Distribution and influencing factors of dissolved manganese in the northern South China Sea in autumn
-
摘要: 利用在线富集−流动注射分析方法测定了2017年10月珠江口−琼东海域和2020年9月南海东北部−中部海域(文中将两个航次研究区域统称南海北部)溶解态锰(dMn)的浓度。研究结果显示,南海北部dMn的浓度范围为0.7~8.6 nmol/L,平均浓度为(2.6 ± 1.3)nmol/L。dMn浓度的平面分布整体呈现近岸高、外海低的特点,琼东沿岸及珠江口海域dMn的浓度高于南海北部陆坡及中部海域。dMn的垂直分布呈现表层高,随深度增加逐渐降低,DO相对较低的中层水体dMn浓度升高,深层水dMn浓度较低。影响南海dMn分布的因素主要包括水团混合、颗粒物吸附−解吸和低氧环境再生。富Mn陆架水沿上层(< 80 m)向南海北部陆架海域输送。以盐度和dMn作为示踪剂研究2020年秋季黑潮次表层水对南海的入侵,结果发现入侵主要集中在24.5~25.0 kg/m3密度面上,向西延伸到117.5°E,向南延伸到20°N。南海中部中层水体(400~1 500 m,DO浓度 < 100 μmol/L)dMn浓度升高,dMn浓度与表观耗氧量(AOU)呈正相关关系,说明低氧环境再生影响南海北部dMn的分布。Abstract: The concentrations of dissolved manganese (dMn) in the Zhujiang Estuary-Qiongdong Sea area in October 2017 and the northeast-central part of the South China Sea (SCS) in September 2020 (the research areas are referred to as the northern South China Sea, NSCS) were determined by online concentration-flow injection analysis. The results showed that the concentration of dMn in the NSCS ranged from 0.7 nmol/L to 8.6 nmol/L, with an average of (2.6 ± 1.3) nmol/L. The concentration of dMn was higher in the coastal area and decreased with distance from the coast, dMn in the Zhujiang Estuary-Qiongdong Sea area was higher than that in the northern and central of the SCS. The vertical profiles of dMn normally was highest in the surface layer, gradually decreased with depth and increased dMn in the intermediate water with relatively low dissolved oxygen, and then kept low concentration in the deep water. The factors affecting the distribution of dMn in the NSCS mainly include water mass mixing, particulate adsorption-desorption and regeneration in low oxygen environment etc. Mn-rich shelf water was transported to the slope of NSCS along the upper layer (< 80 m). Using salinity and dMn as tracer to study the intrusion of Kuroshio subsurface water (KSSW) into the SCS in autumn 2020, the results showed that the KSSW intrusion was mainly concentrated at the potential density surfaces of 24.5~25.0 kg/m3, and the intrusion scope extending to 117.5°E in the west and 20°N in the south. The concentration of dMn in the intermediate water of the central SCS (400~1 500 m, DO < 100 μmol/L) increased, and the concentration of dMn was positively correlated with apparent oxygen consumption (AOU), which indicated that remineralization process in low oxygen environment (DO < 100 μmol/L) affected the distribution of dMn in the NSCS.
-
Key words:
- dissolved manganese /
- distribution /
- influencing factors /
- the northern South China Sea
-
图 1 南海北部采样站位
图中棕色和蓝色圆点分别为2017年10月、2020年9月全水深站位;蓝色三角为2020年9月表层站位;黑色实线为断面;橙色箭头表示南海冬季环流;洋流参考文献[10,24]
Fig. 1 Sampling locations in the northern South China Sea (NSCS)
The brown and blue dots in the figure represent the full-depth stations in October 2017 and September 2020, respectively; the blue triangle represents the surface station in September 2020; the black solid lines are sections; the orange arrow represents the winter circulation of the South China Sea; currents are redraw after references [10, 24]
表 1 2017年10月和2020年9月南海北部温度、盐度、DO、SPM和dMn浓度的范围及平均值
Tab. 1 Ranges and means of temperature, salinity, DO, SPM and dMn concentration in the NSCS in October 2017 and September 2020
时间 层次 温度/℃ 盐度 DO浓度/(mg·L)−1 SPM浓度/(mg·L)−1 dMn浓度/(nmol·L)−1 2017年10月 全水深 2.9~30.2 33.45~34.66 − 1.5~11.3 0.7~8.6 (22.5 ± 7.4) (34.14 ± 0.41) (4.8 ± 1.7) (3.3 ± 1.6) 表层 27.0~30.2 33.46~33.88 − 1.8~10.9 3.3~8.4 (28.8 ± 1.1) (33.67 ± 0.13) (5.0 ± 1.8) (4.7 ± 1.2) 底层 2.9~27.7 33.46~34.66 − 3.0~11.3 1.2~7.9 (19.0 ± 8.1) (34.34 ± 0.40) (6.2 ± 2.0) (3.3 ± 1.6) 2020年9月 全水深 2.3~31.3 33.26~34.75 2.45~6.70 − 0.7~4.4 (14.5 ± 10.0) (34.38 ± 0.28) (4.16 ± 1.19) (2.2 ± 0.9) 表层 29.3~31.3 33.26~34.15 5.38~6.70 − 3.0~4.3 (30.3 ± 0.5) (33.82 ± 0.18) (5.84 ± 0.29) (3.8 ± 0.4) 底层 2.3~12.2 34.41~34.62 2.55~3.77 − 0.8~2.2 (4.1 ± 3.1) (34.57 ± 0.08) (3.22 ± 0.36) (1.6 ± 0.3) 注:括号内为平均值±标准偏差;“−”代表未测数据。 表 2 世界主要河流、陆架边缘海和开阔大洋中dMn的浓度范围及平均值
Tab. 2 The ranges and means of dMn concentration in major rivers, marginal shelf seas and open oceans of the world
采样时间 区域 dMn/(nmol·L−1) 参考文献 2017年10月 珠江口-琼东海域 0.7~8.6(3.3) 本文 2020年09月 南海东北部-中部海域 0.7~4.4 (2.2) 本文 2011年06月 南海北部陆坡区 0.5~29.9 (3.5) 文献[21–22] 2015年06月 南海东北部 0.3~6.9(2.1) 文献[22] 2015年10月 东海 0.9~16.9(5.7) 文献[16] 2019年10月 日本海 0.1~8.0 文献[30] 2013年06月 地中海 0.2~7.0 文献[31] 2020年01月 阿拉伯海 0.3~5.7 文献[32] 2008年07月 波罗的海 9.0~9 337 文献[29] 2012年08月 北太平洋 0.08~8.38 文献[33] 2014年12月 南太平洋 0.08~4.74 文献[34] 2010年11月 北大西洋 0.1~3.2 文献[35] 2018年12月 南大洋 0.14~0.38 文献[36] 1986年08月 印度洋 0.2~3.9 文献[37] 2012年07月 长江口 4.2~74.1 文献[19] 2014年10月 珠江口 2.9~855.9 文献[20] -
[1] Ezoe M, Ishita T, Kinugasa M, et al. Distributions of dissolved and acid-dissolvable bioactive trace metals in the north Pacific Ocean[J]. Geochemical Journal, 2004, 38(6): 535−550. doi: 10.2343/geochemj.38.535 [2] Shiller A M. Manganese in surface waters of the Atlantic Ocean[J]. Geophysical Research Letters, 1997, 24(12): 1495−1498. doi: 10.1029/97GL01456 [3] Klinkhammer G P, Bender M L. The distribution of manganese in the Pacific Ocean[J]. Earth and Planetary Science Letters, 1980, 46(3): 361−384. doi: 10.1016/0012-821X(80)90051-5 [4] Resing J A, Sedwick P N, German C R, et al. Basin-scale transport of hydrothermal dissolved metals across the south Pacific Ocean[J]. Nature, 2015, 523(7559): 200−203. doi: 10.1038/nature14577 [5] Browning T J, Achterberg E P, Engel A, et al. Manganese co-limitation of phytoplankton growth and major nutrient drawdown in the Southern Ocean[J]. Nature Communications, 2021, 12(1): 884. doi: 10.1038/s41467-021-21122-6 [6] Lewis B L, Luther III G W. Processes controlling the distribution and cycling of manganese in the oxygen minimum zone of the Arabian Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2000, 47(7/8): 1541−1561. [7] Holmes T M, Chase Z, van der Merwe P, et al. Detection, dispersal and biogeochemical contribution of hydrothermal iron in the ocean[J]. Marine and Freshwater Research, 2017, 68(12): 2184−2204. doi: 10.1071/MF16335 [8] Zhu Yaohua, Sun Junchuan, Wang Yonggang, et al. Overview of the multi-layer circulation in the South China Sea[J]. Progress in Oceanography, 2019, 175: 171−182. doi: 10.1016/j.pocean.2019.04.001 [9] 王文杰, 刘宇迪, 朱金双, 等. 南海中尺度涡强度的季节和年际变化分析[J]. 海洋科学, 2016, 40(12): 94−106. doi: 10.11759/hykx20130122005Wang Wenjie, Liu Yudi, Zhu Jinshuang, et al. Seasonal and interannual variability of mesoscale eddy intensity in the South China Sea[J]. Marine Sciences, 2016, 40(12): 94−106. doi: 10.11759/hykx20130122005 [10] Liu Zhifei, Zhao Yulong, Colin C, et al. Source-to-sink transport processes of fluvial sediments in the South China Sea[J]. Earth-Science Reviews, 2016, 153: 238−273. doi: 10.1016/j.earscirev.2015.08.005 [11] Zhang J, Yu Z G, Wang J T, et al. The subtropical Zhujiang (Pearl River) estuary: nutrient, trace species and their relationship to photosynthesis[J]. Estuarine, Coastal and Shelf Science, 1999, 49(3): 385−400. doi: 10.1006/ecss.1999.0500 [12] 杨阳, 李锐祥, 朱鹏利, 等. 珠江冲淡水季节变化及动力成因[J]. 海洋通报, 2014, 33(1): 36−44. doi: 10.11840/j.issn.1001-6392.2014.01.005Yang Yang, Li Ruixiang, Zhu Pengli, et al. Seasonal variation of the Pearl River diluted water and its dynamical cause[J]. Marine Science Bulletin, 2014, 33(1): 36−44. doi: 10.11840/j.issn.1001-6392.2014.01.005 [13] Nan Feng, Xue Huijie, Yu Fei. Kuroshio intrusion into the South China Sea: a review[J]. Progress in Oceanography, 2015, 137: 314−333. doi: 10.1016/j.pocean.2014.05.012 [14] 孙圣垚. 南海北部海盆和吕宋海峡邻近海域镭同位素的分布及其示踪意义[D]. 厦门: 厦门大学, 2017.Sun Shengyao. Distributions of Radium Isotopes around the Luzon Strait and in the northern South China Sea basin: their tracing significance[D]. Xiamen: Xiamen University, 2017. [15] Wang Deli, Lin Wenfang, Yang Xiqian, et al. Occurrences of dissolved trace metals (Cu, Cd, and Mn) in the Pearl River Estuary (China), a large river-groundwater-estuary system[J]. Continental Shelf Research, 2012, 50−51: 54−63. doi: 10.1016/j.csr.2012.10.009 [16] Zhang Yuan, Li Lei, Ren Jingling, et al. Distribution and influencing factors of dissolved manganese in the Yellow Sea and the East China Sea[J]. Marine Chemistry, 2021, 234: 104002. doi: 10.1016/j.marchem.2021.104002 [17] Wang Zhaowei, Ren Jingling, Xuan Jiliang, et al. Distribution and off-shelf transport of dissolved manganese in the East China Sea[J]. Frontiers in Marine Science, 2023, 9: 1110913. doi: 10.3389/fmars.2022.1110913 [18] Wang Zhaowei, Ren Jingling, Jiang Shuo, et al. Geochemical behavior of dissolved manganese in the East China Sea: seasonal variation, estuarine removal, and regeneration under suboxic conditions[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(2): 282−299. doi: 10.1002/2015GC006128 [19] 杨亭亭, 任景玲, 王召伟, 等. 长江口及邻近海域溶解态锰的分布及影响因素[J]. 海洋科学进展, 2016, 34(2): 260−270. doi: 10.3969/j.issn.1671-6647.2016.02.011Yang Tingting, Ren Jingling, Wang Zhaowei, et al. Distributions and influence factors of dissolved manganese in the Changjiang Estuary and its adjacent area[J]. Advances in Marine Science, 2016, 34(2): 260−270. doi: 10.3969/j.issn.1671-6647.2016.02.011 [20] Xie Minwei, Wang Wenxiong. Contrasting temporal dynamics of dissolved and colloidal trace metals in the Pearl River Estuary[J]. Environmental Pollution, 2020, 265: 114955. doi: 10.1016/j.envpol.2020.114955 [21] Wang Zhaowei, Ren Jingling, Zhang Ruifeng, et al. Physical and biological controls of dissolved manganese on the northern slope of the South China Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2019, 167: 25−33. doi: 10.1016/j.dsr2.2018.07.006 [22] Wang Zhaowei, Ren Jingling, Xuan Jiliang, et al. Processes controlling the distribution and cycling of dissolved manganese in the northern South China Sea[J]. Marine Chemistry, 2018, 204: 152−162. doi: 10.1016/j.marchem.2018.07.003 [23] Benson B, Krause D Jr. The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere[J]. Limnology and Oceanography, 1984, 29(3): 620−632 doi: 10.4319/lo.1984.29.3.0620 [24] Wu Qiong, Liu Zhifei, Colin C, et al. Dissolved rare earth element and neodymium isotope distributions in the South China Sea: water mass source versus particle dissolution[J]. Frontiers in Marine Science, 2022, 9: 1003749. doi: 10.3389/fmars.2022.1003749 [25] Aguilar-Islas A M, Bruland K W. Dissolved manganese and silicic acid in the Columbia River plume: a major source to the California current and coastal waters off Washington and Oregon[J]. Marine Chemistry, 2006, 101(3/4): 233−247. [26] Slemons L O, Murray J W, Resing J, et al. Western Pacific coastal sources of iron, manganese, and aluminum to the equatorial undercurrent[J]. Global Biogeochemical Cycles, 2010, 24(3): GB3024. [27] 唐荣, 冯秀丽, 冯利, 等. 南海台西南盆地南部海域19 ka以来沉积物物源与输运机制分析[J]. 海洋学报, 2021, 43(8): 54−65.Tang Rong, Feng Xiuli, Fengli, et al. Analysis on the provenance and transport mechanism of sediments in the southern area of southwest Taiwan Basin, South China Sea over the last 19 ka[J]. Haiyang Xuebao, 2021, 43(8): 54−65. [28] Sunda W G, Huntsman S A, Harvey G R. Photoreduction of manganese oxides in seawater and its geochemical and biological implications[J]. Nature, 1983, 301(5897): 234−236. doi: 10.1038/301234a0 [29] Yakushev E, Pakhomova S, Sørenson K, et al. Importance of the different manganese species in the formation of water column redox zones: observations and modeling[J]. Marine Chemistry, 2009, 117(1/4): 59−70. [30] Seo H, Kim G, Kim T, et al. Trace elements (Fe, Mn, Co, Cu, Cd, and Ni) in the East Sea (Japan Sea): distributions, boundary inputs, and scavenging processes[J]. Marine Chemistry, 2022, 239: 104070. doi: 10.1016/j.marchem.2021.104070 [31] Middag R, Rolison J M, George E, et al. Basin scale distributions of dissolved manganese, nickel, zinc and cadmium in the Mediterranean Sea[J]. Marine Chemistry, 2022, 238: 104063. doi: 10.1016/j.marchem.2021.104063 [32] Singh N D, Singh S K, Malla N, et al. Biogeochemical cycling of dissolved manganese in the Arabian Sea[J]. Geochimica et Cosmochimica Acta, 2023, 343: 396−415. doi: 10.1016/j.gca.2022.12.030 [33] Zheng Linjie, Minami T, Konagaya W, et al. Distinct basin-scale-distributions of aluminum, manganese, cobalt, and lead in the north Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 2019, 254: 102−121. doi: 10.1016/j.gca.2019.03.038 [34] Zheng Linjie, Minami T, Takano S, et al. Distributions of aluminum, manganese, cobalt, and lead in the western south Pacific: interplay between the south and north Pacific[J]. Geochimica et Cosmochimica Acta, 2022, 338: 105−120. doi: 10.1016/j.gca.2022.10.022 [35] Hatta M, Measures C I, Wu Jingfeng, et al. An overview of dissolved Fe and Mn distributions during the 2010-2011 U. S. GEOTRACES north Atlantic cruises: GEOTRACES GA03[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 116: 117−129. doi: 10.1016/j.dsr2.2014.07.005 [36] Latour P, Wuttig K, van der Merwe P, et al. Manganese biogeochemistry in the Southern Ocean, from Tasmania to Antarctica[J]. Limnology and Oceanography, 2021, 66(6): 2547−2562. doi: 10.1002/lno.11772 [37] Morley N H, Statham P J, Burton J D. Dissolved trace metals in the southwestern Indian Ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1993, 40(5): 1043−1062. doi: 10.1016/0967-0637(93)90089-L [38] Liang W D, Yang Y J, Tang T Y, et al. Kuroshio in the Luzon strait[J]. Journal of Geophysical Research: Oceans, 2008, 113(C8): C08048. [39] Zhu Jia, Hu Jianyu, Zheng Quanan. An overview on water masses in the China seas[J]. Frontiers in Marine Science, 2022, 9: 972921. doi: 10.3389/fmars.2022.972921 [40] Zeng Lili, Wang Dongxiao, Chen Ju, et al. SCSPOD14, a South China Sea physical oceanographic dataset derived from in situ measurements during 1919-2014[J]. Scientific Data, 2016, 3(1): 160029. doi: 10.1038/sdata.2016.29 [41] Jensen L T, Morton P, Twining B S, et al. A comparison of marine Fe and Mn cycling: U. S. GEOTRACES GN01 western Arctic case study[J]. Geochimica et Cosmochimica Acta, 2020, 288: 138−160. doi: 10.1016/j.gca.2020.08.006 [42] Johnson K S, Gordon R M, Coale K H. What controls dissolved iron concentrations in the world ocean?[J]. Marine Chemistry, 1997, 57(3/4): 137−161. [43] Yang Yichao, Ren Jingling, Zhu Zhuoyi. Distributions and influencing factors of dissolved manganese in Kongsfjorden and Ny-Ålesund, Svalbard[J]. ACS Earth and Space Chemistry, 2022, 6(5): 1259−1268. doi: 10.1021/acsearthspacechem.1c00388 [44] Hatje V, Payne T E, Hill D M, et al. Kinetics of trace element uptake and release by particles in estuarine waters: effects of pH, salinity, and particle loading[J]. Environment International, 2003, 29(5): 619−629. doi: 10.1016/S0160-4120(03)00049-7 [45] Slemons L, Paul B, Resing J, et al. Particulate iron, aluminum, and manganese in the Pacific equatorial undercurrent and low latitude western boundary current sources[J]. Marine Chemistry, 2012, 142−144: 54−67. doi: 10.1016/j.marchem.2012.08.003 [46] Chen Gedun, Wu Jingfeng. Meridional distribution of dissolved manganese in the tropical and equatorial Pacific[J]. Geochimica et Cosmochimica Acta, 2019, 263: 50−67. doi: 10.1016/j.gca.2019.06.048 [47] Morgan J J. Kinetics of reaction between O2 and Mn(Ⅱ) species in aqueous solutions[J]. Geochimica et Cosmochimica Acta, 2005, 69(1): 35−48. doi: 10.1016/j.gca.2004.06.013 [48] Twining B S, Baines S B, Bozard J B, et al. Metal quotas of plankton in the equatorial Pacific Ocean[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2011, 58(3/4): 325−341. [49] Xiao Wupeng, Wang Lei, Laws E, et al. Realized niches explain spatial gradients in seasonal abundance of phytoplankton groups in the South China Sea[J]. Progress in Oceanography, 2018, 162: 223−239. doi: 10.1016/j.pocean.2018.03.008 [50] Redfield A C, Ketchum B H, Richards F A. The influence of organisms on the composition of sea-water[M]//Hill M N. The Composition of Seawater: Comparative and Descriptive Oceanography. The Sea: Ideas and Observations on Progress in the Study of the Seas. 1963: 26-77.