留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SLA-UNet的海水网箱养殖信息提取

柯丽娜 由金浩 范剑超

柯丽娜,由金浩,范剑超. 基于SLA-UNet的海水网箱养殖信息提取[J]. 海洋学报,2024,46(5):93–102 doi: 10.12284/hyxb2024044
引用本文: 柯丽娜,由金浩,范剑超. 基于SLA-UNet的海水网箱养殖信息提取[J]. 海洋学报,2024,46(5):93–102 doi: 10.12284/hyxb2024044
Ke Li’na,You Jinhao,Fan Jianchao. Marine cage aquaculture information extraction based on SLA-UNet[J]. Haiyang Xuebao,2024, 46(5):93–102 doi: 10.12284/hyxb2024044
Citation: Ke Li’na,You Jinhao,Fan Jianchao. Marine cage aquaculture information extraction based on SLA-UNet[J]. Haiyang Xuebao,2024, 46(5):93–102 doi: 10.12284/hyxb2024044

基于SLA-UNet的海水网箱养殖信息提取

doi: 10.12284/hyxb2024044
基金项目: 国家自然科学基金项目(42076184,41706195);国家高分重大科研专项项目(41-Y30F07-9001-20/22);国家重点研发计划项目(2021YFC2801000)。
详细信息
    作者简介:

    柯丽娜(1978—),女,辽宁省庄河市人,教授,博士生导师,研究方向为海岸带遥感技术应用。E-mail:kekesunny@163.com

    通讯作者:

    范剑超,博士,教授,博士生导师,研究方向为海洋遥感影像人工智能分析。E-mail:fjchao@dlut.edu.cn

  • 中图分类号: P714;TP75;S967.3

Marine cage aquaculture information extraction based on SLA-UNet

  • 摘要: 网箱养殖是海水养殖中最重要的类型之一,各类网箱在遥感影像中形状不一,且背景复杂,以往的网箱提取方法,未能完全模拟人类的视觉行为,以及高效利用光谱信息。针对上述问题,提出深度多循环注意力光谱的U-Net网络模型(Spectral Loopy Attention U-Net, SLA-UNet)进行网箱养殖信息提取,使用基于最优尺度寻优(Estimation of Scale Parameter, ESP)的随机森林(Random Forest, RF)算法,去除波段运算后的冗余光谱信息,并添加类似人眼的注意力行为机制,深化影响网箱信息提取的重要特征通道,同时进行边缘补齐补充损失信息,实现了网箱养殖信息的高精度提取。选取广东省湛江市和海南省临高县作为研究区域,与Canny算子、Otsu算法、PCA_Kmeans算法、基于ESP的RF算法、U-Net模型提取结果进行对比,所提SLA-UNet模型近岸网箱的提取精度为98.3%,深海网箱提取精度平均值为98.9%,验证了SLA-UNet模型在网箱养殖识别中的有效性。
  • 图  1  湛江市坡头区和霞山区海水网箱养殖区

    Fig.  1  Marine cage aquaculture area at Potou and Xiashan in Zhanjiang

    图  2  海南省临高县海水网箱养殖区

    Fig.  2  Marine cage aquaculture area at Lingao in Hainan Province

    图  3  海水网箱养殖

    a. 传统近岸网箱;b. 新型深海网箱养殖

    Fig.  3  Marine cage aquaculture

    a. Traditional offshore cages; b. new deep-sea cages

    图  4  整体流程

    Fig.  4  The overall flow

    图  5  SE注意力机制

    Fig.  5  SE attention mechanism

    图  6  SLA-UNet 结构

    Fig.  6  SLA-UNet structure

    图  7  近岸网箱提取效果对比

    Fig.  7  Comparison of offshore cage extraction effect

    图  8  坡头区近岸网箱提取结果

    Fig.  8  Extraction results of offshore cages in Potou District

    图  9  深海网箱提取效果对比

    Fig.  9  Comparison of deep-sea cage extraction effect

    图  10  深海网箱提取结果

    Fig.  10  Deep sea cage extraction results

    图  11  深海网箱提取效果对比

    Fig.  11  Comparison of deep-sea cage extraction effect

    表  1  近岸网箱精度验证结果

    Tab.  1  Accuracy verification results of nearshore cage

    测试区Canny算子Otsu算法PCA_Kmeans算法基于ESP的RF算法U-NetSLA-UNet
    OA/%84.787.388.290.595.698.3
    R/%86.389.290.391.597.898.6
    MIOU/%55.762.565.767.280.283.5
    下载: 导出CSV

    表  2  湛江深海网箱精度验证结果

    Tab.  2  Accuracy verification results of deep sea cage in Zhanjiang

    测试区Canny算子Otsu算法PCA_Kmeans算法基于ESP的RF算法U-NetSLA-UNet
    OA/%85.286.788.991.397.399.2
    R/%85.488.188.589.397.598.3
    MIOU/%60.563.366.872.186.291.6
    下载: 导出CSV

    表  3  临高县深海网箱精度验证结果

    Tab.  3  Accuracy verification results of deep sea cage at Lingao

    测试区Canny算子Otsu算法PCA_Kmeans算法基于ESP的RF算法U-NetSLA-UNet
    OA/%75.179.380.285.695.198.6
    R/%78.480.282.586.295.698.1
    MIOU/%59.159.961.769.876.482.3
    下载: 导出CSV
  • [1] Wang Ming, Mao Dehua, Xiao Xiangming, et al. Interannual changes of coastal aquaculture ponds in China at 10-m spatial resolution during 2016–2021[J]. Remote Sensing of Environment, 2023, 284: 113347. doi: 10.1016/j.rse.2022.113347
    [2] FAO. The State of World Fisheries and Aquaculture 2020[EB/OL]. [2023-03-05]. http://doi.org/10.4060/ca9229en
    [3] Mao Dehua, Yang Hong, Wang Zongming, et al. Reverse the hidden loss of China’s wetlands[J]. Science, 2022, 376(6597): 1061.
    [4] 邓莎萨, 张帆, 尹嫱等. 面向目视解译的全极化SAR船只精细化特征表征方法[J/OL]. [2024-02-21]. 雷达学报, 2023. https://radars.ac.cn/cn/article/doi/ 10.12000/JR23078. doi: 10.12000/JR23078

    Deng Shasa, Zhang Fan, Yin Qiang, et al. Refined ship feature characterization method of full-polarimetric synthetic aperture radar for visual interpretation[J/OL]. Journal of Radars, 2023. https://radars.ac.cn/cn/article/doi/ 10.12000/JR23078. doi: 10.12000/JR23078
    [5] Schepaschenko D, See L, Lesiv M, et al. Recent advances in forest observation with visual interpretation of very high-resolution imagery[J]. Surveys in Geophysics, 2019, 40(4): 839−862. doi: 10.1007/s10712-019-09533-z
    [6] 汪静平, 吴小丹, 马杜娟, 等. 基于机器学习的遥感反演: 不确定性因素分析[J]. 遥感学报, 2023, 27(3): 790−801.

    Wang Jingping, Wu Xiaodan, Ma Dujuan, et al. Remote sensing retrieval based on machine learning algorithm: uncertainty analysis[J]. Journal of Remote Sensing, 2023, 27(3): 790−801.
    [7] Virnodkar S S, Pachghare V K, Patil V C, et al. Remote sensing and machine learning for crop water stress determination in various crops: A critical review[J]. Precision Agriculture, 2020, 21(5): 1121−1155. doi: 10.1007/s11119-020-09711-9
    [8] Maxwell A E, Warner T A, Guillén L A. Accuracy assessment in convolutional neural network-based deep learning remote sensing studies—Part 2: Recommendations and best practices[J]. Remote Sensing, 2021, 13(13): 2591. doi: 10.3390/rs13132591
    [9] Kechagias-Stamatis O, Aouf N. Fusing deep learning and sparse coding for SAR ATR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(2): 785−797. doi: 10.1109/TAES.2018.2864809
    [10] Seto K C, Fragkias M. Mangrove conversion and aquaculture development in Vietnam: A remote sensing-based approach for evaluating the Ramsar Convention on Wetlands[J]. Global Environmental Change, 2007, 17(3/4): 486−500.
    [11] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504−507. doi: 10.1126/science.1127647
    [12] Long J, Shelhamer E, Darrell T. Fully convolutional Networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 3431−3440.
    [13] Li Jiayi, Zhang Hongyan, Zhang Liangpei. Supervised segmentation of very high resolution images by the use of extended morphological attribute profiles and a sparse transform[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(8): 1409−1413. doi: 10.1109/LGRS.2013.2294241
    [14] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer, 2015: 234−241.
    [15] Badrinarayanan V, Kendall A, Cipolla R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481−2495. doi: 10.1109/TPAMI.2016.2644615
    [16] Zheng Shuai, Jayasumana S, Romera-Paredes B, et al. Conditional random fields as recurrent neural networks[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1529−1537.
    [17] Chen Yang, Fan Rongshuang, Yang Xiucheng, et al. Extraction of urban water bodies from high-resolution remote-sensing imagery using deep learning[J]. Water, 2018, 10(5): 585. doi: 10.3390/w10050585
    [18] 刘岳明, 杨晓梅, 王志华, 等. 基于深度学习RCF模型的三都澳筏式养殖区提取研究[J]. 海洋学报, 2019, 41(4): 119−130.

    Liu Yueming, Yang Xiaomei, Wang Zhihua, et al. Extracting raft aquaculture areas in Sanduao from high-resolution remote sensing images using RCF[J]. Haiyang Xuebao, 2019, 41(4): 119−130.
    [19] Liu Chenxi, Jiang Tao, Zhang Zhen, et al. Extraction method of offshore mariculture area under weak signal based on multisource feature fusion[J]. Journal of Marine Science and Engineering, 2020, 8(2): 99. doi: 10.3390/jmse8020099
    [20] 柯丽娜, 翟宇宁, 范剑超. 深度边缘光谱U-Net海水网箱养殖信息提取[J]. 海洋学报, 2022, 44(2): 132−142.

    Ke Lina, Zhai Yuning, Fan Jianchao. Marine cage aquaculture information extraction based on deep edge spectral U-Net[J]. Haiyang Xuebao, 2022, 44(2): 132−142.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  32
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-14
  • 修回日期:  2023-12-19
  • 网络出版日期:  2024-08-19
  • 刊出日期:  2024-05-01

目录

    /

    返回文章
    返回