留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

构建准实时海面风场的一种智能算法

刘晓燕 宋晓姜 郭安博宇 郝赛 彭炜

刘晓燕,宋晓姜,郭安博宇,等. 构建准实时海面风场的一种智能算法[J]. 海洋学报,2024,46(6):51–65 doi: 10.12284/hyxb2024051
引用本文: 刘晓燕,宋晓姜,郭安博宇,等. 构建准实时海面风场的一种智能算法[J]. 海洋学报,2024,46(6):51–65 doi: 10.12284/hyxb2024051
Liu Xiaoyan,Song Xiaojiang,Guo Anboyu, et al. An intelligent algorithm for constructing quasi-real-time sea surface wind field[J]. Haiyang Xuebao,2024, 46(6):51–65 doi: 10.12284/hyxb2024051
Citation: Liu Xiaoyan,Song Xiaojiang,Guo Anboyu, et al. An intelligent algorithm for constructing quasi-real-time sea surface wind field[J]. Haiyang Xuebao,2024, 46(6):51–65 doi: 10.12284/hyxb2024051

构建准实时海面风场的一种智能算法

doi: 10.12284/hyxb2024051
基金项目: 国家重点研发计划(2023YFC3107901);自然资源部空间海洋遥感与应用研究重点实验室开放基金(202102004)。
详细信息
    作者简介:

    刘晓燕(1988—),女,山东省日照市人,从事海面风场资料同化与融合研究。E-mail:liuxiaoyan-de@163.com

    通讯作者:

    宋晓姜(1981—),女,北京市人,正高级工程师,从事海洋气象预报研究。E-mail:xjsong@nmefc.cn

  • 中图分类号: P714+.2

An intelligent algorithm for constructing quasi-real-time sea surface wind field

  • 摘要: 本文基于深度学习U-Net网络构建了CMA-GFS数值模式风场订正模型,并以此订正模型订正后的风场为背景场(CMA-GFS_Unet),以HY-2B/2C/2D以及MetOp-B 4颗卫星的散射计海面风资料为观测资料,采用插补法快速完成准实时海面风场的构建。此智能算法可实现滞后3 h准实时生成空间分辨率为0.25°、时间分辨率为6 h的全球海面融合风场(Fusion_QRT)。分别使用CCMP融合风场数据和中国近海浮标10 m风矢量数据对CMA-GFS、CMA-GFS_Unet和Fusion_QRT 3组风场资料进行了评估,结果表明,CMA-GFS_Unet风场质量得到显著提升,Fusion_QRT风场风速质量得到进一步改善,但风向质量略有降低:相较于CCMP,3组风场的风速平均绝对误差(MAE)分别为1.13 m/s、0.89 m/s和0.84 m/s,CMA-GFS_Unet和Fusion_QRT相较于CMA-GFS分别提升了21.3%和25.7%;风向MAE分别为17.5°、15.5°和16°,分别提升了11.3%和8.6%;而相较于浮标,风速MAE分别为1.50 m/s、1.36 m/s和1.28 m/s,分别提升了9.3%和14.7%;风向MAE分别为23.3°、22.7°和24.0°,分别提升了3.0%和−3.9%。
  • 图  1  浮标站点位置分布

    Fig.  1  Distribution of buoys location

    图  2  准实时海面风场构建流程

    Fig.  2  Flow chart of quasi-real-time surface wind field construction

    图  3  U-Net网络结构示意

    Fig.  3  Diagram of U-Net network structure

    图  4  CMA-GFS风场订正效果

    Fig.  4  CMA-GFS wind field correction effect diagram

    图  5  CMA-GFS风场订正效果(西北太平洋区域)

    Fig.  5  CMA-GFS wind field correction effect diagram (Northwest Pacific region)

    图  6  准实时海面风场构建过程示意

    Fig.  6  Process of quasi-real-time surface wind field construction

    图  7  海面融合风场构建过程示意

    Fig.  7  Process of surface fuisonwind field construction

    图  8  4组数据风速/风向误差时间序列

    Fig.  8  Time series of wind speed/direction error for four sets of data

    图  9  5组数据与浮标观测的风速/风向散点图

    Fig.  9  Scatter plots of wind speed/direction of five sets of data vs buoys

    图  10  5组数据与浮标观测风速在不同海域的泰勒图

    Fig.  10  Tylar diagram of wind speed of five sets of data in different sea areas

    图  11  5组数据在不同浮标站点的风速/风向平均绝对误差情况

    Fig.  11  MAE of wind speed/direction at different buoy sites for five sets of data

    表  1  卫星散射计数据平均覆盖率

    Tab.  1  Average coverage of satellite scatterometer data

    时间 00 UTC 06 UTC 12 UTC 18 UTC
    覆盖率 33.05% 42.88% 28.38% 16.51%
    下载: 导出CSV

    表  2  4组风场数据风速风向检验结果

    Tab.  2  Results of wind speed and direction for four sets of wind field data

    检验数据 风速 风向
    ME/(m·s−1) MAE/(m·s−1) RMSE/(m·s−1) CC ME/(°) MAE/(°) RMSE/(°)
    CMA-GFS −0.06 1.13 1.53 0.925 0.5 17.5 31.2
    CMA-GFS_Unet −0.06 0.89 1.21 0.955 0.2 15.5 28.1
    Fusion_QRT −0.06 0.84 1.16 0.958 0.3 16.0 28.8
    Fusion −0.05 0.78 1.09 0.963 0.3 16.4 29.5
    下载: 导出CSV

    表  3  5组数据风速风向检验结果

    Tab.  3  Results of wind speed and direction for five sets of wind field data

    海区 检验数据 风速 风向
    ME/(m·s−1) MAE/(m·s−1) RMSE/(m·s−1) CC ME/(°) MAE/(°) RMSE/(°)
    渤海 CCMP −0.51 1.19 1.55 0.92 −14.7 24.6 32.9
    CMA-GFS 0.71 1.53 1.99 0.85 −2.7 26 37.1
    CMA-GFS_Unet −0.42 1.37 1.87 0.87 −4.3 25.6 36.3
    Fusion_QRT −0.76 1.44 1.85 0.89 −9.6 28 39.1
    Fusion −0.76 1.41 1.81 0.90 −12.2 28.7 39.1
    黄海 CCMP 0.65 1.43 1.91 0.83 −2.1 19.5 25.9
    CMA-GFS 1.06 1.72 2.2 0.8 6.6 21.3 30.7
    CMA-GFS_Unet 0.64 1.55 2.05 0.79 3.2 21.1 29.5
    Fusion_QRT 0.5 1.4 1.86 0.81 −1.2 23.1 31.2
    Fusion 0.48 1.36 1.82 0.82 −2.4 23.5 31.6
    东海 CCMP 0.04 1.01 1.31 0.89 4.3 23.6 37.7
    CMA-GFS 0.16 1.33 1.74 0.82 9.8 25.4 38.7
    CMA-GFS_Unet −0.12 1.24 1.61 0.85 6.5 23.7 36.7
    Fusion_QRT −0.24 1.13 1.5 0.87 2.6 24.3 37.3
    Fusion −0.21 1.09 1.45 0.88 3.4 24.5 37.6
    南海 CCMP 0.08 0.97 1.44 0.86 −7.1 19.7 28
    CMA-GFS 0.03 1.36 1.84 0.75 −0.5 22.8 34.3
    CMA-GFS_Unet −0.14 1.2 1.6 0.82 −5.2 22.1 32.4
    Fusion_QRT −0.26 1.15 1.54 0.85 −5.2 22.8 34.1
    Fusion −0.20 1.12 1.50 0.86 −6.7 22.6 34.0
    下载: 导出CSV
  • [1] 张巍, 杜超凡, 郭安博宇, 等. 一种机器学习海面风场快速融合的方法[J]. 海洋学报, 2022, 44(11): 144−158.

    Zhang Wei, Du Chaofan, Guo Anboyu, et al. Sea surface wind field smart fusion base on machine learning method[J]. HaiyangXuebao, 2022, 44(11): 144−158.
    [2] 柳婧, 宋晓姜, 王彰贵. 海面风场融合技术综述[J]. 海洋预报, 2018, 35(3): 81−87.

    Liu Jing, Song Xiaojiang, Wang Zhanggui. Review of fusion technology of sea surface wind[J]. Marine Forecasts, 2018, 35(3): 81−87.
    [3] 旷芳芳, 张友权, 张俊鹏, 等. 3种海面风场资料在台湾海峡的比较和评估[J]. 海洋学报, 2015, 37(5): 44−53.

    Kuang Fangfang, Zhang Youquan, Zhang Junpeng, et al. Comparison and evaluation of three sea surface wind products in Taiwan Strait[J]. HaiyangXuebao, 2015, 37(5): 44−53.
    [4] 詹思玙, 齐琳琳, 卢伟. 基于CCMP资料和现场观测资料的西北太平洋海面风场特征分析[J]. 海洋预报, 2017, 34(2): 10−20.

    Zhan Siyu, Qi Linlin, Lu Wei. Analysis of sea surface wind in northwest Pacific based on CCMP satellite data[J]. Marine Forecasts, 2017, 34(2): 10−20.
    [5] 金铸钰, 刘凯, 郭安博宇, 等. 基于CCMP的西北太平洋海面风场特征分析[J]. 海洋预报, 2022, 39(2): 20−33.

    Jin Zhuyu, Liu Kai, Guo Anboyu, et al. Characteristics analysis of the sea surface wind in the Northwest Pacific basedon CCMP satellite data[J]. MarineForecasts, 2022, 39(2): 20−33.
    [6] 林晓娟, 李响, 刘晓燕, 等. EC预报数据在中国近海的适用性研究[J]. 海洋预报, 2023, 40(6): 51−66.

    Lin Xiaojuan, Li Xiang, Liu Xiaoyan, et al. Applicability of EC forecast data in China’s offshore waters[J]. Marine Forecasts, 2023, 40(6): 51−66.
    [7] 郑崇伟. 基于CCMP风场的近22年中国海海表风场特征分析[J]. 气象与减灾研究, 2011, 34(3): 41−46.

    Zheng Chongwei. Sea surface wind field analysis in the China seaduring the last 22 years with CCMP wind field[J]. Meteorology and Disaster Reduction Research, 2011, 34(3): 41−46.
    [8] 柳婧. 基于最优插值方法的中国近海海面风场资料融合研究[D]. 北京: 国家海洋环境预报中心, 2018.

    Liu Jing. Research on data fusion of sea surface wind in China’s offshore based on optimal interpolation method[D]. Beijing: NationalMarine Environmental Forecasting Center, 2018.
    [9] 唐焕丽, 姚琴, 吕晓莹, 等. 多源卫星融合的广东海域海面风场特征[J]. 遥感信息, 2020, 35(1): 117−122.

    Tang Huanli, Yao Qin, Lü Xiaoying, et al. Characteristics of sea surface wind field in Guangdong sea area with multi-source satellite fusion[J]. Remote Sensing Information, 2020, 35(1): 117−122.
    [10] 吕思睿. 多源卫星海面风场融合研究[D]. 南京: 南京信息工程大学, 2023.

    Lü Sirui. Multi-source satellite sea surface wind field fusion study[D]. Nanjing: Nanjing University of Information Science & Technology, 2023.
    [11] 齐亚琳, 林明森. 数据融合技术在海洋二号卫星数据中的应用[J]. 航天器工程, 2012, 21(3): 117−123.

    Qi Yalin, Lin Mingsen. Application of the data fusion technique in HY-2 satellite data[J]. Spacecraft Engineering, 2012, 21(3): 117−123.
    [12] Zou Juhong, Lin Minsen, Zou Bin, et al. Fusion of sea surface wind vector data acquired by multi-source active and passive sensors in China sea[J]. International Journal of Remote Sensing, 2017, 38(23): 6477−6491. doi: 10.1080/01431161.2017.1356486
    [13] 刘宇昕. 星载微波散射计数据和数值模式产品海面风场混合分析研究[D]. 北京: 国家海洋环境预报研究中心, 2013.

    Liu Yuxin. A study on the mixing analysis of sea surface wind field with satellite microwave scatterometer data and numerical model products[D]. Beijing: NationalMarine Environmental Forecasting Center, 2013.
    [14] 李莎, 舒红, 徐正全. 利用时空Kriging进行气温插值研究[J]. 武汉大学学报•信息科学版, 2012, 37(2): 237−241.

    Li Sha, Shu Hong, Xu Zhengquan. Interpolation of temperature based on spatial-temporal kriging[J]. Geomatics and Information Science of Wuhan University, 2012, 37(2): 237−241.
    [15] 许遐祯, 高健, 张康宇, 等. 基于多源数据的中国近海风场融合方法研究[J]. 杭州师范大学学报(自然科学版), 2016, 15(3): 325−330.

    Xu Xiazhen, Gao Jian, Zhang Kangyu. Fusion method of China’s offshore wind field based on multi-source data[J]. Journal of Hangzhou Normal University (Natural Science Edition), 2016, 15(3): 325−330.
    [16] 项杰, 王慧鹏, 王春明, 等. 南海海面风场变分融合的初步研究[J]. 热带气象学报, 2015, 31(2): 153−160.

    Xiang Jie, Wang Huipeng, Wang Chunming, et al. Preliminary study on variational blending of surface vector winds in South China Sea[J]. Journal of Tropical Meteorology, 2015, 31(2): 153−160.
    [17] 邹婷. 2DVAR算法在局地海表流场和风场融合中的应用[D]. 南京: 南京信息工程大学, 2020.

    Zou Ting. Application of 2DVAR algorithms to the fusion of localized sea surface current and wind fields[D]. Nanjing: Nanjing University of Information Science and Technology, 2020.
    [18] 吴新荣, 王喜冬, 李威, 等. 海洋数据同化与数据融合技术应用综述[J]. 海洋技术学报, 2015, 34(3): 97−103.

    Wu Xinrong, Wang Xidong, Li Wei, et al. Review of the application of ocean data assimilation and data fusion techniques[J]. Journal of Ocean Technology, 2015, 34(3): 97−103.
    [19] 张东翔. 多源卫星海面风场产品检验及融合研究[D]. 长沙: 国防科技大学, 2018.

    Zhang Dongxiang. Research of multi-source satellite sea surface wind validation and data fusion[D]. Changsha: National University of Defense Technology, 2018.
    [20] 李明悝, 侯一筠. 利用QuikSCAT/NCEP混合风场及WAVEWATCH模拟东中国海风浪场[J]. 海洋科学, 2005, 29(6): 9−12.

    Li Mingkui, HouYijun. Simulating wind-wave field of the East China Seas with QuikSCAT/NCEP blended wind and WAVEWATCH[J]. Marine Sciences, 2005, 29(6): 9−12.
    [21] Atlas R, Hoffman R N, Ardizzone J, et al. Across-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications[J]. Bulletin of the American Meteorological Society, 2011, 92(2): 157−174.
    [22] Mears C A, Scott J, Wentz F J, et al. A near-real-time version of the Cross-Calibrated Multiplatform (CCMP) ocean surface wind velocity data set[J]. Journal of Geophysical Research: Oceans, 2019, 124(10): 6997−7010. doi: 10.1029/2019JC015367
    [23] Mears C, Lee T, Ricciardulli L, et al. Improving the accuracy of the Cross-Calibrated Multi-Platform (CCMP) ocean vector winds[J]. Remote Sensing, 2022, 14(17): 4230. doi: 10.3390/rs14174230
    [24] 王慧, 隋伟辉. 基于CCMP风场的中国近海18个海区海面大风季节变化特征分析[J]. 气象科技, 2013, 41(4): 720−725.

    Wang Hui, Sui Weihui. Seasonal variation analysis of sea surface winds in China Sea areas with CCMP wind field data[J]. Meteorological Science and Technology, 2013, 41(4): 720−725.
    [25] 刘建强, 叶小敏, 兰友国. 我国海洋卫星遥感大数据及其应用服务[J]. 大数据, 2022, 8(2): 75−88.

    Liu Jianqiang, Ye Xiaomin, Lan Youguo. Remote sensing big data from Chinese oceansatellites and its application service[J]. Big Data Research, 2022, 8(2): 75−88.
    [26] 林明森, 何贤强, 贾永君, 等. 中国海洋卫星遥感技术进展[J]. 海洋学报, 2019, 41(10): 99−112.

    Lin Mingsen, He Xianqiang, JiaYongjun, et al. Advances in marine satellite remote sensing technology in China[J]. HaiyangXuebao, 2019, 41(10): 99−112.
    [27] Park S H, Yoo J, Son D, et al. Improved calibration of wind estimates from advanced scatterometer MetOp-B in Korean Seas using deep neural network[J]. Remote Sensing, 2021, 13(20): 4164. doi: 10.3390/rs13204164
    [28] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the18th International Conferenceon Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Munich: Springer, 2015.
    [29] 朱延和. 基于U-net神经网络的新疆地面气温和风的预报订正研究[D]. 南京: 南京信息工程大学, 2023.

    Zhu Yanhe. Prediction correction of surface temperature and wind in Xinjiang based on U-net neural network[D]. Nanjing: Nanjing University of Information Science &Technology, 2023.
    [30] 张延彪, 陈明轩, 韩雷, 等. 数值天气预报多要素深度学习融合订正方法[J]. 气象学报, 2022, 80(1): 153−167. doi: 10.11676/qxxb2021.066

    Zhang Yanbiao, Chen Mingxuan, Han Lei, et al. Multi-element deep learning fusion correction method for numerical weather prediction[J]. ActaMeteorologicaSinica, 2022, 80(1): 153−167 doi: 10.11676/qxxb2021.066
    [31] Han Lei, Chen Mingxuan, Chen Kangkai, et al. A deep learning method for bias correction of ECMWF 24-240 h forecasts[J]. Advances in Atmospheric Sciences, 2021, 38(9): 1444−1459. doi: 10.1007/s00376-021-0215-y
    [32] 张延彪, 宋林烨, 陈明轩, 等. 基于卷积神经网络的京津冀地区高分辨率格点预报偏差订正试验[J]. 大气科学学报, 2022, 45(6): 850−862.

    Zhang Yanbiao, Song Linye, Chen Mingxuan, et al. A study of error correction for high-resolution gridded forecast based on a convolutional neural network in the Beijing-Tianjin-Hebei Region[J]. Transactions of Atmospheric Sciences, 2022, 45(6): 850−862.
    [33] Lagerquist R, Stewart J Q, Ebert-Uphoff I, et al. Using deep learning to nowcast the spatial coverage of convection from Himawari-8 satellite data[J]. Monthly Weather Review, 2021, 149(12): 3897−3921. doi: 10.1175/MWR-D-21-0096.1
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  147
  • HTML全文浏览量:  72
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-24
  • 修回日期:  2024-05-10
  • 网络出版日期:  2024-07-12
  • 刊出日期:  2024-06-01

目录

    /

    返回文章
    返回