An intelligent algorithm for constructing quasi-real-time sea surface wind field
-
摘要: 本文基于深度学习U-Net网络构建了CMA-GFS数值模式风场订正模型,并以此订正模型订正后的风场为背景场(CMA-GFS_Unet),以HY-2B/2C/2D以及MetOp-B 4颗卫星的散射计海面风资料为观测资料,采用插补法快速完成准实时海面风场的构建。此智能算法可实现滞后3 h准实时生成空间分辨率为0.25°、时间分辨率为6 h的全球海面融合风场(Fusion_QRT)。分别使用CCMP融合风场数据和中国近海浮标10 m风矢量数据对CMA-GFS、CMA-GFS_Unet和Fusion_QRT 3组风场资料进行了评估,结果表明,CMA-GFS_Unet风场质量得到显著提升,Fusion_QRT风场风速质量得到进一步改善,但风向质量略有降低:相较于CCMP,3组风场的风速平均绝对误差(MAE)分别为1.13 m/s、0.89 m/s和0.84 m/s,CMA-GFS_Unet和Fusion_QRT相较于CMA-GFS分别提升了21.3%和25.7%;风向MAE分别为17.5°、15.5°和16°,分别提升了11.3%和8.6%;而相较于浮标,风速MAE分别为1.50 m/s、1.36 m/s和1.28 m/s,分别提升了9.3%和14.7%;风向MAE分别为23.3°、22.7°和24.0°,分别提升了3.0%和−3.9%。Abstract: In this paper, the correction model of CMA-GFS numerical model wind field is constructed based on the deep learning U-Net network, and the construction of the quasi-real-time sea surface wind field is rapidly accomplished by interpolation method using the corrected wind field with the correction model as the background field (CMA-GFS_Unet), and using the scatterometer sea surface wind data from the four satellites, namely, HY-2B/2C/2D and MetOp-B as the observation data. This intelligent algorithm can realize the generation of global sea surface fusion wind field (Fusion_QRT) with a spatial resolution of 0.25° and a temporal resolution of 6 hours in quasi-real time with a lag of 3 hours. The CMA-GFS, CMA-GFS_Unet and Fusion_QRT wind fields are evaluated using the CCMP fusion wind field data and the 10 m wind vector data from the Chinese offshore buoys, respectively.The results show that the quality of the CMA-GFS_Unet wind field has been significantly improved, and the quality of the wind speed of the Fusion_QRT wind field has been further improved but the quality of the wind direction has been slightly reduced. The mean absolute errors (MAEs) of wind speed are 1.13 m/s, 0.89 m/s and 0.84 m/s for the three wind fields by using CCMP data as reference, and the CMA-GFS_Unet and Fusion_QRT wind fields have improved by 21.3% and 25.7% compared to the CMA-GFS, respectively; while the MAEs of wind direction are 17.5°, 15.5° and 16°, and have improved by11.3% and 8.6%, respectively.The MAEs of wind speed are 1.50 m/s, 1.36 m/s and 1.28 m/s for the three wind fields by using buoy data as reference, and have improved by 9.5% and 14.7% , respectively; while the MAEs of wind direction are 23.3°, 22.7° and 24.0°, and have improved by 3.0% and −3.9% , respectively.
-
Key words:
- U-Net /
- CCMP /
- CMA-GFS /
- HY-2B/2C/2D /
- MetOp-B /
- quasi-real-time /
- sea surface wind field
-
表 1 卫星散射计数据平均覆盖率
Tab. 1 Average coverage of satellite scatterometer data
时间 00 UTC 06 UTC 12 UTC 18 UTC 覆盖率 33.05% 42.88% 28.38% 16.51% 表 2 4组风场数据风速风向检验结果
Tab. 2 Results of wind speed and direction for four sets of wind field data
检验数据 风速 风向 ME/(m·s−1) MAE/(m·s−1) RMSE/(m·s−1) CC ME/(°) MAE/(°) RMSE/(°) CMA-GFS −0.06 1.13 1.53 0.925 0.5 17.5 31.2 CMA-GFS_Unet −0.06 0.89 1.21 0.955 0.2 15.5 28.1 Fusion_QRT −0.06 0.84 1.16 0.958 0.3 16.0 28.8 Fusion −0.05 0.78 1.09 0.963 0.3 16.4 29.5 表 3 5组数据风速风向检验结果
Tab. 3 Results of wind speed and direction for five sets of wind field data
海区 检验数据 风速 风向 ME/(m·s−1) MAE/(m·s−1) RMSE/(m·s−1) CC ME/(°) MAE/(°) RMSE/(°) 渤海 CCMP −0.51 1.19 1.55 0.92 −14.7 24.6 32.9 CMA-GFS 0.71 1.53 1.99 0.85 −2.7 26 37.1 CMA-GFS_Unet −0.42 1.37 1.87 0.87 −4.3 25.6 36.3 Fusion_QRT −0.76 1.44 1.85 0.89 −9.6 28 39.1 Fusion −0.76 1.41 1.81 0.90 −12.2 28.7 39.1 黄海 CCMP 0.65 1.43 1.91 0.83 −2.1 19.5 25.9 CMA-GFS 1.06 1.72 2.2 0.8 6.6 21.3 30.7 CMA-GFS_Unet 0.64 1.55 2.05 0.79 3.2 21.1 29.5 Fusion_QRT 0.5 1.4 1.86 0.81 −1.2 23.1 31.2 Fusion 0.48 1.36 1.82 0.82 −2.4 23.5 31.6 东海 CCMP 0.04 1.01 1.31 0.89 4.3 23.6 37.7 CMA-GFS 0.16 1.33 1.74 0.82 9.8 25.4 38.7 CMA-GFS_Unet −0.12 1.24 1.61 0.85 6.5 23.7 36.7 Fusion_QRT −0.24 1.13 1.5 0.87 2.6 24.3 37.3 Fusion −0.21 1.09 1.45 0.88 3.4 24.5 37.6 南海 CCMP 0.08 0.97 1.44 0.86 −7.1 19.7 28 CMA-GFS 0.03 1.36 1.84 0.75 −0.5 22.8 34.3 CMA-GFS_Unet −0.14 1.2 1.6 0.82 −5.2 22.1 32.4 Fusion_QRT −0.26 1.15 1.54 0.85 −5.2 22.8 34.1 Fusion −0.20 1.12 1.50 0.86 −6.7 22.6 34.0 -
[1] 张巍, 杜超凡, 郭安博宇, 等. 一种机器学习海面风场快速融合的方法[J]. 海洋学报, 2022, 44(11): 144−158.Zhang Wei, Du Chaofan, Guo Anboyu, et al. Sea surface wind field smart fusion base on machine learning method[J]. HaiyangXuebao, 2022, 44(11): 144−158. [2] 柳婧, 宋晓姜, 王彰贵. 海面风场融合技术综述[J]. 海洋预报, 2018, 35(3): 81−87.Liu Jing, Song Xiaojiang, Wang Zhanggui. Review of fusion technology of sea surface wind[J]. Marine Forecasts, 2018, 35(3): 81−87. [3] 旷芳芳, 张友权, 张俊鹏, 等. 3种海面风场资料在台湾海峡的比较和评估[J]. 海洋学报, 2015, 37(5): 44−53.Kuang Fangfang, Zhang Youquan, Zhang Junpeng, et al. Comparison and evaluation of three sea surface wind products in Taiwan Strait[J]. HaiyangXuebao, 2015, 37(5): 44−53. [4] 詹思玙, 齐琳琳, 卢伟. 基于CCMP资料和现场观测资料的西北太平洋海面风场特征分析[J]. 海洋预报, 2017, 34(2): 10−20.Zhan Siyu, Qi Linlin, Lu Wei. Analysis of sea surface wind in northwest Pacific based on CCMP satellite data[J]. Marine Forecasts, 2017, 34(2): 10−20. [5] 金铸钰, 刘凯, 郭安博宇, 等. 基于CCMP的西北太平洋海面风场特征分析[J]. 海洋预报, 2022, 39(2): 20−33.Jin Zhuyu, Liu Kai, Guo Anboyu, et al. Characteristics analysis of the sea surface wind in the Northwest Pacific basedon CCMP satellite data[J]. MarineForecasts, 2022, 39(2): 20−33. [6] 林晓娟, 李响, 刘晓燕, 等. EC预报数据在中国近海的适用性研究[J]. 海洋预报, 2023, 40(6): 51−66.Lin Xiaojuan, Li Xiang, Liu Xiaoyan, et al. Applicability of EC forecast data in China’s offshore waters[J]. Marine Forecasts, 2023, 40(6): 51−66. [7] 郑崇伟. 基于CCMP风场的近22年中国海海表风场特征分析[J]. 气象与减灾研究, 2011, 34(3): 41−46.Zheng Chongwei. Sea surface wind field analysis in the China seaduring the last 22 years with CCMP wind field[J]. Meteorology and Disaster Reduction Research, 2011, 34(3): 41−46. [8] 柳婧. 基于最优插值方法的中国近海海面风场资料融合研究[D]. 北京: 国家海洋环境预报中心, 2018.Liu Jing. Research on data fusion of sea surface wind in China’s offshore based on optimal interpolation method[D]. Beijing: NationalMarine Environmental Forecasting Center, 2018. [9] 唐焕丽, 姚琴, 吕晓莹, 等. 多源卫星融合的广东海域海面风场特征[J]. 遥感信息, 2020, 35(1): 117−122.Tang Huanli, Yao Qin, Lü Xiaoying, et al. Characteristics of sea surface wind field in Guangdong sea area with multi-source satellite fusion[J]. Remote Sensing Information, 2020, 35(1): 117−122. [10] 吕思睿. 多源卫星海面风场融合研究[D]. 南京: 南京信息工程大学, 2023.Lü Sirui. Multi-source satellite sea surface wind field fusion study[D]. Nanjing: Nanjing University of Information Science & Technology, 2023. [11] 齐亚琳, 林明森. 数据融合技术在海洋二号卫星数据中的应用[J]. 航天器工程, 2012, 21(3): 117−123.Qi Yalin, Lin Mingsen. Application of the data fusion technique in HY-2 satellite data[J]. Spacecraft Engineering, 2012, 21(3): 117−123. [12] Zou Juhong, Lin Minsen, Zou Bin, et al. Fusion of sea surface wind vector data acquired by multi-source active and passive sensors in China sea[J]. International Journal of Remote Sensing, 2017, 38(23): 6477−6491. doi: 10.1080/01431161.2017.1356486 [13] 刘宇昕. 星载微波散射计数据和数值模式产品海面风场混合分析研究[D]. 北京: 国家海洋环境预报研究中心, 2013.Liu Yuxin. A study on the mixing analysis of sea surface wind field with satellite microwave scatterometer data and numerical model products[D]. Beijing: NationalMarine Environmental Forecasting Center, 2013. [14] 李莎, 舒红, 徐正全. 利用时空Kriging进行气温插值研究[J]. 武汉大学学报•信息科学版, 2012, 37(2): 237−241.Li Sha, Shu Hong, Xu Zhengquan. Interpolation of temperature based on spatial-temporal kriging[J]. Geomatics and Information Science of Wuhan University, 2012, 37(2): 237−241. [15] 许遐祯, 高健, 张康宇, 等. 基于多源数据的中国近海风场融合方法研究[J]. 杭州师范大学学报(自然科学版), 2016, 15(3): 325−330.Xu Xiazhen, Gao Jian, Zhang Kangyu. Fusion method of China’s offshore wind field based on multi-source data[J]. Journal of Hangzhou Normal University (Natural Science Edition), 2016, 15(3): 325−330. [16] 项杰, 王慧鹏, 王春明, 等. 南海海面风场变分融合的初步研究[J]. 热带气象学报, 2015, 31(2): 153−160.Xiang Jie, Wang Huipeng, Wang Chunming, et al. Preliminary study on variational blending of surface vector winds in South China Sea[J]. Journal of Tropical Meteorology, 2015, 31(2): 153−160. [17] 邹婷. 2DVAR算法在局地海表流场和风场融合中的应用[D]. 南京: 南京信息工程大学, 2020.Zou Ting. Application of 2DVAR algorithms to the fusion of localized sea surface current and wind fields[D]. Nanjing: Nanjing University of Information Science and Technology, 2020. [18] 吴新荣, 王喜冬, 李威, 等. 海洋数据同化与数据融合技术应用综述[J]. 海洋技术学报, 2015, 34(3): 97−103.Wu Xinrong, Wang Xidong, Li Wei, et al. Review of the application of ocean data assimilation and data fusion techniques[J]. Journal of Ocean Technology, 2015, 34(3): 97−103. [19] 张东翔. 多源卫星海面风场产品检验及融合研究[D]. 长沙: 国防科技大学, 2018.Zhang Dongxiang. Research of multi-source satellite sea surface wind validation and data fusion[D]. Changsha: National University of Defense Technology, 2018. [20] 李明悝, 侯一筠. 利用QuikSCAT/NCEP混合风场及WAVEWATCH模拟东中国海风浪场[J]. 海洋科学, 2005, 29(6): 9−12.Li Mingkui, HouYijun. Simulating wind-wave field of the East China Seas with QuikSCAT/NCEP blended wind and WAVEWATCH[J]. Marine Sciences, 2005, 29(6): 9−12. [21] Atlas R, Hoffman R N, Ardizzone J, et al. Across-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications[J]. Bulletin of the American Meteorological Society, 2011, 92(2): 157−174. [22] Mears C A, Scott J, Wentz F J, et al. A near-real-time version of the Cross-Calibrated Multiplatform (CCMP) ocean surface wind velocity data set[J]. Journal of Geophysical Research: Oceans, 2019, 124(10): 6997−7010. doi: 10.1029/2019JC015367 [23] Mears C, Lee T, Ricciardulli L, et al. Improving the accuracy of the Cross-Calibrated Multi-Platform (CCMP) ocean vector winds[J]. Remote Sensing, 2022, 14(17): 4230. doi: 10.3390/rs14174230 [24] 王慧, 隋伟辉. 基于CCMP风场的中国近海18个海区海面大风季节变化特征分析[J]. 气象科技, 2013, 41(4): 720−725.Wang Hui, Sui Weihui. Seasonal variation analysis of sea surface winds in China Sea areas with CCMP wind field data[J]. Meteorological Science and Technology, 2013, 41(4): 720−725. [25] 刘建强, 叶小敏, 兰友国. 我国海洋卫星遥感大数据及其应用服务[J]. 大数据, 2022, 8(2): 75−88.Liu Jianqiang, Ye Xiaomin, Lan Youguo. Remote sensing big data from Chinese oceansatellites and its application service[J]. Big Data Research, 2022, 8(2): 75−88. [26] 林明森, 何贤强, 贾永君, 等. 中国海洋卫星遥感技术进展[J]. 海洋学报, 2019, 41(10): 99−112.Lin Mingsen, He Xianqiang, JiaYongjun, et al. Advances in marine satellite remote sensing technology in China[J]. HaiyangXuebao, 2019, 41(10): 99−112. [27] Park S H, Yoo J, Son D, et al. Improved calibration of wind estimates from advanced scatterometer MetOp-B in Korean Seas using deep neural network[J]. Remote Sensing, 2021, 13(20): 4164. doi: 10.3390/rs13204164 [28] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the18th International Conferenceon Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Munich: Springer, 2015. [29] 朱延和. 基于U-net神经网络的新疆地面气温和风的预报订正研究[D]. 南京: 南京信息工程大学, 2023.Zhu Yanhe. Prediction correction of surface temperature and wind in Xinjiang based on U-net neural network[D]. Nanjing: Nanjing University of Information Science &Technology, 2023. [30] 张延彪, 陈明轩, 韩雷, 等. 数值天气预报多要素深度学习融合订正方法[J]. 气象学报, 2022, 80(1): 153−167. doi: 10.11676/qxxb2021.066Zhang Yanbiao, Chen Mingxuan, Han Lei, et al. Multi-element deep learning fusion correction method for numerical weather prediction[J]. ActaMeteorologicaSinica, 2022, 80(1): 153−167 doi: 10.11676/qxxb2021.066 [31] Han Lei, Chen Mingxuan, Chen Kangkai, et al. A deep learning method for bias correction of ECMWF 24-240 h forecasts[J]. Advances in Atmospheric Sciences, 2021, 38(9): 1444−1459. doi: 10.1007/s00376-021-0215-y [32] 张延彪, 宋林烨, 陈明轩, 等. 基于卷积神经网络的京津冀地区高分辨率格点预报偏差订正试验[J]. 大气科学学报, 2022, 45(6): 850−862.Zhang Yanbiao, Song Linye, Chen Mingxuan, et al. A study of error correction for high-resolution gridded forecast based on a convolutional neural network in the Beijing-Tianjin-Hebei Region[J]. Transactions of Atmospheric Sciences, 2022, 45(6): 850−862. [33] Lagerquist R, Stewart J Q, Ebert-Uphoff I, et al. Using deep learning to nowcast the spatial coverage of convection from Himawari-8 satellite data[J]. Monthly Weather Review, 2021, 149(12): 3897−3921. doi: 10.1175/MWR-D-21-0096.1