留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于LSTM构建海岸侵蚀风险预测模型的研究及应用

梁东 高娜 英晓明 周曾 舒勰俊 徐婉明 赵明利

梁东,高娜,英晓明,等. 基于LSTM构建海岸侵蚀风险预测模型的研究及应用[J]. 海洋学报,2024,46(6):130–140 doi: 10.12284/hyxb2024059
引用本文: 梁东,高娜,英晓明,等. 基于LSTM构建海岸侵蚀风险预测模型的研究及应用[J]. 海洋学报,2024,46(6):130–140 doi: 10.12284/hyxb2024059
Liang Dong,Gao Na,Ying Xiaoming, et al. Research and application of constructing a coastal erosion risk prediction model based on LSTM[J]. Haiyang Xuebao,2024, 46(6):130–140 doi: 10.12284/hyxb2024059
Citation: Liang Dong,Gao Na,Ying Xiaoming, et al. Research and application of constructing a coastal erosion risk prediction model based on LSTM[J]. Haiyang Xuebao,2024, 46(6):130–140 doi: 10.12284/hyxb2024059

基于LSTM构建海岸侵蚀风险预测模型的研究及应用

doi: 10.12284/hyxb2024059
基金项目: 国家重点研发计划(2022YFC3106203)课题资助;自然资源部海洋环境探测技术与应用重点实验室自主设立课题(MESTA-2022-C005)资助。
详细信息
    作者简介:

    梁东(1996—),男,云南省红河州人,主要从事海气浪耦合模型与神经网络融合应用的研究。E-mail:liangdong.96@qq.com

    通讯作者:

    赵明利(1978—),男,山东省肥城市人,正高级工程师,主要从事海洋灾害风险评估技术方法研究。E-mail:150980273@qq.com

  • 中图分类号: P737.1

Research and application of constructing a coastal erosion risk prediction model based on LSTM

  • 摘要: 岸线侵蚀预测是海岸动力地貌学研究的热点问题之一。本文基于长短期神经记忆网络LSTM,采用1985−2023年江苏射阳县附近海域收集到的岸线、水深和潮间带宽度数据,结合ERA5数据反演的波浪和潮流数据,构建海岸侵蚀风险预测模型。该预测模型可以准确反映海岸线的加速侵蚀、稳定侵蚀、淤积的非线性变化或线性变化趋势。预测结果表明,在沙源减少条件下,波浪和潮流增强是近20年来射阳海域海岸侵蚀的主要因素。此外,利用预测模型开展了海岸加固、消浪和弱流对海岸的防护效果试验,试验结果表明,海岸加固防护效果最佳,消浪防护效果较弱流防护效果好。预测模型设置运行过程高效,具有较高的应用价值和开发潜力。
  • 图  1  研究区域水深变化(a)与模型网格图(b)

    Fig.  1  Water depth change in this study area (a) and model mesh diagram (b)

    图  2  研究区域年平均有效波高(a),年平均波浪周期(b)和年平均风速(c)

    Fig.  2  Annual average effective wave height (a), annual average wave period (b) and annual average wind speed (c) in this study area

    图  3  LSTM 神经网络模型结构示意图

    Fig.  3  Schematic diagram of LSTM neural network model structure

    图  4  海岸侵蚀风险预测模型

    Fig.  4  Coastal erosion risk prediction model

    图  5  研究区域岸线回归变化率(a)与实际岸线变化(b)

    Fig.  5  Regression rate of shoreline in this study area (a) and actual shoreline change (b)

    图  6  研究区域波浪(a)和流速(b)变化

    Fig.  6  Wave (a) and tidal velocity (b) variations in this study area

    图  7  研究区域海岸坚固性(a)和潮间带宽度(b)变化

    Fig.  7  Variations of coastal firmness (a) and intertidal width (b) in this study area

    图  8  海岸侵蚀风险预测模型验证

    Fig.  8  Validation diagram of coastal erosion risk prediction model

    图  9  海岸侵蚀风险预测模型预测

    Fig.  9  Prediction diagram of coastal erosion risk prediction model

    图  10  海岸变化趋势

    Fig.  10  Diagram of coastal change trends

    图  11  海岸防护活动侵蚀风险预测

    Fig.  11  Erosion risk prediction diagram of coastal protection activities

    图  12  双导堤侵蚀风险预测

    Fig.  12  Predicted erosion risk diagram of double-dyke

    表  1  海岸侵蚀风险预测模型参数表

    Tab.  1  Parameter table of coastal erosion risk prediction model

    模型名称 参数名称 参数值
    LSTM Time steps 8
    Layers 2
    Input dim 5
    Return sequences {True, False}
    Neurous {80,88}
    Dropout { 0,0.25}
    Batch size {13,8}
    Epochs {8,10}
    下载: 导出CSV

    表  2  岸线易损性等级评估表

    Tab.  2  Assessment table of shoreline vulnerability level

    岸线向陆100 m
    平均高程
    岸线易变性 岸线组成成分 岸线易损性
    < 0 2 细砂 5
    0 < X < 2 1.5 中砂/粉砂 4
    > 2 1 粗砂/黏土 3
    # # 砾质 2
    # # 混凝土/岩石 1
      注:#为空值。
    下载: 导出CSV

    表  3  预测结果统计表

    Tab.  3  Statistical table of projected results

    淤积 稳定 一般侵蚀 严重侵蚀 总计
    2023预测断面数量 119 636 111 292 1158
    2023真实断面数量 124 728 200 311 1363
    准确率/% 95.9 87.4 55.5 93.9 84.7
    判断标准/m >25 −25 < X < 25 −100 < X < −25 X < −100
    下载: 导出CSV
  • [1] 凡姚申, 窦身堂, 裴洪杨, 等. 大河三角洲侵蚀灾害与应对策略研究进展[J]. 自然灾害学报, 2022, 31(2): 12−25.

    Fan Yaoshen, Dou Shentang, Pei Hongyang, et al. Research progress of erosion hazards and coping strategies in mega deltas[J]. Journal of Natural Disasters, 2022, 31(2): 12−25.
    [2] 李平, 丰爱平, 孙惠凤, 等. 海岸侵蚀灾害调查和评价研究进展与展望[J]. 自然灾害学报, 2021, 30(4): 55−63.

    Li Ping, Feng Aiping, Sun Huifeng, et al. Research progress and prospect of coastal erosion investigation and evaluation[J]. Journal of Natural Disasters, 2021, 30(4): 55−63.
    [3] 文世勇, 王紫竹, 王涛, 等. 基于遥感技术的海南省海岸侵蚀现状与趋势评估[J]. 灾害学, 2020, 35(1): 138−143. doi: 10.3969/j.issn.1000-811X.2020.01.025

    Wen Shiyong, Wang Zizhu, Wang Tao, et al. Status and trend assessment of coastal erosion at Hainan Province based on remote sensing technology[J]. Journal of Catastrophology, 2020, 35(1): 138−143. doi: 10.3969/j.issn.1000-811X.2020.01.025
    [4] HsuJRC, SilvesterR, Xia Yimin. Static equilibrium bays: new relationships[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1989, 115(3): 285−298. doi: 10.1061/(ASCE)0733-950X(1989)115:3(285)
    [5] Hsu T W, Jan C D, Wen C C. Modified McCormicks model for equilibrium shorelines behind a detached breakwater[J]. Ocean Engineering, 2003, 30(15): 1887−1897. doi: 10.1016/S0029-8018(03)00042-8
    [6] González M, Medina R. On the applicationof static equilibrium bay formulations to natural and man-made beaches[J]. Coastal Engineering, 2001, 43(3/4): 209−225.
    [7] Kakisina T J, Anggoro S, Hartoko A, et al. NEMOS (Nearshore Modelling of Shoreline Change) model for abrasion mitigation at the northern coast of Ambon Bay[J]. Aquatic Procedia, 2016, 7: 242−246. doi: 10.1016/j.aqpro.2016.07.034
    [8] Young R S, Pilkey O H, Bush D M, et al. A discussion of the generalized model for simulating shoreline change (GENESIS)[J]. Journal of Coastal Research, 1995, 11(3): 875−886.
    [9] Castelle B, Reniers A, MacMahan J. Bathymetric control of surf zone retention on a rip-channelled beach[J]. Ocean Dynamics, 2014, 64(8): 1221−1231.
    [10] Roelvink D, Reniers A, van Dongeren A, et al. Modelling storm impacts on beaches, dunes and barrier islands[J]. Coastal Engineering, 2009, 56(11/12): 1133−1152.
    [11] 朱萝云, 刘婷婷, 凡仁福, 等. 1986-2019年粤东企望湾砂质海岸线演变过程与驱动机制研究[J]. 海洋学报, 2022, 44(7): 82−94. doi: 10.12284/j.issn.0253-4193.2022.7.hyxb202207008

    Zhu Luoyun, Liu Tingting, Fan Renfu, et al. Study on the evolution process and driving mechanism of the sandy shoreline of the Qiwang Bay ineastern Guangdong from 1986 to 2019[J]. HaiyangXuebao, 2022, 44(7): 82−94. doi: 10.12284/j.issn.0253-4193.2022.7.hyxb202207008
    [12] 朱磊, 孙家文, 王宏, 等. 基于XBeach模型的离岸堤群防护效果评价指标[J]. 海洋环境科学, 2020, 39(5): 684−693. doi: 10.12111/j.mes.20190157

    Zhu Lei, Sun Jiawen, Wang Hong, et al. Evaluation index of protection effect of breakwaters based on XBeach model[J]. Marine Environmental Science, 2020, 39(5): 684−693. doi: 10.12111/j.mes.20190157
    [13] 于航, 张建鹏, 陈根发, 等. 基于改进XBeach的波浪作用下岸滩冲淤演变特性的数值研究[J]. 水动力学研究与进展, 2023, 38(3): 495−503.

    Yu Hang, Zhang Jianpeng, Chen Genfa, et al. Numerical study of beach profile evolution under waves based on Improved XBeach[J]. Chinese Journal of Hydrodynamics, 2023, 38(3): 495−503.
    [14] Zheng Gang, Li Xiaofeng, Zhang Ronghua, et al. Purely satellite data-driven deep learning forecast of complicated tropical instabilitywaves[J]. Science Advances, 2020, 6(29): eaba1482. doi: 10.1126/sciadv.aba1482
    [15] Nieves V, Radin C, Camps-Valls G. Predicting regional coastal sea level changes with machine learning[J]. Scientific Reports, 2021, 11(1): 7650. doi: 10.1038/s41598-021-87460-z
    [16] Gers F A, Schmidhuber J, Cummins F. Learning to forget: continual prediction with LSTM[J]. Neural Computation, 2000, 12(10): 2451−2471.
    [17] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735−1780. doi: 10.1162/neco.1997.9.8.1735
    [18] 刘建伟, 宋志妍. 循环神经网络研究综述[J]. 控制与决策, 2022, 37(11): 2753−2768.

    Liu Jianwei, Song Zhiyan. Overview of recurrent neural networks[J]. Control and Decision, 2022, 37(11): 2753−2768.
    [19] 张忍顺, 陆丽云, 王艳红. 江苏海岸侵蚀过程及其趋势[J]. 地理研究, 2002, 21(4): 469−478. doi: 10.3321/j.issn:1000-0585.2002.04.009

    Zhang Renshun, Lu Liyun, Wang Yanhong. The mechanism and trend of coastal erosion of Jiangsu Province in China[J]. Geographical Research, 2002, 21(4): 469−478. doi: 10.3321/j.issn:1000-0585.2002.04.009
    [20] Zhang Changkuan, YangYaozhong, Tao Jianfeng, et al. Suspended sediment fluxes in the radial sand ridge field of SouthYellow Sea[J]. Journal of Coastal Research, 2013, 65(sp1): 624−629.
    [21] 张林. 苏北废黄河三角洲海岸冲淤演变及其控制因素[D]. 上海: 华东师范大学, 2015.

    Zhang Lin. The coastal erosion-deposition evolution and controlling factors of the abandoned Yellow River delta in northern Jiangsu province[D]. Shanghai: East China Normal University, 2015.
    [22] 刘小喜, 陈沈良, 蒋超, 等. 苏北废黄河三角洲海岸侵蚀脆弱性评估[J]. 地理学报, 2014, 69(5): 607−618. doi: 10.11821/dlxb201405004

    Liu Xiaoxi, Chen Shenliang, Jiang Chao, et al. Vulnerability assessment of coastal erosion along the Abandoned Yellow River Delta of northern Jiangsu, China[J]. ActaGeographicaSinica, 2014, 69(5): 607−618. doi: 10.11821/dlxb201405004
    [23] Shi Hongyuan, Cao Xuefeng, Li Qingjie, et al. Evaluating the accuracy of ERA5 wave reanalysis in the water around China[J]. Journal of Ocean University of China, 2021, 20(1): 1−9. doi: 10.1007/s11802-021-4496-7
    [24] 张达恒, 时连强, 龚照辉, 等. 冬季波浪与人工岛联合作用下日月湾海滩冲淤演变特征[J]. 热带海洋学报, 2022, 41(4): 71−81. doi: 10.11978/2021150

    Zhang Daheng, Shi Lianqiang, Gong Zhaohui, et al. Evolution characteristics of beach erosion and accretion at the Riyue Bay under the combined impacts of winter waves and artificial island[J]. Journal of Tropical Oceanography, 2022, 41(4): 71−81. doi: 10.11978/2021150
    [25] Bheeroo R A, Chandrasekar N, Kaliraj S, et al. Shoreline change rate and erosion risk assessment along the Trou Aux Biches–Mont Choisy beach on the northwest coast of Mauritius using GIS-DSAS technique[J]. Environmental Earth Sciences, 2016, 75(5): 444.
    [26] 张长宽, 黄婷婷, 陶建峰, 等. 江苏海岸潮滩剖面形态与动力泥沙响应关系[J]. 河海大学学报(自然科学版), 2020, 48(3): 245−251.

    Zhang Changkuan, Huang Tingting, Tao Jianfeng, et al. Response relationship of tidal flat profile and dynamic sediment along Jiangsu Coast[J]. Journal of Hohai University (Natural Sciences), 2020, 48(3): 245−251.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  230
  • HTML全文浏览量:  61
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-24
  • 修回日期:  2024-05-13
  • 网络出版日期:  2024-07-15
  • 刊出日期:  2024-06-01

目录

    /

    返回文章
    返回