Evolution of sedimentary environment in Setiu Lagoon, northeastern Malaysia, and its response to ENSO
-
摘要: 马来半岛位于低纬热带地区,厄尔尼诺−南方涛动(El Niño-Southern Oscillation,ENSO)如何影响该区域的气候,尤其是降水仍然存在争议。本文以马来半岛东北部登嘉楼州Setiu潟湖钻孔NTT-3为研究对象,通过分析粒度、总有机碳及总氮含量、C/N比值和XRF岩心扫描等,探讨该钻孔的沉积环境变化及其对ENSO的响应。研究结果显示,钻孔记录中自1970年前后(84 cm处)出现两种不同的变化趋势。1970年之前钻孔下部沉积物粒度、有机和无机地球化学特征趋势波动明显,沉积速率较低。而1970年以来,潟湖沉积环境总体稳定,沉积物中的有机组分主要来自红树林,同时伴有河流输入的淡水浮游植物的贡献。频谱分析结果显示1970年以来钻孔上部存在明显的ENSO周期变化。强厄尔尼诺现象基本对应低Zr/Rb比值和低Zr/Ti比值,而强拉尼娜(La Niña)现象基本对应高Zr/Rb比值和高Zr/Ti比值。该结论不仅支持了现代观测对马来半岛东部沿海地区气候变化的认识,同时也在地质记录中发现了ENSO变化的直接证据,对全面认识和理解ENSO对亚洲气候变化的影响、区域陆海相互作用过程和环境响应等方面具有重要现实意义。Abstract: The impact of the El Niño-Southern Oscillation (ENSO) on the climate of the low-latitude tropical region of the Malay Peninsula, particularly with regard to precipitation, remains a topic of debate. This study focuses on the NTT-3 drill core from Setiu Lagoon in Terengganu, northeastern Malay Peninsula. By employing analyses such as grain size, total organic carbon/nitrogen content, C/N ratio, and XRF core scanning, this research investigates the sedimentary environmental changes in the drill core and their response to ENSO. The results reveal two distinct trends in the drill core record, appearing around 1970 (at 84 cm depth). Sediment characteristics such as grain size and geochemical features of both organic and inorganic components suggest the possible occurrence of episodic sedimentation or sedimentary interruptions, with exceptionally slow sedimentation rates observed in the lower part of the core before 1970. Since 1970, the organic components in the lagoon sediment primarily originate from mangroves, accompanied by contributions from freshwater phytoplankton associated with river inputs. Spectral analysis indicates a pronounced ENSO periodic variation in the upper part of the drill core since 1970. The variations in Zr/Rb and Zr/Ti ratios correlate well with the occurrences of strong El Niño and La Niña events. This conclusion not only supports contemporary observations of climate change in the eastern coastal region of the Malay Peninsula but also provides direct geological evidence of ENSO variations in the sedimentary record. This discovery holds significant practical implications for a comprehensive understanding of the impact of ENSO on climate change in Asia, regional land-sea interaction processes, and environmental responses.
-
图 1 研究区域、钻孔点位及岩心剖面
a. 马来半岛研究区域及夏、冬季风方向;b. 研究区卫星图片(来自谷歌地球);c. 钻孔NTT-3岩性和粒度组成
Fig. 1 Study area, drilling locations, and core profile diagram
a. Study area of the Malay Peninsula and the direction of summer and winter winds; b. satellite image of the study area (from Google Eeath); c. Lithology and partice sire composition of Borehole NTT-3
表 1 马来西亚东北部近岸NTT-3孔沉积物AMS 14C测年结果
Tab. 1 The AMS 14C dating results of sediments from NTT-3 core in the northeastern coastal area of Malaysia
深度/cm 测年
材料14C年龄/
(a BP)校正年龄/
(cal a BP)(2σ)平均日历年龄/
(A.D.)93~94 植物 −30 ± 30 −5~−7 (0.85) 1956 104~105 植物 −15 ± 30 −5~−7 (0.95) 1955 120~121 植物 −660 ± 30 −50~−54 (0.89) 2001 124~125 植物 360 ± 30 410~315 (0.47) 1588 145~146 植物 890 ± 30 834~732 (0.60) 1167 -
[1] Tangang F T, Juneng L, Salimun E, et al. Climate change and variability over Malaysia: gaps in science and research information[J]. Sains Malaysiana, 2012, 41(11): 1355−1366. [2] Tan M L, Duan Zheng. Assessment of GPM and TRMM precipitation products over Singapore[J]. Remote Sensing, 2017, 9(7): 720. doi: 10.3390/rs9070720 [3] Suhaila J, Yusop Z. Trend analysis and change point detection of annual and seasonal temperature series in Peninsular Malaysia[J]. Meteorology and Atmospheric Physics, 2018, 130(5): 565−581. doi: 10.1007/s00703-017-0537-6 [4] Juneng L, Tangang F T. Evolution of ENSO-related rainfall anomalies in Southeast Asia region and its relationship with atmosphere-ocean variations in Indo-Pacific Sector[J]. Climate Dynamics, 2005, 25(4): 337−350. doi: 10.1007/s00382-005-0031-6 [5] Yusof F, Hui-Mean F, Suhaila J, et al. Characterisation of drought properties with bivariate copula analysis[J]. Water Resources Management, 2013, 27(12): 4183−4207. doi: 10.1007/s11269-013-0402-4 [6] Othman M, Ash’aari Z H, Muharam F M, et al. Assessment of drought impacts on vegetation health: a case study in Kedah[J]. IOP Conference Series: Earth and Environmental Science, 2016, 37: 012072. doi: 10.1088/1755-1315/37/1/012072 [7] Tan M L, Juneng L, Tangang F T, et al. Changes in temperature extremes and their relationship with ENSO in Malaysia from 1985 to 2018[J]. International Journal of Climatology, 2021, 41(S1): E2564−E2580. [8] Alexander L V. Global observed long-term changes in temperature and precipitation extremes: A review of progress and limitations in IPCC assessments and beyond[J]. Weather and Climate Extremes, 2016, 11: 4−16. doi: 10.1016/j.wace.2015.10.007 [9] Wong C L, Venneker R, Uhlenbrook S, et al. Variability of rainfall in Peninsular Malaysia[J]. Hydrology and Earth System Sciences Discussions, 2009, 6(4): 5471−5503. [10] Wong C L, Liew J, Yusop Z, et al. Rainfall characteristics and regionalization in Peninsular Malaysia based on a high resolution gridded data set[J]. Water, 2016, 8(11): 500. doi: 10.3390/w8110500 [11] He Qing, Chun K P, Tan M L, et al. Tropical drought patterns and their linkages to large-scale climate variability over Peninsular Malaysia[J]. Hydrological Processes, 2021, 35(9): e14356. doi: 10.1002/hyp.14356 [12] Meyers P A, Lallier-Vergés E. Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates[J]. Journal of Paleolimnology, 1999, 21(3): 345−372. doi: 10.1023/A:1008073732192 [13] 成艾颖, 余俊清, 张丽莎, 等. XRF岩芯扫描分析方法及其在湖泊沉积研究中的应用[J]. 盐湖研究, 2010, 18(2): 7−13.Cheng Aiying, Yu Junqing, Zhang Lisha, et al. XRF core scanning and applications on lake sediments[J]. Journal of Salt Lake Research, 2010, 18(2): 7−13. [14] Sanchez-Cabeza J A, Ruiz-Fernández A C. 210Pb sediment radiochronology: an integrated formulation and classification of dating models[J]. Geochimica et Cosmochimica Acta, 2012, 82: 183−200. doi: 10.1016/j.gca.2010.12.024 [15] Reimer P J, Austin W E N, Bard E, et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 kcal BP)[J]. Radiocarbon, 2020, 62(4): 725−757. doi: 10.1017/RDC.2020.41 [16] Mallinson D J, Culver S J, Corbett D R, et al. Holocene coastal response to monsoons and relative sea-level changes in northeast Peninsular Malaysia[J]. Journal of Asian Earth Sciences, 2014, 91: 194−205. doi: 10.1016/j.jseaes.2014.05.005 [17] Jaafar N M S, Nor S M M, Omar W B W, et al. Mangroves of the east coast of Peninsular Malaysia[J]. Malayan Nature Journal, 2020, 72(4): 441−450. [18] Fry B, Sherr E B. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems[J]. Contributions in Marine Science, 1984, 27: 13−47. [19] Pancost R D, Boot C S. The paleoclimatic utility of terrestrial biomarkers in marine sediments[J]. Marine Chemistry, 2004, 92(1/2/3/4): 239−261. [20] Leng M J, Marshall J D. Paleoclimate interpretation of stable isotope data from lake sediment archives[J]. Quaternary Science Reviews, 2004, 23(7/8): 811−831. [21] Redfield A C, Ketchum B H, Richards F A. The influence of organisms on the composition of seawater[J]. The Sea, 1963, 2: 26−77. [22] Meyers P A. Preservation of elemental and isotopic source identification of sedimentary organic matter[J]. Chemical Geology, 1994, 114(3/4): 289−302. [23] Valiela I, Cole M L. Comparative evidence that salt marshes and mangroves may protect seagrass meadows from land-derived nitrogen loads[J]. Ecosystems, 2002, 5(1): 92−102. doi: 10.1007/s10021-001-0058-4 [24] Gonneea M E, Paytan A, Herrera-Silveira J A. Tracing organic matter sources and carbon burial in mangrove sediments over the past 160 years[J]. Estuarine, Coastal and Shelf Science, 2004, 61(2): 211−227. doi: 10.1016/j.ecss.2004.04.015 [25] Moy C M, Seltzer G O, Rodbell D T, et al. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch[J]. Nature, 2002, 420(6912): 162−165. doi: 10.1038/nature01194 [26] D’Arrigo R, Cook E R, Wilson R J, et al. On the variability of ENSO over the past six centuries[J]. Geophysical Research Letters, 2005, 32(3): L03711. [27] Nicholls N. Recent trends in the seasonal and temporal behaviour of the El Niño-Southern Oscillation[J]. Geophysical Research Letters, 2008, 35(19): L19703. [28] Richter T O, Van der Gaast S, Koster B, et al. The Avaatech XRF Core Scanner: technical description and applications to NE Atlantic sediments[J]. Geological Society, London, Special Publications, 2006, 267(1): 39−50. doi: 10.1144/GSL.SP.2006.267.01.03 [29] Nizou J, Hanebuth T J J, Heslop D, et al. The Senegal River mud belt: A high-resolution archive of paleoclimatic change and coastal evolution[J]. Marine Geology, 2010, 278(1/2/3/4): 150−164. [30] Blanchet C L, Thouveny N, Vidal L, et al. Terrigenous input response to glacial/interglacial climatic variations over southern Baja California: a rock magnetic approach[J]. Quaternary Science Reviews, 2007, 26(25/26/27/28): 3118−3133. [31] Kleiven H F, Kissel C, Laj C, et al. Reduced North Atlantic deep water coeval with the glacial Lake Agassiz freshwater outburst[J]. Science, 2008, 319(5859): 60−64. doi: 10.1126/science.1148924 [32] Vidal L, Bickert T, Wefer G, et al. Late Miocene stable isotope stratigraphy of SE Atlantic ODP Site 1085: relation to Messinian events[J]. Marine Geology, 2002, 180(1/2/3/4): 71−85. [33] Kissel C, Laj C, Kienast M, et al. Monsoon variability and deep oceanic circulation in the western equatorial Pacific over the last climatic cycle: insights from sedimentary magnetic properties and sortable silt[J]. Paleoceanography, 2010, 25(3): PA3215. [34] Taylor S R. The application of trace element data to problems in petrology[J]. Physics and Chemistry of the Earth, 1965, 6: 133−213. doi: 10.1016/0079-1946(65)90014-5 [35] Fralick P W, Kronberg B I. Geochemical discrimination of clastic sedimentary rock sources[J]. Sedimentary Geology, 1997, 113(1/2): 111−124. [36] 梅西, 李日辉, 张训华. 南黄海DLC70-3孔晚更新世以来Rb/Zr值特征及环境意义[J]. 海洋地质前沿, 2014, 30(2): 10−17.Mei Xi, Li Rihui, Zhang Xunhua. Characteristics of Rb/Zr ratio of DLC70-3 core from South Yellow Sea and its environmental implication since late Pleistocene[J]. Marine Geology Frontiers, 2014, 30(2): 10−17. [37] 谭玲玲, 钟巍, 薛积彬, 等. 新疆巴里坤湖全新世湖泊沉积物中Zr/Rb比值特征及其环境意义[J]. 干旱区资源与环境, 2015, 29(11): 109−114.Tan Lingling, Zhong Wei, Xue Jibin, et al. Variation of Zr/Rb ratios from the Holocene Lacustrine sediments in Balikun Lake in Xinjiang and its environmental implications[J]. Journal of Arid Land Resources and Environment, 2015, 29(11): 109−114. [38] Dypvik H, Harris N B. Geochemical facies analysis of fine-grained siliciclastics using Th/U, Zr/Rb and (Zr + Rb)/Sr ratios[J]. Chemical Geology, 2001, 181(1/2/3/4): 131−146. doi: 10.1016/S0009-2541(01)00278-9 [39] Oldfield F, Wake R, Boyle J, et al. The late-Holocene history of Gormire Lake (NE England) and its catchment: a multiproxy reconstruction of past human impact[J]. The Holocene, 2003, 13(5): 677−690. doi: 10.1191/0959683603hl654rp [40] Cai Wenju, Santoso A, Wang Guojian, et al. ENSO and greenhouse warming[J]. Nature Climate Change, 2015, 5(9): 849−859. doi: 10.1038/nclimate2743 [41] McPhaden M J, Zebiak S E, Glantz M H. ENSO as an integrating concept in earth science[J]. Science, 2006, 314(5806): 1740−1745. doi: 10.1126/science.1132588 [42] Wang Chunzai, Deser C, Yu Jinyi, et al. El Niño and southern oscillation (ENSO): a review[M]. //Glynn P W, Manzello D P, Enochs I C. Coral Reefs of the Eastern Tropical Pacific: Persistence and Loss in a Dynamic Environment. Dordrecht: Springer, 2017: 85−106. [43] Håkansson S. A review of various factors influencing the stable carbon isotope ratio of organic lake sediments by the change from glacial to post-glacial environmental conditions[J]. Quaternary Science Reviews, 1985, 4(2): 135−146. doi: 10.1016/0277-3791(85)90017-4 [44] 许武成, 马劲松, 王文. 关于ENSO事件及其对中国气候影响研究的综述[J]. 气象科学, 2005, 25 (2): 212−220.Xu Wucheng, Ma Jinsong, Wang Wen. A review of studies on the influence of ENSO events on the climate in China[J]. Journal of the Meteorological Sciences, 2005 (2): 212−220. [45] 任福民, 袁媛, 孙丞虎, 等. 近30年ENSO研究进展回顾[J]. 气象科技进展, 2012, 2(3): 17−24.Ren Fumin, Yuan Yuan, Sun Chenghu, et al. Review of progress of ENSO studies in the past three decades[J]. Advances in Meteorological Science and Technology, 2012, 2(3): 17−24. [46] Tangang F, Farzanmanesh R, Mirzaei A, et al. Characteristics of precipitation extremes in Malaysia associated with El Niño and La Niña events[J]. International Journal of Climatology, 2017, 37: 696−716. doi: 10.1002/joc.5032 [47] Tangang F, Juneng L, Ahmad S. Trend and interannual variability of temperature in Malaysia: 1961–2002[J]. Theoretical and Applied Climatology, 2007, 89(3/4): 127−141. [48] Sammathuria M K, Ling L K. Regional climate observation and simulation of extreme temperature and precipitation trends[C]//Proceedings of the 14th International Rainwater Catchment Systems Conference, Kuala Lumpur, Malaysia. 2009: 3−6.