Seasonal variations of planktonic copepods abundance and their relationship with environmental factors in the Haizhou Bay
-
摘要: 浮游桡足类是浮游动物中的一个重要类群,研究浮游桡足类的分布特征及其与环境因子的相关性具有重要意义。本研究利用广义加性模型(GAM)对2003−2022年江苏连云港海州湾人工鱼礁区及邻近海域的环境监测数据进行分析,探讨了浮游桡足类的季节变化、空间分布及其与环境因子的相关性。结果表明,浮游桡足类丰度季节间差异极显著(p < 0.01),均值由大到小依次为春季、夏季、秋季。丰度空间分布总体呈现人工鱼礁区低、近岸南部海域高的分布态势。GAM结果显示,季节间主要影响因子有同有异,春季是溶解氧浓度、叶绿素a浓度、硅酸盐浓度和硝酸盐浓度;夏季是生化需氧量、硅酸盐浓度、铵盐浓度和温度;秋季是盐度、溶解氧浓度、磷酸盐浓度和悬浮物含量。本研究可为进一步认识人工鱼礁海域浮游动物结构以及针对人工鱼礁海域栖息地适宜性评价提供参考。Abstract: Planktonic copepods is an important group of zooplankton. It is of great significance to study the distribution characteristics of planktonic copepods abundance and its correlation with various environmental indicators. In this study, we analyzed environmental monitoring data of Haizhou Bay, Lianyungang, Jiangsu Province, from 2003 to 2022 using generalized additive model (GAM), to investigate the spatiotemporal variation of planktonic copepods and its correlation with other sea water indicators. The results showed that the abundance of planktonic copepods varied significantly different between seasons (p < 0.01), and the mean value of copepods was greater in spring than in summer than in autumn. The spatial distribution of abundance was generally low in the artificial reef area and high in the southern coastal area. GAM analysis showed that the main influencing factors were different between seasons. The main influencing factors in spring were dissolved oxygen, chlorophyll a concentration,
${\mathrm{SiO}}_3^- $ -Si concentration and${\mathrm{NO}}_3^- $ -N concentration. The main influencing factors in summer were biochemical oxygen demand, temperature,${\mathrm{SiO}}_3^- $ -Si concentration and${\mathrm{NH}}_4^+ $ -N concentration. The main influencing factors in autumn were dissolved oxygen, salinity, suspended solids content and${\mathrm{PO}}_4^{3-} $ -P concentration. This study can provide a reference for further study of zooplankton structure and habitat suitability evaluation in artificial reef waters. -
表 1 海州湾春、夏、秋季浮游桡足类丰度最优模型
Tab. 1 Optimal model for planktonic copepods abundance during spring, summer, and autumn in the Haizhou Bay
季节 解释变量 AIC 解释率/% 春季 硝酸盐浓度 + 硅酸盐浓度 + 亚硝酸盐浓度 + 溶解氧浓度 + 盐度 + 水色 + 叶绿素a浓度 597.25 36.4 夏季 硅酸盐浓度 + 铵盐浓度 + 生化需氧量 + 水温 507.87 61.9 秋季 经度 + 磷酸盐浓度 + 溶解氧浓度 + 悬浮物含量 + 水深 + 水温 + 盐度 + 水色 +叶绿素a浓度 110.48 68.7 -
[1] 张静, 严武科, 吕少梁, 等. 2015年防城港近岸海域浮游桡足类群落结构的季节变化[J]. 广东海洋大学学报, 2018, 38(6): 18−28. doi: 10.3969/j.issn.1673-9159.2018.06.004Zhang Jing, Yan Wuke, Lü Shaoliang, et al. Seasonal variations of planktonic copepods community structure in Fangchenggang coastal waters in 2015[J]. Journal of Guangdong Ocean University, 2018, 38(6): 18−28. doi: 10.3969/j.issn.1673-9159.2018.06.004 [2] Lemoine H R, Paxton A B, Anisfeld S C, et al. Selecting the optimal artificial reefs to achieve fish habitat enhancement goals[J]. Biological Conservation, 2019, 238: 108200. doi: 10.1016/j.biocon.2019.108200 [3] Banerjee A, Chakrabarty M, Rakshit N, et al. Environmental factors as indicators of dissolved oxygen concentration and zooplankton abundance: deep learning versus traditional regression approach[J]. Ecological Indicators, 2019, 100: 99−117. doi: 10.1016/j.ecolind.2018.09.051 [4] Hamil S, Bouchelouche D, Arab S, et al. The relationship between zooplankton community and environmental factors of Ghrib Dam in Algeria[J]. Environmental Science and Pollution Research, 2021, 28: 46592−46602. doi: 10.1007/s11356-020-10844-7 [5] 徐东会, 齐衍萍, 刘潇, 等. 渤海湾浮游桡足类群落特征[J]. 海洋科学, 2022, 46(3): 69−80.Xu Donghui, Qi Yanping, Liu Xiao, et al. Community characteristics of planktonic copepods in the Bohai Bay[J]. Marine Sciences, 2022, 46(3): 69−80. [6] Zhao Wanting, Dai Lingling, Chen Xuechao, et al. Characteristics of zooplankton community structure and its relationship with environmental factors in the South Yellow Sea[J]. Marine Pollution Bulletin, 2022, 176: 113471. doi: 10.1016/j.marpolbul.2022.113471 [7] Bisinicu E, Harcota G E, Lazar L. Interactions between environmental factors and the mesozooplankton community from the Romanian Black Sea waters[J]. Turkish Journal of Zoology, 2023, 47(4): 202−215. doi: 10.55730/1300-0179.3133 [8] Drira Z, Kmiha-Megdiche S, Sahnoun H, et al. Assessment of anthropogenic inputs in the surface waters of the southern coastal area of Sfax during spring (Tunisia, southern Mediterranean Sea)[J]. Marine Pollution Bulletin, 2016, 104(1/2): 355−363. [9] Keister J E, Bonnet D, Chiba S, et al. Zooplankton population connections, community dynamics, and climate variability[J]. ICES Journal of Marine Science, 2012, 69(3): 347−350. doi: 10.1093/icesjms/fss034 [10] Bedford J, Ostle C, Johns D G, et al. Lifeform indicators reveal large-scale shifts in plankton across the North-West European shelf[J]. Global Change Biology, 2020, 26(6): 3482−3497. doi: 10.1111/gcb.15066 [11] Chew L L, Chong V C. Response of marine copepods to a changing tropical environment: winners, losers and implications[J]. PeerJ, 2016, 4: e2052. doi: 10.7717/peerj.2052 [12] 晁敏, 张虎, 张硕, 等. 海州湾生态环境与生物资源[M]. 北京: 中国农业出版社, 2018.Chao Min, Zhang Hu, Zhang Shuo, et al. Ecological Environment and Biological Resources in Haizhou Bay[M]. Beijing: China Agriculture Press, 2018. [13] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 海洋调查规范: 第6部分 海洋生物调查: GB/T 12713.6−2007 [S]. 北京: 中国标准出版社, 2007.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration. Specifications for oceanographic survey: Part 6 marine biological survey: GB/T 12713. 6−2007[S]. Beijing: Standards Press of China, 2007. [14] 刘瑞玉. 中国海洋生物名录[M]. 北京: 科学出版社, 2008.Liu Ruiyu. Checklist of Marine Biota of China Seas[M]. Beijing: Science Press, 2008. [15] Guisan A, Edwards Jr T C, Hastie T. Generalized linear and generalized additive models in studies of species distributions: setting the scene[J]. Ecological Modelling, 2002, 157(2/3): 89−100. [16] Fildes R. Conditioning diagnostics: collinearity and weak data in regression[J]. Journal of the Operational Research Society, 1993, 44(1): 88−89. [17] Portet S. A primer on model selection using the Akaike Information Criterion[J]. Infectious Disease Modelling, 2020, 5: 111−128. doi: 10.1016/j.idm.2019.12.010 [18] 李大鹏, 张硕, 石一茜, 等. 海州湾海洋牧场浮游植物群落年际变化特征分析[J]. 生态环境学报, 2017, 26(2): 285−295.Li Dapeng, Zhang Shuo, Shi Yiqian, et al. Different seasonal changes of phytoplankton community in the marine farming of Haizhou Bay[J]. Ecology and Environmental Sciences, 2017, 26(2): 285−295. [19] Mortelmans J, Aubert A, Reubens J, et al. Copepods (Crustacea: Copepoda) in the Belgian part of the North Sea: Trends, dynamics and anomalies[J]. Journal of Marine Systems, 2021, 220: 103558. doi: 10.1016/j.jmarsys.2021.103558 [20] Kagalou I I, Kosiori A, Leonardos I D. Assessing the zooplankton community and environmental factors in a Mediterranean wetland[J]. Environmental Monitoring and Assessment, 2010, 170(1/4): 445−455. [21] Renz J, Hirche H J. Life cycle of Pseudocalanus acuspes Giesbrecht (Copepoda, Calanoida) in the Central Baltic Sea: I. Seasonal and spatial distribution[J]. Marine Biology, 2006, 148(3): 567−580. doi: 10.1007/s00227-005-0103-5 [22] Shi Yongqiang, Wang Jun, Zuo Tao, et al. Seasonal changes in zooplankton community structure and distribution pattern in the Yellow Sea, China[J]. Frontiers in Marine Science, 2020, 7: 391. doi: 10.3389/fmars.2020.00391 [23] Abu El-Regal M A, El-Wazeer A, Abou Elnaga Z S, et al. Composition and spatio-temporal distribution of zooplankton community in the Egyptian Red Sea coast at Hurghada[J]. Egyptian Journal of Aquatic Biology and Fisheries, 2018, 22(3): 1−12. doi: 10.21608/ejabf.2018.8761 [24] Yang Y, Chen H, Yang Z F. Integration of water quantity and quality in environmental flow assessment in wetlands[J]. Procedia Environmental Sciences, 2012, 13: 1535−1552. doi: 10.1016/j.proenv.2012.01.146 [25] Horppila J, Malinen T, Nurminen L, et al. A metalimnetic oxygen minimum indirectly contributing to the low biomass of cladocerans in Lake Hiidenvesi—a diurnal study on the refuge effect[J]. Hydrobiologia, 2000, 436(1/3): 81−90. doi: 10.1023/A:1026594006856 [26] Derisio C, Braverman M, Gaitán E, et al. The turbidity front as a habitat for Acartia tonsa (Copepoda) in the Río de la Plata, Argentina-Uruguay[J]. Journal of Sea Research, 2014, 85: 197−204. doi: 10.1016/j.seares.2013.04.019 [27] Kristiansen S, Hoell E E. The importance of silicon for marine production[C]//Proceedings of the 1st Maricult Conference on Sustainable Increase of Marine Harvesting: Fundamental Mechanisms and New Concepts. Trondheim, Norway: Springer, 2002: 21−31. [28] Naumova E Y, Zaidykov I Y, Tauson V L, et al. Features of the fine structure and Si content of the mandibular gnathobase of four freshwater species of Epischura (Copepoda: Calanoida)[J]. Journal of Crustacean Biology, 2015, 35(6): 741−746. doi: 10.1163/1937240X-00002385 [29] Chia M A, Adelanwa M A, Ladan Z, et al. Interactions of Ipomoea aquatica and Utricularia reflexa with phytoplankton densities in a small water body in northern Nigeria[J]. Oceanological and Hydrobiological Studies, 2012, 41(2): 39−47. doi: 10.2478/s13545-012-0015-1 [30] Picapedra P H D S, Fernandes C, Baumgartner G. Structure and ecological aspects of zooplankton (Testate amoebae, Rotifera, Cladocera and Copepoda) in highland streams in southern Brazil[J]. Acta Limnologica Brasiliensia, 2019, 31. [31] 张智鹏, 唐学玺, 王其翔, 等. 小黑山岛海域网采大型浮游动物群落特征季节变化及其与环境因素关系研究[J]. 海洋环境科学, 2017, 36(3): 385−391, 415.Zhang Zhipeng, Tang Xuexi, Wang Qixiang, et al. Seasonal variations of net macrozooplankton community characteristics and its relationship with environmental factors of the sea area around Xiaoheishan Island in China[J]. Marine Environmental Science, 2017, 36(3): 385−391, 415. [32] 于雯雯, 张东菊, 邹欣庆, 等. 海州湾海域浮游动物种类组成与丰度的季节变化[J]. 生态学杂志, 2017, 36(5): 1339−1349.Yu Wenwen, Zhang Dongju, Zou Xinqing, et al. Seasonal variations of species composition and abundance of zooplankton along the coast of Haizhou Bay[J]. Chinese Journal of Ecology, 2017, 36(5): 1339−1349. [33] Mukhopadhyay S K, Chatterjee A, Gupta R, et al. Rotiferan community structure in a tannery effluent stabilisation pond in East Calcutta Wetland ecosystem[J]. Chemical & Environmental Research, 2000, 9(1/2): 85−91. [34] Jagadeeshappa K C. Influence of physico-chemical parameters on the diversity of plankton species in wetlands of Tiptur Taluk, Tumkur Dist, Karnataka State, India[J]. Caribbean Journal of Sciences and Technology, 2013, 1(1): 185−193. [35] Drira Z, Kmiha-Megdiche S, Sahnoun H, et al. Water quality affects the structure of copepod assemblages along the Sfax southern coast (Tunisia, southern Mediterranean Sea)[J]. Marine and Freshwater Research, 2018, 69(2): 220−231. doi: 10.1071/MF17133 [36] 高原, 赖子尼, 曾艳艺, 等. 珠江三角洲河网桡足类群落结构及其与水环境因子的关系[J]. 中国水产科学, 2015, 22(2): 302−310.Gao Yuan, Lai Zini, Zeng Yanyi, et al. Community structure of copepods and the relationship with aquatic environmental factors in the Pearl River Delta[J]. Journal of Fishery Sciences of China, 2015, 22(2): 302−310. [37] Lind O T, Dávalos-Lind L. Association of turbidity and organic carbon with bacterial abundance and cell size in a large, turbid, tropical lake[J]. Limnology and Oceanography, 1991, 36(6): 1200−1208. doi: 10.4319/lo.1991.36.6.1200 [38] Islam M S, Ueda H, Tanaka M. Spatial and seasonal variations in copepod communities related to turbidity maximum along the Chikugo estuarine gradient in the upper Ariake Bay, Japan[J]. Estuarine, Coastal and Shelf Science, 2006, 68(1/2): 113−126. [39] Dutz J, Christensen A M. Broad plasticity in the salinity tolerance of a marine copepod species, Acartia longiremis, in the Baltic Sea[J]. Journal of Plankton Research, 2018, 40(3): 342−355. doi: 10.1093/plankt/fby013 [40] Svetlichny L, Hubareva E. Salinity tolerance of alien copepods Acartia tonsa and Oithona davisae in the Black Sea[J]. Journal of Experimental Marine Biology and Ecology, 2014, 461: 201−208. doi: 10.1016/j.jembe.2014.08.012 [41] Lushchak V I. Environmentally induced oxidative stress in aquatic animals[J]. Aquatic Toxicology, 2011, 101(1): 13−30. doi: 10.1016/j.aquatox.2010.10.006 [42] Hernández-Trujillo S. Variability of community structure of Copepoda related to El Niño 1982−83 and 1987−88 along the west coast of Baja California Peninsula, Mexico[J]. Fisheries Oceanography, 1999, 8(4): 284−295. doi: 10.1046/j.1365-2419.1999.00112.x [43] de Oliveira Dias C, de Araújo A V, Bonecker S L C. Vertical distribution and structure of copepod (Arthropoda: Copepoda) assemblages in two different seasons down to 1, 200 m in the tropical Southwestern Atlantic[J]. Zoologia (Curitiba), 2018, 35: e13886. [44] Chiba S, Saino T. Variation in mesozooplankton community structure in the Japan/East Sea (1991−1999) with possible influence of the ENSO scale climatic variability[J]. Progress in Oceanography, 2003, 57(3/4): 317−339.