Study of the near-inertial motions induced by Typhoon “Cempaka” (2021) in the continental shelf of western Guangdong
-
摘要: 近惯性运动是海洋中广泛存在的一种频率接近局地惯性频率的海水运动,热带气旋是产生近惯性运动的主要动力之一。本文基于COAWST(Coupled Ocean-Atmosphere-Wave-Sediment Transport)数值模型系统,构建了一个覆盖南海北部陆架的波浪−海流耦合三维水动力模型,并对模型进行了充分验证。利用该模型模拟了2021年第7号台风“查帕卡”在粤西近海陆架上激发的近惯性运动。结果表明,近惯性动能在水平分布上有两个能量高值中心,一个在台风风速最大的近岸区域,另一个在离岸约130 km处,且第二个能量高值中心持续时间更久。在水深40 m以浅的近岸区域,近惯性运动以正压模态为主,表底层流速的相位相同,能量从表层向底层递减。随着水深逐渐增加,在水深70 m到100 m的区域,近惯性运动呈明显的两层结构,表底层近惯性运动的流速方向相反,垂向上出现两个能量高值中心,呈明显的一阶斜压模态特征。通过动力模态分解,发现部分两层结构明显的区域由一阶斜压模态和二阶斜压模态共同主导。随着水深继续增加,更高模态的近惯性运动在总的近惯性动能中占据越来越大的比重。动量平衡分析表明,在水深较浅、风速较大的近岸区域,整个水层内的动量平衡都是由垂向湍流黏性力和压强梯度力主导。而在水深较深、风速较小的离岸区域,垂向湍流黏性力集中在表层和底层,水体内部的动量平衡主要由压强梯度力、科氏力和局地加速度主导。这些结果说明近岸区域主要是风应力驱动的正压波动,而陆架区域,上混合层内的近惯性运动由风应力驱动,混合层以下的近惯性运动则是由正压的压强梯度力驱动的。Abstract: Near-inertial motion is a type of motion in the ocean that is ubiquitous and has a frequency close to the local inertial frequency. Tropical cyclones are one of the mainmechanisms that generate near-inertial motion. This study established a three-dimensional hydrodynamic model based on COAWST (Coupled Ocean-Atmosphere-Wave-Sediment Transport) numerical model system, which couples waves and currents, covers the northern shelf of the South China Sea, and was fully verified. The model was used to simulate the near-inertial motion triggered by Typhoon “Cempaka”, the No.7 typhoon of 2021, on the shelf of western Guangdong. The results indicate that there are spatially two peaks of near-inertial kinetic energy, one in the coastal area with the highest typhoon wind speed, and the other at 130 km offshore, with the second energy peak lasting longer. In the coastal area with water depth shallower than 40 m, the near-inertial motion is mainly in a barotropic mode. As the water depth gradually increases offshore, we found that the near-inertial motions exhibit a clear two-layer structure inthe regions with depths ranging from 70−100 m, with opposite directions of near-inertial flow in the surface and bottom layers, and two energy peaks in the vertical direction, showing the characteristics of the first baroclinic mode. Through dynamic modedecomposition, we found that some areas with obvious two-layer structures are composed of the first and secondbaroclinic modes. As the water depth continues to increase, higher modes of near-inertial flow account for an increasing proportion of the total near-inertial kinetic energy. Momentum balance analysis shows that in the coastal area with shallow water depth and high wind speed, the balance of momentum equation in the entire water layer is dominated by the vertical turbulent viscous force and pressure gradient force. In offshore areas with deeper water depths and lower wind speeds, vertical turbulent viscous forces are concentrated in the surface and bottom layers, and the balance of momentum equation in the intermediate water body is mainly dominated by the pressure gradient forces, Coriolis forces, and local acceleration. This indicates that the near-inertialmotion in the coastal area is mainly driven by barotropicwave caused bywind stress, while in the continental shelf area, the near-inertial motion in the uppermixed layer is driven by wind stress, and the near-inertial motion below the mixed layeris driven by barotropic pressure gradient force.
-
图 3 近惯性能量的水平分布
第一至第三列分别为台风前、台风期间、台风后的近惯性动能。黑色线为台风中心移动路径,绿色点为台风中心所在位置
Fig. 3 The near-inertial energy horizontal distribution
The first to third columns represent the near inertial kinetic energy before, during, and after the typhoon, respectively. The black line represents the movement path of the typhoon center, and the green dots indicate the location of the typhoon center
图 5 S1-1至S1-5站位的表(第15层)、中(第8层)、底层(第1层)流速的旋转谱
其中蓝色线表示顺时针旋转(CW)的成分,红色线表示逆时针旋转(CCW)的成分;阴影区表示近惯性频段
Fig. 5 The rotary velocity spectrum for the surface (Layer 15), middle (Layer 8) and bottom layer (Layer 1) of stations S1-1 to S1-5
blue line shows the clockwise component (CW), and the dashed red line denotes the counter-clockwise component (CCW), the shaded region shows the band of near-inertial
图 6 S2-1至S2-5站位的表(第15层)、中(第8层)、底层(第1层)流速的旋转谱
其中蓝色线表示顺时针旋转(CW)的成分,红色线表示逆时针旋转(CCW)的成分;阴影区表示近惯性频段
Fig. 6 The rotary velocity spectrum for the surface,middle and bottom layer of Stations S2-1 to S2-5
blue line shows the clockwise component (CW), and the dashed red line denotes the counter-clockwise component (CCW), the shaded region shows the band of near-inertial
图 7 S1断面的近惯性流速
第1行为风速矢量,第2行为东向流速u,第3行为北向流速v,黑色线为浮力频率N最大值所在深度
Fig. 7 Timeseries of wind, near inertial current of u and v at the Transect S1
The first row is the wind speed vector, the second row is the eastward flow velocity u, and the third row is the northward flow velocity v. The black solid line is the depth with maximum buoyancy frequency
图 8 S2断面的近惯性流速
第1行为风速矢量,第2行为东向流速u,第3行为北向流速v,黑色线为浮力频率N最大值所在深度
Fig. 8 Timeseries of wind, near inertial current of u and v at the Transect S2
The first row is the wind speed vector, the second row is the eastward flow velocity u, and the third row is the northward flow velocity v. The black solid line is the depth with maximum buoyancy frequency
图 15 S1-1站位处的动量平衡分析
从上到下依次为水深0、0.38H、0.68H和0.98H的水层;图中各项意义:acc(加速度项);cor(科氏力项);hadv(水平对流项);prsgrd(压强梯度项);vvisc(垂向湍流黏性项)
Fig. 15 The time evolution of momentum terms at Station S1-1
from top to bottom the water layers at depths of 0, 0.38H, 0.68H, and 0.98H; acc is the local acceleration, cor is the Coriolis force, hadv is the horizontal advection, prsgrd is the pressure gradient force, and vvisc is the vertical friction
图 16 S1-3站位处的动量平衡分析
从上到下依次为水深0、0.38H、0.68H和0.98H的水层;图中各项意义:acc(加速度项);cor(科氏力项);hadv(水平对流项);prsgrd(压强梯度项);vvisc(垂向湍流黏性项)
Fig. 16 The time evolution of momentum terms at Station S1-3
from top to bottom the Water layers at depths of 0, 0.38H, 0.68H, and 0.98H; acc is the local acceleration, cor is the Coriolis force, hadv is the horizontal advection, prsgrd is the pressure gradient force, and vvisc is the vertical friction
图 17 S2-1站位处的动量平衡分析
从上到下依次为水深0、0.38H、0.68H和0.98H的水层;图中各项意义:acc(加速度项);cor(科氏力项);hadv(水平对流项);prsgrd(压强梯度项);vvisc(垂向湍流黏性项)
Fig. 17 The time evolution of momentum terms at Station S2-1
from top to bottom the Water layers at depths of 0, 0.38H, 0.68H, and 0.98H; acc is the local acceleration, cor is the Coriolis force, hadv is the horizontal advection, prsgrd is the pressure gradient force, and vvisc is the vertical friction
图 18 S2-3站位处的动量平衡分析
从上到下依次为水深0、0.38H、0.68H和0.98H的水层;图中各项意义:acc(加速度项);cor(科氏力项);hadv(水平对流项);prsgrd(压强梯度项);vvisc(垂向湍流黏性项)
Fig. 18 The time evolution of momentum terms at Station S2-3
from top to bottom the Water layers at depths of 0, 0.38H, 0.68H, and 0.98H; acc is the local acceleration, cor is the Coriolis force, hadv is the horizontal advection, prsgrd is the pressure gradient force, and vvisc is the vertical friction
表 1 各站位水层深度
Tab. 1 The depth of surface, middle, bottom layers of each station
站位 表层/m 中层/m 底层/m S1-1 0.05 10.05 25.96 S1-2 0.08 17.40 44.96 S1-3 0.15 32.21 83.21 S1-4 0.25 53.61 138.46 S1-5 0.80 173.96 449.33 S2-1 0.03 6.32 16.33 S2-2 0.07 15.54 40.13 S2-3 0.14 29.62 76.52 S2-4 0.18 38.68 99.90 S2-5 0.59 129.50 334.49 表 2 近惯性动能衰减时间尺度(单位:惯性周期,IP)
Tab. 2 The timescale of the decay of near inertial energy(unit: Inertia Period, IP)
S1-1 S1-2 S1-3 S1-4 S1-5 S2-1 S2-2 S2-3 S2-4 S2-5 上层 1.61 1.19 1.04 2.91 2.37 1.69 0.85 3.97 2.26 2.23 下层 1.75 1.20 1.60 2.34 4.58 1.55 1.97 3.05 5.62 2.57 -
[1] Alford M H, Mackinnon J A, Simmons H L, et al. Near-inertial internal gravity waves in the ocean[J]. Annual Review of Marine Science, 2016, 8: 95−123. doi: 10.1146/annurev-marine-010814-015746 [2] Puig P, Palanques A, Guillén J. Near-bottom suspended sediment variability caused by storms and near-inertial internal waves on the Ebro mid continental shelf (NW Mediterranean)[J]. Marine Geology, 2001, 178(1/4): 81−93. [3] Price J F. Upper ocean response to a hurricane[J]. Journal of Physical Oceanography, 1981, 11(2): 153−175. doi: 10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2 [4] Kundu P K, Chao S Y, McCreary J P. Transient coastal currents and inertio-gravity waves[J]. Deep-Sea Research Part A. Oceanographic Research Papers, 1983, 30(10): 1059−1082. doi: 10.1016/0198-0149(83)90061-4 [5] Millot C, Crépon M. Inertial oscillations on the continental shelf of the Gulf of Lions-Observations and theory[J]. Journal of Physical Oceanography, 1981, 11(5): 639−657. doi: 10.1175/1520-0485(1981)011<0639:IOOTCS>2.0.CO;2 [6] Mayer D A, Mofjeld H O, Leaman K D. Near-inertial internal waves observed on the outer shelf in the middle atlantic bight in the wake of hurricane belle[J]. Journal of Physical Oceanography, 1981, 11(1): 87−106. doi: 10.1175/1520-0485(1981)011<0087:NIIWOO>2.0.CO;2 [7] De Young B, Tang C L. Storm-forced baroclinic near-inertial currents on the grand bank[J]. Journal of Physical Oceanography, 1990, 20(11): 1725−1741. doi: 10.1175/1520-0485(1990)020<1725:SFBNIC>2.0.CO;2 [8] Tintoré J, Wang Dongping, Garćia E, et al. Near-inertial motions in the coastal ocean[J]. Journal of Marine Systems, 1995, 6(4): 301−312. doi: 10.1016/0924-7963(94)00030-F [9] MacKinnon J A, Gregg M C. Near-inertial waves on the new England shelf: the role of evolving stratification, turbulent dissipation, and bottom drag[J]. Journal of Physical Oceanography, 2005, 35(12): 2408−2424. doi: 10.1175/JPO2822.1 [10] Shearman R K. Observations of near-inertial current variability on the New England shelf[J]. Journal of Geophysical Research: Oceans, 2005, 110(C2): C02012, doi: 10.1029/2004JC002341 [11] Chen Shengli, Chen Daoyi, Xing Jiuxing. A study on some basic features of inertial oscillations and near-inertial internal waves[J]. Ocean Science, 2017, 13(5): 829−836. doi: 10.5194/os-13-829-2017 [12] Hu Yibo, Yu Fei, Chen Zifei, et al. Two near-inertial peaks in antiphase controlled by stratification and tides in the Yellow Sea[J]. Frontiers in Marine Science, 2023, 9: 1081869. doi: 10.3389/fmars.2022.1081869 [13] 陈杏文, 邱春华, 张恒, 等. 珠江口鸡啼门近海海洋对台风的响应[J]. 海洋与湖沼, 2022, 53(4): 872−881. doi: 10.11693/hyhz20220100001Chen Xingwen, Qiu Chunhua, Zhang Heng, et al. Response to typhoons in coastal waters at Jitimen in Zhujiang River Estuary[J]. Oceanologiaet Limnologia Sinica, 2022, 53(4): 872−881. doi: 10.11693/hyhz20220100001 [14] Warner J C, Armstrong B, He Ruoying, et al. Development of a coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system[J]. Ocean Modelling, 2010, 35(3): 230−244. doi: 10.1016/j.ocemod.2010.07.010 [15] Song Yuhe, Haidvogel D. A semi-implicit ocean circulation model using a generalized topography-following coordinate system[J]. Journal of Computational Physics, 1994, 115(1): 228−244. doi: 10.1006/jcph.1994.1189 [16] Mellor G L, Yamada T. Development of a turbulence closure model for geophysical fluid problems[J]. Reviews of Geophysics, 1982, 20(4): 851−875. doi: 10.1029/RG020i004p00851 [17] Smagorinsky J. General circulation experiments with the primitive equations I. the basic experiment[J]. Monthly Weather Review, 1963, 91(3): 99−164. doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 [18] Flather R A. A tidal model of the northwest European continental shelf[J]. Memoires Société Royale des Sciences de Liège, 1976, 10(6): 141−164. [19] Chapman D C. Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model[J]. Journal of Physical Oceanography, 1985, 15(8): 1060−1075. doi: 10.1175/1520-0485(1985)015<1060:NTOCSO>2.0.CO;2 [20] Orlanski I. A simple boundary condition for unbounded hyperbolic flows[J]. Journal of Computational Physics, 1976, 21(3): 251−269. doi: 10.1016/0021-9991(76)90023-1 [21] Holland G J. An analytic model of the wind and pressure profiles in hurricanes[J]. Monthly Weather Review, 1980, 108(8): 1212−1218. doi: 10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2 [22] Chen Yuren, Chen Lianghong, Zhang Heng, et al. Effects of wave-current interaction on the Pearl River Estuary during Typhoon Hato[J]. Estuarine, Coastal and Shelf Science, 2019, 228: 106364. doi: 10.1016/j.ecss.2019.106364 [23] 黄震宇. 台风在南海北部陆架引起的近惯性运动研究——以台风“查帕卡”为例[D]. 广州: 中山大学, 2023: 69.Huang Zhenyu. The near-inertial motions induced by typhoons on the northern shelf of the South China Sea ——A case study of Typhoon “Cempaka”[D]. Guangzhou: Sun Yat-sen University, 2023: 69. [24] Gill A E. Atmosphere-Ocean Dynamics[M]. New York: Academic Press, 1982: 681. [25] Griffiths S D, Grimshaw R H J. Internal tide generation at the continental shelf modeled using a modal decomposition: two-dimensional results[J]. Journal of Physical Oceanography, 2007, 37(3): 428−451. doi: 10.1175/JPO3068.1 [26] Cao Anzhou, Li Bingtian, Lü Xianqing. Extraction of internal tidal currents and reconstruction of full-depth tidal currents from mooring observations[J]. Journal of Atmospheric and Oceanic Technology, 2015, 32(7): 1414−1424. doi: 10.1175/JTECH-D-14-00221.1