留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于全球测深数据的中国海岸线周边海域数字水深模型融合

阮晓光 占赵杰 闫兆进 谈秋英 郭美静 杨阳

阮晓光,占赵杰,闫兆进,等. 基于全球测深数据的中国海岸线周边海域数字水深模型融合[J]. 海洋学报,2024,46(7):16–28 doi: 10.12284/hyxb2024062
引用本文: 阮晓光,占赵杰,闫兆进,等. 基于全球测深数据的中国海岸线周边海域数字水深模型融合[J]. 海洋学报,2024,46(7):16–28 doi: 10.12284/hyxb2024062
Ruan Xiaoguang,Zhan Zhaojie,Yan Zhaojin, et al. Digital bathymetric model fusion of offshore waters around China’s coastline based on global bathymetry data[J]. Haiyang Xuebao,2024, 46(7):16–28 doi: 10.12284/hyxb2024062
Citation: Ruan Xiaoguang,Zhan Zhaojie,Yan Zhaojin, et al. Digital bathymetric model fusion of offshore waters around China’s coastline based on global bathymetry data[J]. Haiyang Xuebao,2024, 46(7):16–28 doi: 10.12284/hyxb2024062

基于全球测深数据的中国海岸线周边海域数字水深模型融合

doi: 10.12284/hyxb2024062
基金项目: 浙江省基础公益研究计划项目(LZJWY22E090002);国家自然科学基金(42201451);中国博士后科学基金面上项目(2022M723379);南浔青年学者项目(RC2024021062);浙江省社会科学界联合会研究课题(2024N085);江苏省双创博士项目(JSSCBS20221523)。
详细信息
    作者简介:

    阮晓光(1990—),男,河南省周口市人,主要从事海底地形建模与分析研究。E-mail:ruanxg@zjweu.edu.cn

    通讯作者:

    闫兆进(1991—),男,山东省济宁市人,副教授,主要从事地学大数据挖掘与空间分析建模研究。E-mail:yanzhaojin@cumt.edu.cn

  • 中图分类号: P229.1;P28

Digital bathymetric model fusion of offshore waters around China’s coastline based on global bathymetry data

  • 摘要: 数字水深模型(Digital Bathymetric Models,简称“DBMs”),是近海工程建设、资源开发、环境保护等领域的重要基础地理信息数据。现有全球公开DBMs产品如GEBCO(The General Bathymetric Chart of the Oceans)、SRTM(The Shuttle Radar Topography Mission)、ETOPO(Earth Topography)等在不同海域的数据类型、数据来源和产品精度均存在差异。为利用全球测深数据和DBMs产品重建中国近海水深模型,本文提出一种基于水深分区的加权融合重建框架。首先,从5个维度(整体精度、不同水深、航线剖面、地理分区、局部细节)对比分析6种常用DBMs产品的可靠性和适用性;然后,顾及水深和地形特征对研究区进行分割和分区,并选取分区内最优DBMs产品,以最小误差为约束进行最优加权融合;最后,对融合结果进行实测值恢复、平滑滤波等后处理,形成中国海岸线周边近海海域15″分辨率高精度无缝水深模型。结果表明,融合结果相比SRTM30_PLUS、GEBCO_2022、SRTM15_V2.5.5和ETOPO_2022均方根误差降低了27%、14%、14%和13%,地形细节也得到保留,证明了该融合框架的可行性,可为多数据集大规模海底地形的融合重建和及时更新提供参考。
  • 图  1  a. 研究区;b. 测深数据分布

    该图基于自然资源部标准地图服务网站下载的审图号为GS(2019)1822号的标准地图制作,底图无修改

    Fig.  1  a. Study area ; b. distribution of bathymetry data

    Note: The map is produced based on the standard map with review number GS (2019) 1822 downloaded from the website of the Standard Map Service of the Ministry of Natural Resources of the People’s Republic of China, with no modifications to the base map

    图  2  研究区DBMs. a. GEBCO_2022; b. SRTM30_PLUS; c. SRTM15_V2.5.5; d. TOPO_25.1; e. DTU10; f. ETOPO_2022

    Fig.  2  DBMs in the study area. a. GEBCO_2022; b. SRTM30_PLUS; c. SRTM15_V2.5.5; d. TOPO_25.1; e. DTU10; f. ETOPO_2022

    图  3  模型融合框架

    Fig.  3  The model fusion framework

    图  4  NCEI船测水深数据可靠性验证

    Fig.  4  Reliability verification of NCEI ship-measured bathymetry data

    图  5  分割分区结果

    Fig.  5  The segmentation and partitioning results

    图  6  最优融合权重选取步骤

    Fig.  6  The selection steps for the optimal fusion weights

    图  7  模型融合后处理

    a. 15″×15″水深栅格;b. 镶嵌栅格;c. 邻域统计结果;d. 最终融合结果

    Fig.  7  Post-processing of model fusion

    a. 15″×15″ bathymetric raster; b. mosaiced raster; c. neighbourhood statistics results; d. final fusion result

    图  8  DBMs与实测水深值的误差分布

    正值表示 DBM 水深比实测值浅,a. GEBCO_2022;b. SRTM30_PLUS;c. SRTM15_V2.5.5;d. TOPO_25.1;e. DTU10;f. ETOPO_2022

    Fig.  8  Distribution of differences bteween DBMs and measured bathymetry values

    A positive value indicates that the DBM bathymetry is shallower than that of the measured values, a. GEBCO_2022; b. SRTM30_PLUS; c. SRTM15_V2.5.5; d. TOPO_25.1; e. DTU10; f. ETOPO_2022

    图  9  航线分析

    a. 航线位置;b. 25874航线剖面;c. EW9509航线剖面(黑点代表实测水深)

    Fig.  9  Route analysis

    a. Route location; b. profile route 25874; c. profile route EW9509 (the black spots represent measured bathymetry)

    图  10  融合结果

    a. 融合模型可视化;b. 融合模型整体精度评估

    Fig.  10  Fusion results

    a. Fusion model visualization; b. overall accuracy evaluation of fusion model

    图  11  不同深度融合结果对比

    Fig.  11  Comparison of fusion results at different depths

    图  12  西沙群岛结果验证

    a. GEBCO_2022;b. SRTM30_PLUS;c. SRTM15_V2.5.5;d. TOPO_25.1;e. DTU10;f. ETOPO_2022;g. 融合模型

    Fig.  12  The result verification of Xisha Islands

    a. GEBCO_2022; b. SRTM30_PLUS; c. SRTM15_V2.5.5; d. TOPO_25.1; e. DTU10; f. ETOPO_2022; g. Fusion model

    图  13  琉球群岛结果验证

    a. GEBCO_2022;b. SRTM30_PLUS;c. SRTM15_V2.5.5;d. TOPO_25.1;e. DTU10;f. ETOPO_2022;g. 融合模型

    Fig.  13  The result verification of Ryukyu Islands

    a. GEBCO_2022; b. SRTM30_PLUS; c. SRTM15_V2.5.5; d. TOPO_25.1; e. DTU10; f. ETOPO_2022; g. Fusion model

    图  14  西沙群岛局部剖面

    a. GEBCO_2022;b. SRTM30_PLUS;c. SRTM15_V2.5.5;d. TOPO_25.1;e. DTU10;f. ETOPO_2022;g. 融合模型

    Fig.  14  Local section of Xisha Islands

    a. GEBCO_2022; b. SRTM30_PLUS; c. SRTM15_V2.5.5; d. TOPO_25.1; e. DTU10; f. ETOPO_2022; g. Fusion model

    图  15  琉球群岛局部剖面

    a. GEBCO_2022;b. SRTM30_PLUS;c. SRTM15_V2.5.5;d. TOPO_25.1;e. DTU10;f. ETOPO_2022;g. 融合模型

    Fig.  15  Local section of Ryukyu Islands

    a. GEBCO_2022; b. SRTM30_PLUS; c. SRTM15_V2.5.5; d. TOPO_25.1; e. DTU10; f. ETOPO_2022; g. Fusion model

    表  1  DBMs数据集概况

    Tab.  1  An overview of DBMs datasets

    数据集 更新时间 组织机构 国家 分辨率 空间范围 水平基准垂直基准 数据来源
    GEBCO_2022 2022 The Nippon
    Foundation-
    GEBCO
    UK-Japan 15″ 179° 59' 52.5"W~0°
    179° 59' 52.5"E;
    89° 59' 52.5''N~
    89° 59' 52.5''S
    WGS84 MSL https://download.gebco.net/
    SRTM30_PLUS 2014 SIO USA 30″ 经度180°~0°~180°;
    90°N~90°S
    WGS84 MSL https://topex.ucsd.edu/pub/srtm30_plus/srtm30/grd/
    SRTM15_V2.5.5 2023 SIO USA 15″ 经度180°~0°~180°;
    90°N~90°S
    WGS84 MSL https://topex.ucsd.edu/pub/srtm15_plus/
    TOPO_25.1 2023 SIO USA 1' 经度180°~0°~180°;
    90°N~90°S
    WGS84 MSL https://topex.ucsd.edu/pub/global_topo_1min/
    DTU10 2010 DTU Space Denmark 1' 经度180°~0°~180°;
    90°N~90°S
    WGS84 MSL https://ftp.space.dtu.dk/pub/DTU10/1_MIN/
    ETOPO_2022 2023 NCEI USA 15″ 经度180°~0°~180°;
    90°N~90°S
    WGS84 MSL https://www.ncei.noaa.gov/products/etopo-global-relief-model/
    下载: 导出CSV

    表  2  NCEI船测水深数据与DBMs的空间相关矩阵

    Tab.  2  The spatial correlation matrix between NCEI ship-measured bathymetry data and DBMs

    船测水深GEBCO_2022SRTM30_PLUSSRTM15_V2.5.5TOPO_25.1DTU10ETOPO_2022
    船测水深10.99900.99860.99900.99800.99200.9990
    GEBCO_20220.999010.99930.99960.99860.99250.9998
    SRTM30_PLUS0.99860.999310.99920.99910.99280.9991
    SRTM15_V2.5.50.99900.99960.999210.99870.99240.9996
    TOPO_25.10.99800.99860.99910.998710.99330.9985
    DTU100.99200.99250.99280.99240.993310.9924
    ETOPO_20220.99900.99980.99910.99960.99850.99241
    下载: 导出CSV

    表  3  最优融合权重分配表

    Tab.  3  Distribution table for the optimal fusion weights

    水深/m RMSE(m) 权重分配
    融合前 融合后 GEBCO_2022 ETOPO_2022 SRTM15_V2.5.5
    0~−200 20.324 20.130 0.1 0.9 0
    −200~−500 61.327 61.325 0.1 0.9 0
    −500~−2000 70.394 69.563 0.1 0.9 0
    2000~−4000 90.683 84.767 0.5 0 0.5
    4000~−8000 78.804 78.730 0.2 0.8 0
    下载: 导出CSV

    表  4  不同海域融合前后精度对比

    Tab.  4  Accuracy comparison before and after fusion of different sea areas

    地理分区 精度/m R2
    最大值 最小值 平均值 MAE SD RMSE
    黄海 融合前 795.88 −66.64 0.18 1.33 9.19 9.22 0.99
    融合后 675.91 −92.17 0.11 1.27 7.59 7.59 0.99
    南海 融合前 949.08 −948.11 0.09 31.34 86.42 86.42 0.93
    融合后 3601.89 1056.83 1.07 20.88 65.20 65.21 0.98
    东海 融合前 1180.18 −949.14 −1.40 26.94 67.02 67.04 0.89
    融合后 1196.48 1522.43 −0.56 24.77 61.46 61.46 0.93
    下载: 导出CSV
  • [1] Sandwell D T, Müller R D, Smith W H F, et al. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure[J]. Science, 2014, 346(6205): 65−67. doi: 10.1126/science.1258213
    [2] 吴园涛, 段晓男, 沈刚, 等. 强化我国海洋领域国家战略科技力量的思考与建议[J]. 地球科学进展, 2021, 36(4): 413−420. doi: 10.11867/j.issn.1001-8166.2021.039

    Wu Yuantao, Duan Xiaonan, Shen Gang, et al. Thoughts and suggestions on strengthening the national strategic scientific and technological forces in the marine field of China[J]. Advances in Earth Science, 2021, 36(4): 413−420. doi: 10.11867/j.issn.1001-8166.2021.039
    [3] 张继红, 方建光, 唐启升. 中国浅海贝藻养殖对海洋碳循环的贡献[J]. 地球科学进展, 2005, 20(3): 359−365. doi: 10.3321/j.issn:1001-8166.2005.03.014

    Zhang Jihong, Fang Jianguang, Tang Qisheng. The contribution of shellfish and seaweed mariculture in China to the carbon cycle of coastal ecosystem[J]. Advances in Earth Science, 2005, 20(3): 359−365. doi: 10.3321/j.issn:1001-8166.2005.03.014
    [4] 陈义兰, 唐秋华, 刘晓瑜, 等. 多源水深数据融合的近海数字水深模型构建[J]. 海洋科学进展, 2021, 39(3): 461−469. doi: 10.3969/j.issn.1671-6647.2021.03.012

    Chen Yilan, Tang Qiuhua, Liu Xiaoyu, et al. Construction of offshore digital bathymetric model based on multi-source bathymetric data fusion[J]. Advances in Marine Science, 2021, 39(3): 461−469. doi: 10.3969/j.issn.1671-6647.2021.03.012
    [5] Ruan Xiaoguang, Cheng Liang, Chu Sensen, et al. A new digital bathymetric model of the South China Sea based on the subregional fusion of seven global seafloor topography products[J]. Geomorphology, 2020, 370: 107403. doi: 10.1016/j.geomorph.2020.107403
    [6] 董箭, 彭认灿, 张立华, 等. 滚动球变换的数字水深模型多尺度表达[J]. 地球信息科学学报, 2012, 14(6): 704−711. doi: 10.3724/SP.J.1047.2012.00704

    Dong Jian, Peng Rencan, Zhang Lihua, et al. Multi-scale representation of digital depth model based on rolling ball transform[J]. Journal of Geo-information Science, 2012, 14(6): 704−711. doi: 10.3724/SP.J.1047.2012.00704
    [7] 阳凡林, 沈瑞杰, 梅赛, 等. 联合重力异常和重力垂直梯度异常数据反演皇帝山海域海底地形[J]. 海洋学报, 2022, 44(12): 126−135.

    Yang Fanlin, Shen Ruijie, Mei Sai, et al. Inversion of seafloor topography in Emperor Seamount sea area by combined gravity anomalies and vertical gravity gradient anomalies data[J]. Haiyang Xuebao, 2022, 44(12): 126−135.
    [8] Weatherall P, Marks K M, Jakobsson M, et al. A new digital bathymetric model of the world's oceans[J]. Earth and Space Science, 2015, 2(8): 331−345. doi: 10.1002/2015EA000107
    [9] Becker J J, Sandwell D T, Smith W H F, et al. Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS[J]. Marine Geodesy, 2009, 32(4): 355−371. doi: 10.1080/01490410903297766
    [10] Fan Diao, Li Shanshan, Feng Jinkai, et al. A new global bathymetry model: STO_IEU2020[J]. Remote Sensing, 2022, 14(22): 5744. doi: 10.3390/rs14225744
    [11] Leon J X, Phinn S R, Hamylton S, et al. Filling the ‘white ribbon’ – a multisource seamless digital elevation model for Lizard Island, northern Great Barrier Reef[J]. International Journal of Remote Sensing, 2013, 34(18): 6337−6354. doi: 10.1080/01431161.2013.800659
    [12] Tozer B, Sandwell D T, Smith W H F, et al. Global bathymetry and topography at 15 arc sec: SRTM15+[J]. Earth and Space Science, 2019, 6(10): 1847−1864. doi: 10.1029/2019ea000658
    [13] 刘洋, 吴自银, 赵荻能, 等. MF多源测深数据融合方法及大洋水深模型构建[J]. 测绘学报, 2019, 48(9): 1171−1181. doi: 10.11947/j.AGCS.2019.20180495

    Liu Yang, Wu Ziyin, Zhao Dineng, et al. The MF method for multi-source bathymetric data fusion and ocean bathymetric model construction[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9): 1171−1181. doi: 10.11947/j.AGCS.2019.20180495
    [14] Okolie C J, Smit J L. A systematic review and meta-analysis of digital elevation model (DEM) fusion: pre-processing, methods and applications[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 188: 1−29. doi: 10.1016/j.isprsjprs.2022.03.016
    [15] 岳林蔚, 沈焕锋, 袁强强, 等. 基于深度置信网络的多源DEM点面融合模型[J]. 武汉大学学报(信息科学版), 2021, 46(7): 1090−1097.

    Yue Linwei, Shen Huanfeng, Yuan Qiangqiang, et al. A multi-source DEM point-surface fusion model based on deep belief network[J]. Geomatics and Information Science of Wuhan University, 2021, 46(7): 1090−1097.
    [16] Guan Liyi, Hu Jun, Pan Hongbo, et al. Fusion of public DEMs based on sparse representation and adaptive regularization variation model[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 169: 125−134. doi: 10.1016/j.isprsjprs.2020.09.005
    [17] Wessel P. Tools for analyzing intersecting tracks: the x2sys package[J]. Computers & Geosciences, 2010, 36(3): 348−354. doi: 10.1016/j.cageo.2009.05.009
    [18] Tunalioglu N, Ocalan T, Dogan A H. Precise point positioning with GNSS raw measurements from an Android smartphone in marine environment monitoring[J]. Marine Geodesy, 2022, 45(3): 274−294. doi: 10.1080/01490419.2022.2027831
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  156
  • HTML全文浏览量:  68
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-14
  • 录用日期:  2024-08-12
  • 修回日期:  2024-01-24
  • 网络出版日期:  2024-08-15
  • 刊出日期:  2024-07-01

目录

    /

    返回文章
    返回