}_{{d}}} $ > 16 $ { {{E}}_{{r}}^{{i}} }$ $ {{{E}}_{{r}}^{{i}}} $ < 40 40 ≤ $ {{{E}}_{{r}}^{{i}}} $ < 80 80 ≤ $ { {{E}}_{{r}}^{{i}}} $ < 160 160 ≤ $ { {{E}}_{{r}}^{{i}}} $ < 320 $ {{{E}}_{{r}}^{{i}}} $ ≥ 320 $ {{{\mathrm{RI}}}} $ RI < 150 150 ≤ RI < 300 300 ≤ RI < 600 RI ≥ 600 表 3 调查站位环境因子数据
Tab. 3 The environmental factors at the sampling sites
环境因子 义丰溪 黄厝草溪 莲阳河莲阳河口 外砂河 YFX HCC1 HCC2 LYH1 LYH2 LYH3 WSH 盐度 12.39 ± 1.90 10.16 ± 1.73 10.99 ± 2.32 25.89 ± 1.14 23.47 ± 1.74 26.49 16.91 pH 8.00 ± 0.08 7.72 ± 0.14 7.34 ± 0.21 7.19 ± 0.20 7.43 ± 0.13 8.17 7.83 溶解氧含量/(mg·L−1) 5.06 ± 0.70 3.79 ± 1.30 1.04 ± 0.22 2.05 ± 1.22 0.81 ± 0.38 5.61 3.71 中值粒径 7.02 ± 0.11 6.12 ± 0.09 6.46 ± 0.11 6.56 ± 0.23 6.70 ± 0.31 1.99 4.40 砾含量/% 0.28 2.31 0.46 0.33 0.15 0.82 0.13 砂含量/%S 11.97 22.51 13.84 12.47 9.08 73.39 42.89 粉砂含量/%T 63.66 65.86 69.85 74.07 75.40 19.69 47.34 粘土含量/% 24.09 9.32 15.86 13.13 15.37 6.10 9.64 沉积物类型 YT T T T T S ST 叶绿素a含量/(mg·kg−1) 4.25 ± 2.82 33.96 ± 10.08 31.67 ± 26.35 7.92 ± 3.56 3.81 ± 3.21 5.67 11.21 脱镁叶绿酸含量/(mg·kg−1) 11.26 ± 2.96 28.35 ± 6.63 30 ± 15.73 13.29 ± 3.65 10.93 ± 4.75 5.24 8.49 石油类含量/(mg·kg−1) 320 ± 96.40 2792 ±2108 3237 ±1506 3533 ±2493.36 1038 ± 361.35513 273 总有机碳含量/% 1.94 ± 0.48 3.83 ± 0.55 7.17 ± 1.94 3.85 ± 1.68 5.10 ± 1.23 2.11 1.71 重金属含量/(mg·kg−1) Cd 0.19 ± 0.01 0.79 ± 0.43 1.11 ± 0.43 0.15 ± 0.02 0.30 ± 0.06 0.14 0.13 Pb 90.10 ± 4.76 69.00 ± 1.21 66.97 ± 5.10 70.37 ± 8.26 68.83 ± 6.67 78.70 76.20 Zn 172.67 ± 3.77 264.67 ± 81.71 302.00 ± 55.31 167.33 ± 25.70 183.33 ± 5.73 127.00 108.00 Cu 47.63 ± 1.00 63.53 ± 13.42 82.77 ± 2.51 52.03 ± 2.23 49.03 ± 2.74 33.90 25.50 Cr 72.90 ± 1.87 91.67 ± 13.89 125.33 ± 6.34 71.37 ± 4.60 68.53 ± 10.77 62.30 50.40 Hg 0.10 ± 0.02 0.13 ± 0.01 0.15 ± 0.03 0.11 ± 0 0.11 ± 0 0.10 0.07 As 17.13 ± 3.92 13.23 ± 0.39 12.60 ± 1.34 14.17 ± 1.92 14.27 ± 2.49 8.78 11.20 表 4 重金属地累积指数(Igeo)分布
Tab. 4 Spatial distributions of geoaccumulation indexes (Igeo) of heavy metals
重金属 YFX HCC LYH WSH 平均值 污染情况 1 2 1 2 3 Cd −6.80 −4.77 −4.28 −7.15 −6.18 −7.26 −7.35 −6.26 无污染 Pb 10.16 9.77 9.73 9.80 9.77 9.96 9.91 9.87 严重 Zn 11.37 11.99 12.18 11.33 11.46 10.93 10.69 11.42 严重 Cu 8.90 9.31 9.69 9.02 8.94 8.41 7.99 8.89 严重 Cr 11.51 11.84 12.29 11.48 11.42 11.28 10.98 11.54 严重 Hg −8.92 −8.57 −8.34 −8.81 −8.79 −9.04 −9.44 −8.84 无污染 As 6.38 6.01 5.94 6.11 6.12 5.42 5.77 5.96 严重 -
[1] Su Jie, Friess D A, Gasparatos A. A meta-analysis of the ecological and economic outcomes of mangrove restoration[J]. Nature Communications, 2021, 12(1): 5050. doi: 10.1038/s41467-021-25349-1 [2] 朱耀军, 郭菊兰, 武高洁. 红树林湿地有机碳研究进展[J]. 生态学杂志, 2012, 31(10): 2681−2687.Zhu Yaojun, Guo Julan, Wu Gaojie. Organic carbon in mangrove wetlands: A review[J]. Chinese Journal of Ecology, 2012, 31(10): 2681−2687. [3] 沙聪, 王木兰, 姜玥璐, 等. 红树林土壤pH和其他土壤理化性质之间的相互作用[J]. 科学通报, 2018, 63(26): 2745−2756. doi: 10.1360/N972018-00369Sha Cong, Wang Mulan, Jiang Yuelu, et al. Interactions between pH and other physicochemical properties of mangrove sediments: A review[J]. Chinese Science Bulletin, 2018, 63(26): 2745−2756. doi: 10.1360/N972018-00369 [4] Leal Maricé, Spalding Mark. The state of the world’s mangroves 2022[R/OL]. Global Alliance Mangrove, 2023[2023-8-24].https://library.sprep.org/content/state-worlds-mangroves-2022. [5] Bryan-Brown D N, Connolly R M, Richards D R, et al. Global trends in mangrove forest fragmentation[J]. Scientific Reports, 2020, 10(1): 7117. doi: 10.1038/s41598-020-63880-1 [6] Schratzberger M, Ingels J. Meiofauna matters: The roles of meiofauna in benthic ecosystems[J]. Journal of Experimental Marine Biology and Ecology, 2018, 502: 12−25. doi: 10.1016/j.jembe.2017.01.007 [7] Zeppilli D, Leduc D, Fontanier C, et al. Characteristics of meiofauna in extreme marine ecosystems: A review[J]. Marine Biodiversity, 2018, 48(1): 35−71. doi: 10.1007/s12526-017-0815-z [8] Zeppilli D, Sarrazin J, Leduc D, et al. Is the meiofauna a good indicator for climate change and anthropogenic impacts?[J]. Marine Biodiversity, 2015, 45(3): 505−535. doi: 10.1007/s12526-015-0359-z [9] Semprucci F, Balsamo M, Sandulli R. Assessment of the ecological quality (EcoQ) of the Venice lagoon using the structure and biodiversity of the meiofaunal assemblages[J]. Ecological Indicators, 2016, 67: 451−457. doi: 10.1016/j.ecolind.2016.03.014 [10] Amjad S, Gray J S. Use of the nematode-copepod ratio as an index of organic pollution[J]. Marine Pollution Bulletin, 1983, 14(5): 178−181. doi: 10.1016/0025-326X(83)90229-1 [11] Raffaelli D G, Mason C F. Pollution monitoring with meiofauna, using the ratio of nematodes to copepods[J]. Marine Pollution Bulletin, 1981, 12(5): 158−163. doi: 10.1016/0025-326X(81)90227-7 [12] Zhou Xiping, Cai Lizhe, Fu Sujing. Comparison of meiofaunal abundance in two mangrove wetlands in Tong’an Bay, Xiamen, China[J]. Journal of Ocean University of China, 2015, 14(5): 816−822. doi: 10.1007/s11802-015-2642-9 [13] 华尔, 张志南, 范士亮, 等. 利用小型底栖动物对沉积物重金属污染的评估[J]. 中国海洋大学学报, 2009, 39(3): 429−436.Hua Er, Zhang Zhinan, Fan Shiliang, et al. Study on the use of meiofauna parameters to assess heavy metal pollution in sediments[J]. Periodical of Ocean University of China, 2009, 39(3): 429−436. [14] Liu Xiaoshou, Huang Deming, Zhu Yanmei, et al. Bioassessment of marine sediment quality using meiofaunal assemblages in a semi-enclosed bay[J]. Marine Pollution Bulletin, 2015, 100(1): 92−101. doi: 10.1016/j.marpolbul.2015.09.024 [15] Shiells G M, Anderson K J. Pollution monitoring using the nematode/copepod ratio A practical application[J]. Marine Pollution Bulletin, 1985, 16(2): 62−68. doi: 10.1016/0025-326X(85)90125-0 [16] Warwick R M. The nematode/copepod ratio and its use in pollution ecology[J]. Marine Pollution Bulletin, 1981, 12(10): 329−333. doi: 10.1016/0025-326X(81)90105-3 [17] Rubal M, Veiga P, Besteiro C. Nematode/copepod index: importance of sedimentary parameters, sampling methodology and baseline values[J]. Thalassas, 2009, 25(1): 9−18. [18] 李皓宇, 彭逸生, 刘嘉健, 等. 粤东沿海红树林物种组成与群落特征[J]. 生态学报, 2016, 36(1): 252−260.Li Haoyu, Peng Yisheng, Liu Jiajian, et al. Current state of mangrove floristic composition and characteristics of communities on the eastern coast of Guangdong Province[J]. Acta Ecologica Sinica, 2016, 36(1): 252−260. [19] 刘均玲, 袁超, 何永姑, 等. 东寨港红树林小型底栖动物丰度与Chl a、有机质的相关性[J]. 生态学报, 2019, 39(1): 185−191.Liu Junling, Yuan Chao, He Yonggu, et al. Correlation of meiofauna abundance with chlorophyll a and organic matter of Dongzhai Harbor Mangrove[J]. Acta Ecologica Sinica, 2019, 39(1): 185−191. [20] 何永姑, 刘均玲, 袁超, 等. 不同季节东寨港红树林沉积物小型底栖动物的分布特征[J]. 海洋科学进展, 2019, 37(4): 681−688.He Yonggu, Liu Junling, Yuan Chao, et al. Characteristics of meiofauna distribution in sediments of Dongzhai Bay mangrove in different seasons[J]. Advances in Marine Science, 2019, 37(4): 681−688. [21] 黄执缨, 王晓红, 吴幼华. 汕头沿海红树林湿地生物资源调查研究[J]. 南方职业教育学刊, 2016, 6(5): 101−106.Huang Zhiying, Wang Xiaohong, Wu Youhua. Research on biological resources in Shantou coastal mangrove wetland[J]. Journal of Southern Vocational Education, 2016, 6(5): 101−106. [22] 彭逸生, 庄雪茵, 赵丽丽, 等. 树种选择和滩地高程对红树林修复早期系统碳储量的影响[J]. 中山大学学报(自然科学版), 2023, 62(2): 37−46.Peng Yisheng, Zhuang Xueyin, Zhao Lili, et al. Influence of species choice and tidal flat elevation on the carbon sequestration of early mangrove restoration[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2023, 62(2): 37−46. [23] 唐以杰, 陈思敏, 方展强, 等. 汕头3种人工红树林湿地大型底栖动物群落的比较[J]. 海洋科学, 2016, 40(9): 53−60. doi: 10.11759/hykx20150124001Tang Yijie, Chen Simin, Fang Zhanqiang, et al. Comparison of macrofaunal communities in wetlands of three kinds of artificial mangroves in Shantou[J]. Marine Sciences, 2016, 40(9): 53−60. doi: 10.11759/hykx20150124001 [24] Cui Yang, Dong Jianwei, Wang Hongbing, et al. Spatiotemporal response of water quality in fragmented mangroves to anthropogenic activities and recommendations for restoration[J]. Environmental Research, 2023, 237(Part 2): 117075. [25] 赵晨辉, 胡佶, 李发明, 等. 广东汕头湾表层沉积物重金属含量分布及风险评价[J]. 应用海洋学学报, 2020, 39(3): 408−418. doi: 10.3969/J.ISSN.2095-4972.2020.03.012Zhao Chenhui, Hu Ji, Li Faming, et al. Ecological risk assessment on heavy metals in surface sediments of Shantou Bay, Guangdong Province[J]. Journal of Applied Oceanography, 2020, 39(3): 408−418. doi: 10.3969/J.ISSN.2095-4972.2020.03.012 [26] Higgins R P, Thiel H. Introduction to the Study of Meiofauna[M]. Washington, DC: Smithsonian Institution Press, 1988. [27] Giere O. Meiobenthology. The Microscopic Motile Fauna of Aquatic Sediments[M]. 2nd ed. Berlin, Heidelberg: Springer, 2009. [28] Juario J V. Nematode species composition and seasonal fluctuation of a sublittoral meiofauna community in the German Bight[J]. Veroffentlichungen des Instituts fur Meeresforschung in Bremerhaven, 1975, 15: 283−337. [29] Widbom B. Determination of average individual dry weights and ash-free dry weights in different sieve fractions of marine meiofauna[J]. Marine Biology, 1984, 84(1): 101−108. doi: 10.1007/BF00394532 [30] 张志南, 周红, 于子山, 等. 胶州湾小型底栖生物的丰度和生物量[J]. 海洋与湖沼, 2001, 32(2): 139−147.Zhang Zhinan, Zhou Hong, Yu Zishan, et al. Abundance and biomass of the benthic meiofauna in the northern soft-bottom of the Jiaozhou Bay[J]. Oceanologia et Limnologia Sinica, 2001, 32(2): 139−147. [31] 国家海洋局. HY/T 147—2013, 海洋监测技术规程[S]. 北京: 中国标准出版社, 2013.State Oceanic Administration. HY/T 147—2013, Code of practice for marine monitoring technology[S]. Beijing: Standards Press of China, 2013. [32] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB 17378—2007, 海洋监测规范[S]. 北京: 中国标准出版社, 2008.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. GB 17378—2007, The Specification for marine monitoring[S]. Beijing: Standards Press of China, 2008. [33] 中华人民共和国国家生态环境部. HJ 1300—2023, 海水、海洋沉积物和海洋生物质量评价技术规范[S]. 北京: 中国标准出版社, 2023.Ministry of Ecology and Environment of the People’s Republic of China. HJ 1300—2023, Technical specification for assessment of sea water, marine sediment and marine biological quality[S]. Beijing: Standards Press of China, 2023. [34] Muller G. Index of geoaccumulation in sediments of the Rhine River[J]. GeoJournal, 1969, 2(3): 109−118. [35] Hakanson L. An ecological risk index for aquatic pollution control. A sedimenttological approach[J]. Water Research, 1980, 14(8): 975−1001. doi: 10.1016/0043-1354(80)90143-8 [36] 赵一阳, 鄢明才. 中国浅海沉积物地球化学[M]. 北京: 科学出版社. 1994.Zhao Yiyang, Yan Mingcai. Geochemistry of Sediments of the China Shelf Sea [M]. Beijing: Science Press, 1994. [37] 徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008, 31(2): 112−115. doi: 10.3969/j.issn.1003-6504.2008.02.030Xu Zhengqi, Ni Shijun, Tuo Xianguo, et al. Calculation of heavy metals’ toxicity coefficient in the evaluation of potential ecological risk index[J]. Environmental Science & Technology, 2008, 31(2): 112−115. doi: 10.3969/j.issn.1003-6504.2008.02.030 [38] 朱慧兰, 郭玉清, 吴成业, 等. 浙江西门岛红树林湿地小型底栖动物的研究[J]. 集美大学学报(自然科学版), 2020, 25(4): 241−247.Zhu Huilan, Guo Yuqing, Wu Chengye, et al. Study on meiofauna abundance in mangrove of Ximen Island, Zhejiang Province[J]. Journal of Jimei University (Natural Science), 2020, 25(4): 241−247. [39] 郭玉清, 刘爱原, 康斌, 等. 福建滨海湿地小型底栖动物与海洋线虫[M]. 北京: 中国农业出版社, 2018.Guo Yuqing, Liu Aiyuan, Kang Bin, et al. Small Benthic Animals and Marine Nematode in Fujian Coastal Wetlands[M]. Beijing: China Agriculture Press, 2018. [40] 朱慧兰, 刘梦迪, 周宇鸿, 等. 深圳湾福田红树林湿地小型底栖动物群落结构及海洋线虫新纪录种[J]. 生态学杂志, 2020, 39(6): 1806−1812.Zhu Huilan, Liu Mengdi, Zhou Yuhong, et al. Meiofauna community structure and marine nematode (a new record) in Futian mangrove wetland of Shenzhen Bay, Guangdong Province[J]. Chinese Journal of Ecology, 2020, 39(6): 1806−1812. [41] 王娟, 宋迎春, 张烨, 等. 东寨港红树林凋落叶附生小型底栖动物的群落特征及影响因素[J]. 海洋科学, 2023, 47(9): 28−39.Wang Juan, Song Yingchun, Zhang Ye, et al. Community characteristics and factors affecting meiofauna on mangrove leaf litter from Dongzhai Harbor[J]. Marine Sciences, 2023, 47(9): 28−39. [42] 邹明明, 朱慧兰, 郭玉清. 广西防城港东湾红树林湿地春季小型底栖动物丰度与生物量[J]. 生态学杂志, 2020, 39(6): 1823−1829.Zou Mingming, Zhu Huilan, Guo Yuqing. Abundance and biomass of meiofauna in spring in Dongwan mangrove wetland of Fangchenggang, Guangxi[J]. Chinese Journal of Ecology, 2020, 39(6): 1823−1829. [43] Spedicato A, Zeppilli D, Thouzeau G, et al. Nematode diversity patterns in mangroves: a review of environmental drivers at different spatial scales[J]. Biodiversity and Conservation, 2023, 32(5): 1451−1471. doi: 10.1007/s10531-023-02562-6 [44] Wu R S S. Hypoxia: from molecular responses to ecosystem responses[J]. Marine Pollution Bulletin, 2002, 45(1/12): 35−45. [45] Wetzel M A, Fleeger J W, Powers S P. Effects of hypoxia and anoxia on meiofauna: a review with new data from the Gulf of Mexico[M]//Rabalais N N, Turner R E. Coastal Hypoxia: Consequences for Living Resources and Ecosystems. Washington: American Geophysical Union, 2001. [46] 党宏月, 黄勃, 张志南. 青岛湾有机质污染潮间带底栖生物研究 Ⅱ. 小型底栖动物生态特点[C]. 中国科学院海洋研究所, 中国海洋湖沼学会. 海洋科学集刊, 北京: 科学出版社, 1996: 91−101.Dang Hongyue, Huang Bo, Zhang Zhinan. Study on marine benthos in an organically polluted intertidal beach of Qingdao Bay Ⅱ. The pollution ecology of meiobenthos[C]. Institute of Oceanology, Chinese Academy of Sciences, Chinese society for oceanology and limnology. 1996: 91—101. [47] Fichet D, Boucher G, Radenac G, et al. Concentration and mobilisation of Cd, Cu, Pb and Zn by meiofauna populations living in harbour sediment: their role in the heavy metal flux from sediment to food web[J]. Science of the Total Environment, 1999, 243-244: 263−272. doi: 10.1016/S0048-9697(99)00401-5 [48] 孙志佳, 李保飞, 陈玉海, 等. 广东湛江湾红树林沉积物重金属分布特征及生态风险评价[J]. 海洋环境科学, 2022, 41(2): 215−221.Sun Zhijia, Li Baofei, Chen Yuhai, et al. Distribution features and ecological risk assessment of heavy metals in mangrove sediments in Zhanjiang Bay, Guangdong Province[J]. Marine Environmental Science, 2022, 41(2): 215−221. [49] 罗松英, 邢雯淋, 梁绮霞, 等. 湛江湾红树林湿地表层沉积物重金属形态特征、生态风险评价及来源分析[J]. 生态环境学报, 2019, 28(2): 348−358.Luo Songying, Xing Wenlin, Liang Qixia, et al. Speciation, ecological risk assessment and source analysis of heavy metals in the surface sediments of mangrove wetland in Zhanjiang Bay[J]. Ecology and Environmental Sciences, 2019, 28(2): 348−358. [50] Sciberras M, Menechella A G, Rucci K, et al. Nematode/copepod ratio and nematode and copepod abundances as bioindicators of pollution: a meta-analysis[J]. Ecologia Austral, 2022, 32: 516−525. doi: 10.25260/EA.22.32.2.0.1840 [51] Boufahja F, Beyrem H, Aissa P. Relative Pharyngeal Volume (RPV): New index for stress monitoring using meiobenthic nematodes[J]. Meiofauna Marina, 2006, 15: 43−50. [52] Boufahja F, Hedfi A, Amorri J, et al. Experimental validation of the “relative volume of the pharyngeal lumen (RVPL)” of free-living nematodes as a biomonitoring index using sediment-associated metals and/or Diesel Fuel in microcosms[J]. Journal of Experimental Marine Biology and Ecology, 2011, 399(2): 142−150. doi: 10.1016/j.jembe.2011.01.017 [53] 宋远柳, 刘晓收. 夏、秋季南黄海小型底栖动物空间分布格局及其环境影响因素[J]. 海洋学报, 2023, 45(1): 38−52.Song Yuanliu, Liu Xiaoshou. Spatial distribution patterns of meiofauna and the influencing environmental factors in the southern Yellow Sea in summer and autumn[J]. Haiyang Xuebao, 2023, 45(1): 38−52, [54] Lee M R, Correa J A, Castilla J C. An assessment of the potential use of the nematode to copepod ratio in the monitoring of metals pollution. The Chañaral case[J]. Marine Pollution Bulletin, 2001, 42(8): 696−701. doi: 10.1016/S0025-326X(00)00220-4