留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

孔隙对粒状海冰单轴压缩强度影响的数值模拟研究

吴家和 王庆凯 李金钊 卢鹏 李志军

吴家和,王庆凯,李金钊,等. 孔隙对粒状海冰单轴压缩强度影响的数值模拟研究[J]. 海洋学报,2024,46(6):40–50 doi: 10.12284/hyxb2024047
引用本文: 吴家和,王庆凯,李金钊,等. 孔隙对粒状海冰单轴压缩强度影响的数值模拟研究[J]. 海洋学报,2024,46(6):40–50 doi: 10.12284/hyxb2024047
Wu Jiahe,Wang Qingkai,Li Jinzhao, et al. Numerical study on the effect of pore on the uniaxial compressive strength of granular sea ice[J]. Haiyang Xuebao,2024, 46(6):40–50 doi: 10.12284/hyxb2024047
Citation: Wu Jiahe,Wang Qingkai,Li Jinzhao, et al. Numerical study on the effect of pore on the uniaxial compressive strength of granular sea ice[J]. Haiyang Xuebao,2024, 46(6):40–50 doi: 10.12284/hyxb2024047

孔隙对粒状海冰单轴压缩强度影响的数值模拟研究

doi: 10.12284/hyxb2024047
基金项目: 国家自然科学基金(52192692,42276242,42320104004)。
详细信息
    作者简介:

    吴家和(2001—),男,福建省龙岩市人,主要从事冰力学性质数值模拟研究。E-mail:2524295554@mail.dlut.edu.cn

    通讯作者:

    王庆凯(1991—),男,辽宁省本溪市人,副教授,主要从事海冰物理和力学性质研究。E-mail: wangqingkai@dlut.edu.cn

  • 中图分类号: P731.15

Numerical study on the effect of pore on the uniaxial compressive strength of granular sea ice

  • 摘要: 强度是影响海冰与结构物相互作用关系的关键性质之一。海冰内部的卤水胞和气泡等孔隙结构对海冰的强度有重要影响。为从细观角度探究冰内孔隙含量、形状和尺寸等海冰结构参数对海冰力学性质的影响,基于离散元方法,建立了包含孔隙的数值海冰模型,模拟粒状冰在平行和垂直冰面方向加载脆性破坏的单轴压缩过程。孔隙尺寸设置为符合均匀分布、标准正态分布和Gamma分布等不同随机分布类型。数值模拟试验结果表明孔隙率是影响海冰强度的主要因素,海冰单轴压缩强度和弹性模量均随孔隙的增加而减小。当压缩应力达到极值时,冰内裂缝迅速扩展。对于圆形孔隙,裂缝主要沿荷载施加方向开展,因此平行冰面方向试样破坏时多表现为大裂缝;对于椭圆形孔隙,裂缝易扩展形成裂缝带。当孔隙率相同时,孔隙尺寸随机分布类型和位置对单轴压缩强度和弹性模量影响不大,但影响冰内裂缝的扩展方式。
  • 图  1  不同粒径大小应力−应变曲线

    Fig.  1  The stress-strain curves of different element sizes

    图  2  不同颗粒密实度应力−应变曲线

    Fig.  2  The stress-strain curves of different element compactness

    图  3  不同随机数种子应力−应变曲线

    Fig.  3  The stress-strain curves of different random values

    图  4  数值模拟和实验室试验的单轴压缩应力−应变曲线对比

    Fig.  4  Comparison of numerical and experimental uniaxial compression stress-strain curves

    图  5  平行和垂直冰面方向加载海冰试样示意

    Fig.  5  Schematic diagram of vertically and horizontally loaded sea ice samples

    图  6  平行(a)和垂直(b)冰面方向加载的数值海冰试样

    Fig.  6  Horizontally (a) and vertically (b) loaded numerical sea ice samples

    图  7  海冰单轴压缩应力−应变变曲线模拟结果

    Fig.  7  The simulation result of sea ice uniaxial compression stress-strain curve

    图  8  孔隙率为5%且尺寸为均匀分布时平行(a)和垂直(b)冰面方向加载应力和细观裂缝数量随应变变化

    Fig.  8  The variation of stress and crack numbers with strain of 5% porosity and uniform poresize distribution for horizontally (a) and vertically (b) loaded sea ice samples

    图  10  平行(a)和垂直(b)冰面方向加载试样单轴压缩裂缝扩展过程

    Fig.  10  The development of the crack under uniaxial compression for horizontally (a) and vertically (b) loaded sea ice samples

    图  9  孔隙率为5%且尺寸为均匀分布时平行(a)和垂直(b)冰面方向加载应力和能量随应变变化

    Fig.  9  The variation of stress and energy with strain of 5% porosity and uniform poresize distribution for horizontally (a) and vertically (b) loaded sea ice samples

    图  11  孔隙尺寸呈均匀分布的海冰单轴压缩强度(a)和弹性模量(b)随孔隙率的变化

    Fig.  11  The variation of uniaxial compressive strength (a) and elastic modulus (b) with porosity for sea ice samples in uniform pore size distribution

    图  12  不同孔隙尺寸分布类型的海冰单轴压缩强度和弹性模量随孔隙率的变化

    a、b为平行冰面方向加载,c、d为垂直冰面方向加载

    Fig.  12  The variations of uniaxial compressive strength and elastic modulus with porosity in different distributions of pore size

    a, b. Horizontally and c, d. vertically loaded sea ice samples

    图  13  孔隙率为10%的平行冰面方向加载单轴压缩试样最终破坏时的内部裂缝扩展

    a. 均匀分布,b. 标准正态分布,c. Gamma分布-I,d. Gamma分布-II

    Fig.  13  The crack development of horizontally loaded sea ice samples with 10% porosity

    Pore size distributions: a. uniform distribution, b. standard normal distribution, c. Gamma-I and d. Gamma-II

    图  14  孔隙率为10%且孔隙尺寸符合均匀分布的垂直冰面方向加载试样单轴压缩数值模拟结果

    Fig.  14  The simulation results of uniaxial compression of vertically loaded sea ice samples with 10% porosity and uniform pore size distribution

    表  1  模型颗粒几何构造所用参数

    Tab.  1  The preliminary parameters of the model elements

    颗粒接触模型参数 数值试样参数
    参数 取值 参数 取值
    弹性模量 3.20 GPa 试样宽度 0.070 m
    法向、切向刚度比 2.6 试样高度 0.175 m
    黏聚力 5.06 MPa 颗粒密度 917.9 kg/m3
    最大、最小粒径比 1.8 阻尼系数 0.7
    拉伸强度 2.00 MPa 顶端加载速度 −1.75×10−2 m/s
    摩擦系数 0.1 底端加载速度 0
    摩擦角 0
    下载: 导出CSV

    表  2  渤海海冰实验室试验条件和结果

    Tab.  2  The laboratory test parameters and results of Bohai Sea ice

    试验条件 试验结果
    试样长度 170 mm 温度 −9℃ 单轴压缩强度 1.38 MPa
    试样宽度 70 mm 密度 0.74 g/cm3 破坏应变 3.72 × 10−3
    应变率 10−3 s−1 盐度 1.5 弹性模量 0.37 GPa
    下载: 导出CSV

    表  3  率定后的接触模型参数

    Tab.  3  The contact model parameters after calibration

    参数 取值 参数 取值
    弹性模量 0.59 GPa 拉伸强度 0.70 MPa
    法向、切向刚度比 2.5 摩擦系数 0.1
    黏聚力 0.83 MPa 摩擦角 0
    最大、最小颗粒径比 1.8
    下载: 导出CSV

    表  4  数值模拟试验条件

    Tab.  4  The test conditions of numerical simulation

    晶体类型 应变速率 加载方向 孔隙率 孔隙尺寸分布
    粒状冰 10−3 s−1 平行冰
    面方向、
    垂直冰
    面方向
    5%、10%、
    15%、20%、
    25%
    均匀分布
    标准正态分布
    Gamma分布(I:α = 1,β = 0.5)
    Gamma分布 (II:α = 3, β = 1)
    下载: 导出CSV
  • [1] 周璇, 苏洁. 液态降水与地表气温对北极海冰开始融化时间的影响[J]. 海洋学报, 2023, 45(9): 10−24.

    Zhou Xuan, Su Jie. Effect of liquid precipitation and surface air temperatureon the early melt onset of Arcticsea ice[J]. HaiyangXuebao, 2023, 45(9): 10−24.
    [2] 李静悦, 雷瑞波, 李娜, 等. 基于冰基浮标数据的2018—2019年北极海冰运动特性时空变化分析[J]. 海洋学报, 2023, 45(8): 31−45.

    Li Jingyue, Lei Ruibo, Li Na, et al. Analysis of spatiotemporal changes in Arctic sea ice motion characteristics in 2018—2019 using ice-based buoy data[J]. HaiyangXuebao, 2023, 45(8): 31−45.
    [3] 郑冬梅, 王志斌, 张书颖, 等. 渤海海冰的年际和年代际变化特征与机理[J]. 海洋学报, 2015, 37(6): 12−20.

    Zheng Dongmei, Wang Zhibin, Zhang Shuying, et al. Interannual and interdecadal variations of the sea ice in Bohai Sea and its mechanisms[J]. Haiyang Xuebao, 2015, 37(6): 12−20.
    [4] Salomon M L, Maus S, Petrich C. Microstructure evolution of young sea ice from a Svalbard fjord using micro-CT analysis[J]. Journal of Glaciology, 2022, 68(269): 571−590. doi: 10.1017/jog.2021.119
    [5] Eicken H. Automated image analysis of ice thin sections—instrumentation, methods and extraction of stereological and textural parameters[J]. Journal of Glaciology, 1993, 39(132): 341−352. doi: 10.3189/S0022143000016002
    [6] Light B, Maykut G A, Grenfell T C. Effects of temperature on the microstructure of first-year Arctic sea ice[J]. Journal of Geophysical Research: Oceans, 2003, 108(C2): 3051.
    [7] Perovich D K, GowA J. A quantitative description of sea ice inclusions[J]. Journal of Geophysical Research: Oceans, 1996, 101(C8): 18327−18343. doi: 10.1029/96JC01688
    [8] Karulina M, Marchenko A, Karulin E, et al. Full-scale flexural strength of sea ice and freshwater ice in Spitsbergen Fjords and North-West Barents Sea[J]. Applied Ocean Research, 2019, 90: 101853. doi: 10.1016/j.apor.2019.101853
    [9] TianYukui, Ji Shaopeng, Kou Ying, et al. Characterization of uniaxial compression strength for columnar saline model ice in CSSRC small ice model basin[J]. Journal of Ship Mechanics, 2020, 24(12): 1647−1656.
    [10] 倪宝玉, 曾令东, 熊航, 等. 海冰与波流耦合动力学的研究进展[J]. 力学学报, 2021, 53(3): 639−654.

    Ni Baoyu, Zeng Lingdong, Xiong Hang, et al. Review on the interaction between sea ice and waves/currents[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 639−654.
    [11] Screen J A, Francis J A. Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability[J]. Nature Climate Change, 2016, 6(9): 856−860. doi: 10.1038/nclimate3011
    [12] 季顺迎, 王键伟, 袁奎霖, 等. 极地船舶冰区航行中冰激结构疲劳的累积损伤分析[J]. 海洋学报, 2023, 45(7): 102−109.

    Ji Shunying, Wang Jianwei, Yuan Kuilin, et al. Cumulative damage analysis of ice-induced structural fatigue for polar ships navigating in ice-covered regions[J]. Haiyang Xuebao, 2023, 45(7): 102−109.
    [13] Timco G W, O’Brien S. Flexural strength equation for sea ice[J]. Cold Regions Science and Technology, 1994, 22(3): 285−298. doi: 10.1016/0165-232X(94)90006-X
    [14] Wang Qingkai, Li Zhaoquan, Lu Peng, et al. Flexural and compressive strength of the landfast sea ice in the Prydz Bay, East Antarctic[J]. The Cryosphere, 2022, 16(5): 1941−1961. doi: 10.5194/tc-16-1941-2022
    [15] 李志军, 张丽敏, 卢鹏, 等. 渤海海冰孔隙率对单轴压缩强度影响的实验研究[J]. 中国科学: 技术科学, 2011, 41(10): 1329-1335.

    Li Zhijun, Zhang Limin, Lu Peng, et al. Experimental study on the effect of porosity on the uniaxial compressive strength of sea ice in Bohai Sea[J]. Scientia Sinica Technologica, 2011, 54(9): 2429-2436.
    [16] 陈晓东, 崔海鑫, 王安良, 等. 基于巴西盘试验的海冰拉伸强度研究[J]. 力学学报, 2020, 52(3): 625−634. doi: 10.6052/0459-1879-20-036

    Chen Xiaodong, Cui Haixin, Wang Anliang, et al. Experimental study on seaice tensile strength based on Brazilian tests[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 625−634. doi: 10.6052/0459-1879-20-036
    [17] Wang Anliang, Wei Zhijun, Chen Xiaodong, et al. Brief communication: full-field deformation measurement for uniaxial compression of sea ice using the digital image correlation method[J]. The Cryosphere, 2019, 13(5): 1487−1494. doi: 10.5194/tc-13-1487-2019
    [18] 王辉, 李勇, 曹树刚, 等. 含预制裂隙黑色页岩裂纹扩展过程及宏观破坏模式巴西劈裂试验研究[J]. 岩石力学与工程学报, 2020, 39(5): 912−926.

    Wang Hui, Li Yong, Cao Shugang, et al. Brazilian splitting test study on crack propagation process and macroscopic failure mode of pre-cracked black shale[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(5): 912−926.
    [19] 张岩, 经纬, 经来旺, 等. 裂隙倾角及长度对岩石强度和破坏特征影响数值模拟[J]. 煤炭技术, 2023, 42(10): 106−109.

    Zhang Yan, Jing Wei, Jing Laiwang, et al. Numerical simulation of effect of fracture inclination and length on strength and damage characteristics of rocks[J]. Coal Technology, 2023, 42(10): 106−109.
    [20] 牛永朕, 苏霈洋, 李智深, 等. 空孔对裂纹扩展行为影响规律研究[J]. 煤炭技术, 2023, 42(9): 134-139.

    NiuYongzhen, Su Peiyang, Li Zhishen, et al. Research on influence law of hollow holes on crack propagationbehavior[J]. Coal Technology, 42(9): 134-139.
    [21] Zong Zhi. A random pore model of sea ice for predicting its mechanical properties[J]. Cold Regions Science and Technology, 2022, 195: 103473. doi: 10.1016/j.coldregions.2021.103473
    [22] Potyondy D, Ivars D M. Simulating spalling with a flat-jointed material[C]//Proceedings of the 5th International Itasca Symposium on Applied Numerical Modeling. Vienna, Austria: ITASCA, 2020.
    [23] 欧阳群安. 静动态冰力学特性试验及颗粒离散元法数值模拟研究[D]. 天津: 天津大学, 2019.

    Ouyang Qunan. Laboratory experiments and distinct element method research on Quasi-Static and dynamic mechanical properties of ice[D]. Tianjin: TianjinUniversity, 2019.
    [24] 李坤蒙, 李元辉, 徐帅, 等. PFC2D数值计算模型微观参数确定方法[J]. 东北大学学报(自然科学版), 2016, 37(4): 562−566.

    Li Kunmeng, Li Yuanhui, XuShuai, et al. Method to determine microscopic parameters of PFC2D numerical model[J]. Journal of Northeastern University (Natural Science), 2016, 37(4): 562−566.
    [25] Potyondy D O. Simulating perforation damage with a flat-jointed bonded-particle material[C]//Proceedings of the 51st U. S. Rock Mechanics/Geomechanics Symposium. San Francisco, California, USA: ARMA, 2017.
    [26] Lee H, Jeon S. An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression[J]. International Journal of Solids and Structures, 2011, 48(6): 979−999. doi: 10.1016/j.ijsolstr.2010.12.001
    [27] Maus S, Schneebeli M, Wiegmann A. An X-ray micro-tomographic study of the pore space, permeability and percolation threshold of young sea ice[J]. The Cryosphere, 2021, 15(8): 4047−4072. doi: 10.5194/tc-15-4047-2021
    [28] 陈青青, 张煜航, 张杰, 等. 含孔隙混凝土二维细观建模方法研究[J]. 应用数学和力学, 2020, 41(2): 182−194.

    Chen Qingqing, Zhang Yuhang, Zhang Jie, et al. Study on a 2D mesoscopic modeling method for concrete with voids[J]. Applied Mathematics and Mechanics, 2020, 41(2): 182−194.
    [29] Schwarz J, Frederking R, Gavrillo V, et al. Standardized testing methods for measuring mechanical properties of ice[J]. Cold Regions Science and Technology, 1981, 4(3): 245−253. doi: 10.1016/0165-232X(81)90007-0
    [30] Wang Qingkai, Lu P, Leppäranta M, et al. Physical properties of summer sea ice in the Pacific sector of the Arctic during 2008–2018[J]. Journal of Geophysical Research: Oceans, 2020, 125(9): e2020JC016371. doi: 10.1029/2020JC016371
    [31] 李志军, 孟广琳, 高树刚, 等. 辽东湾S2冰侧限剪切强度的试验研究[J]. 海洋工程, 2002, 20(1): 20−23,40. doi: 10.3969/j.issn.1005-9865.2002.01.004

    Li Zhijun, Meng Guanglin, Gao Shugang, et al. Experimental study of confined shear strength of S2 ice in Liaodong Gulf[J]. The Ocean Engineering, 2002, 20(1): 20−23,40. doi: 10.3969/j.issn.1005-9865.2002.01.004
    [32] Brown E T. Rock characterization, testing & monitoring: ISRM suggested methods[M]. Oxford: Pergamon Press, 1981.
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  132
  • HTML全文浏览量:  59
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-04
  • 修回日期:  2024-04-09
  • 网络出版日期:  2024-07-11
  • 刊出日期:  2024-06-01

目录

    /

    返回文章
    返回