Numerical simulation of hydrodynamic and sediment transport and analysis of geomorphic erosion and deposition in the Taiwan Strait
-
摘要: 台湾海峡是我国最大的海峡,也是东海和南海进行物质和能量交换的主要通道。海峡内地形变化剧烈,海洋动力环境复杂,加上两侧众多山溪性河流携带大量泥沙流入海洋,是研究动力沉积作用的理想场所。目前,由于缺乏海峡整体的高分辨率地形以及相关实测水文数据,以整个台湾海峡为研究区域的动力沉积模拟尚不多见。本文基于高分辨率地形和相关水文数据,建立了台湾海峡水动力数值模型,耦合泥沙输运模块,模拟台湾海峡的动力沉积过程,并用现场观测资料对模型进行了验证。动力模拟结果表明,台湾海峡的潮流流场由南、北两个潮波控制,具有明显的时间和空间特征,潮流流速夏季大于冬季,海峡中部小于南北两侧,北侧小于南侧。基于冲淤模拟结果,将台湾海峡划分为淤积区、侵蚀区、冲淤平衡区三大类共计7个沉积分区,淤积区沉积速率最大可达5 cm/a,主要集中在台湾浅滩北部,侵蚀区冲刷速率为2~5 cm/a。结合模拟结果,本文建立了台湾海峡沉积输运模式与“源−汇”格局模式,阐述了台湾海峡冲淤变化的动力学机制和“源−汇”过程。Abstract: Taiwan Strait is the largest strait in China and the main channel for material and energy exchange between the East China Sea and the South China Sea. The topography changes dramatically and the tidal environment is complex in the Strait. In addition, many mountainous streams on both sides carry a large amount of sediment into the strait. It is an ideal place to study dynamic sedimentation processes. Currently, due to a lack of high-resolution bathymetry and relevant data for the entire Taiwan Strait, there are few studies on modeling the tide and sediment behaviors of the Taiwan Strait as a whole. In this study, based on high-resolution bathymetric and relevant hydrological data, a two-dimensional tidal current numerical model of the Taiwan Strait has been established, and a sediment transport module has been coupled to simulate the sediment transport in the Taiwan Strait. The dynamic simulation results indicate that the tidal current field in the Taiwan Strait is governed by two tidal waves from the south and north, exhibiting distinct temporal and spatial characteristics. The tidal flow velocity is higher in summer than in winter, and it is lower in the central part of the strait compared to the southern and northern sides, with the northern side being less than the southern side. Based on the deposition and erosion simulation results, the Taiwan Strait is categorized into three main types and a total of seven sedimentary subdivisions: deposition zones, erosion zones, and deposition-erosion equilibrium zones. The maximum sedimentation rate in the accumulation zones can reach 5 cm/a, primarily concentrated in the northern part of the Taiwan Bank, with erosion rates ranging from 2 cm/a to 5 cm/a in the erosion zones. Leveraging these simulation outcomes, this study constructs a sediment transport model and a ‘source-to-sink’ pattern model for the Taiwan Strait, elucidating the dynamic mechanisms behind the strait’s deposition and erosion changes and the ‘source-to-sink’ process.
-
Key words:
- Taiwan Strait /
- numerical simulation /
- hydrodynamics /
- sediment transport /
- geomorphological evolution
-
图 1 台湾海峡地形及测站分布图[38]
Fig. 1 Topography map of the Taiwan Strait and the locations of the monitoring stations
表 1 台湾海峡两岸主要河流年径流量及输沙量
Tab. 1 Annual runoff and sediment discharge of the major rivers on both sides of the Taiwan Strait
表 2 模型重要参数
Tab. 2 Model parameter setting
HD模块参数 参数设置 SW模块参数 参数设置 科氏力参数 随空间变化 求解方程 全谱、非定常公式 水平涡黏系数 0.28 m2/s 空气−海水作用方式 耦合 糙率 随水深变化
25~45 m1/3/s波浪破碎系数 0.8 风阻 0.001255 底摩擦系数 Johnson公式 波浪辐射应力 根据SW计算
结果输入白帽耗散 Komen公式 MT模块参数 参数设置 ST模块参数 参数设置 泥沙密度 2650 kg/m3 泥沙输运表 MIKE工具箱生成 临界淤积剪切应力 率定获得 泥沙孔隙率 0.4 临界侵蚀剪切应力 率定获得 中值粒径 0.6 mm 底摩擦系数 率定获得 分选系数 1.1 水平涡黏系数 1 m2/s 波浪辐射应力 根据SW计算
结果输入表 3 各测站模型验证结果统计
Tab. 3 Statistics of the model validation results at each station
物理量 站点 相关系数(Cor) 平均绝对误差(MAE) 均方根误差(RMSE) 潮位 East 0.95 0.11 0.14 West 0.99 0.08 0.10 流速 北2 0.75 0.11 0.14 南2 0.91 0.07 0.08 East 0.91 0.07 0.08 West 0.74 0.11 0.03 流向 北2 0.74 0.63 1.16 南2 0.86 0.38 0.81 East 0.77 170.81 208.85 West 0.75 111.79 141.94 有效
波高A 0.91 0.17 0.21 B 0.82 0.26 0.30 C 0.43 0.33 0.49 平均
波向A 0.85 21.35 27.48 B 0.73 19.08 27.16 C 0.77 28.52 35.32 谱峰
周期A 0.89 0.71 0.95 B 0.74 0.89 1.26 C 0.61 1.35 2.04 悬沙
浓度AT1 0.89 6.63 6.68 BT1 0.72 6.09 6.05 -
[1] Rossi V M, Longhitano S G, Olariu C, et al. Straits and seaways: controls, processes and implications in modern and ancient systems[J]. Geological Society, London, Special Publications, 2023, 523(1): 1−15. doi: 10.1144/SP523-2022-271 [2] Rossi V M, Longhitano S G, Olariu C, et al. Straits and seaways: end members within the continuous spectrum of the dynamic connection between basins[J]. Geological Society, London, Special Publications, 2023, 523(1): 85−109. doi: 10.1144/SP523-2022-159 [3] 单新, 李顺利, 石学法, 等. 海峡沉积研究进展[J]. 古地理学报, 2022, 24(6): 1058−1071. doi: 10.7605/gdlxb.2022.06.076Shan Xin, Li Shunli, Shi Xuefa, et al. A review of strait sedimentology[J]. Journal of Palaeogeography, 2022, 24(6): 1058−1071. doi: 10.7605/gdlxb.2022.06.076 [4] 刘振夏, 夏东兴. 中国近海潮流沉积沙体[M]. 北京: 海洋出版社, 2004.Liu Zhenxia, Xia Dongxing. Tidal Sands in the China Seas[M]. Beijing: China Ocean Press, 2004. [5] Liu Zhenxia, Xia Dongxing, Berne S, et al. Tidal deposition systems of China’s continental shelf, with special reference to the eastern Bohai Sea[J]. Marine Geology, 1998, 145(3/4): 225−253. [6] 丁文兰. 台湾海峡潮汐和潮流的分布特征[J]. 台湾海峡, 1983, 2(1): 1−8.Ding Wenlan. The characteristics of the tides and tidal currents in the Taiwan Strait[J]. Taiwan Strait, 1983, 2(1): 1−8. [7] 王志豪. 台湾海峡的潮汐[J]. 台湾海峡, 1985, 4(2): 120−128.Wang Zhihao. Tides in the Taiwan Strait[J]. Taiwan Strait, 1985, 4(2): 120−128. [8] Jin Lina, Shan Xin, Shi Xuefa, et al. Hybrid event beds generated by erosional bulking of modern hyperpycnal flows on the Choshui River delta front, Taiwan Strait[J]. Sedimentology, 2021, 68(6): 2500−2522. doi: 10.1111/sed.12862 [9] 胡毅, 陈坚, 许江. 台湾海峡的海洋沉积环境研究进展[J]. 海洋通报, 2011, 30(5): 595−600. doi: 10.3969/j.issn.1001-6392.2011.05.020Hu Yi, Chen Jian, Xu Jiang. Progress in the marine sedimentary environment research for the Taiwan Strait[J]. Marine Science Bulletin, 2011, 30(5): 595−600. doi: 10.3969/j.issn.1001-6392.2011.05.020 [10] 郑文振, 陈福年, 陈新忠. 台湾海峡的潮汐和潮流[J]. 台湾海峡, 1982, 1(2): 1−4.ZhengWenzhen, Chen Funian, Chen Xinzhong. Tides and tidal currents in the Taiwan Strait[J]. Taiwan Strait, 1982, 1(2): 1−4. [11] 李立, 王寿景. 对台湾海峡潮流的一点认识[J]. 海洋与湖沼, 1990, 21(6): 578−580.Li Li, Wang Shoujing. Notes on the tidal current in the Taiwan Strait[J]. Oceanologia et Limnologia Sinica, 1990, 21(6): 578−580. [12] 吴自银, 阳凡林, 李守军. 高分辨率海底地形地貌——探测处理理论与技术[M]. 北京: 科学出版社, 2017.Wu Ziyin, Yang Fanlin, Li Shoujun. High-Resolution Submarine Geomorphology—Theory and Technology for Surveying and Post-processing[M]. Beijing: Science Press, 2017. [13] Wu Ziyin, Yang Fanlin, Tang Yong. High-Resolution Seafloor Survey and Applications[M]. Singapore: Springer, 2021. [14] 王璐, 熊乐航, 郝彩莲, 等. 疏浚工程对湄洲湾东吴港区水环境影响的数值模拟[J]. 海洋湖沼通报, 2021, 43(3): 17−24.Wang Lu, Xiong Lehang, Hao Cailian, et al. Numerical simulation of water environment effects of dredging project in Dongwu Port Area of Meizhou Bay[J]. Transactions of Oceanology and Limnology, 2021, 43(3): 17−24. [15] 黄晨. 兴化湾工程建设对周边海域水沙环境影响[J]. 科学技术与工程, 2019, 19(16): 330−338. doi: 10.3969/j.issn.1671-1815.2019.16.052Huang Chen. Impacts of Xinghua Bay construction on water and sediment environment in surrounding waters[J]. Science Technology and Engineering, 2019, 19(16): 330−338. doi: 10.3969/j.issn.1671-1815.2019.16.052 [16] 侯庆志, 左利钦, 陆永军, 等. 强潮海湾水动力环境对人类干预的响应——以泉州湾为例[J]. 应用基础与工程科学学报, 2017, 25(6): 1124−1138.Hou Qingzhi, Zuo Liqin, Lu Yongjun, et al. Hydrodynamic environment response to human interventions in a Macro Tidal Bay: the example of the Quanzhou Bay[J]. Journal of Basic Science and Engineering, 2017, 25(6): 1124−1138. [17] 谢森扬, 王金坑, 王翠, 等. 九龙江口−厦门湾悬沙浓度及多岔口潮汐汊道泥沙输运的数值模拟[J]. 水动力学研究与进展: A辑, 2016, 31(2): 188−201.Xie Senyang, Wang Jinkeng, Wang Cui, et al. Numerical study on suspended sediment concentration in Jiulong Estuary-Xiamen Bay and sediment transport mechanism in tidal inlets with multi-fork[J]. Chinese Journal of Hydrodynamics, 2016, 31(2): 188−201. [18] 吴自银. 中国周边海域海底地形与地名图[M]. 北京: 中国地图出版社, 2021.Wu Ziyin. Map of Submarine Topography and Undersea Feature Names of China's Surrounding Seas[M]. Beijing: SinoMaps Press, 2021. [19] 吴自银. 中国周边海域海底地理实体图集丛书[M]. 北京: 海洋出版社, 2021.Wu Ziyin. Map of Submarine Topography and Place Names of China’s Surrounding Seas[M]. Beijing: China Ocean Press, 2021. [20] 吴自银, 阳凡林, 李守军. 高分辨率海底地形地貌——可视计算与科学应用[M]. 北京: 科学出版社, 2017.Wu Ziyin, Yang Fanlin, Li Shoujun. HighResolution Submarine Geomorphology—Visul Computation and Scientific Applications[M]. Beijing: Science Press, 2017. [21] 吴自银, 温珍河. 中国近海海洋地质[M]. 北京: 科学出版社, 2021.Wu Ziyin, Wen Zhenhe. Marine Geology of China Seas[M]. Beijing: Science Press, 2021. [22] Shen Xiaotian, Jian Xing, Li Chao, et al. Submarine topography-related spatial variability of the southern Taiwan Strait sands (East Asia)[J]. Marine Geology, 2021, 436: 106495. doi: 10.1016/j.margeo.2021.106495 [23] 吴自银, 温珍河. 中国海海洋地质系列图[M]. 北京: 科学出版社, 2019.Wu Ziyin, Wen Zhenhe. Series of Marine Geological Maps of China Seas[M]. Beijing: Science Press, 2019. [24] 郑祥靖, 李雪丁, 徐啸, 等. 台湾海峡海浪数值模拟和特征分析[J]. 海洋预报, 2021, 38(5): 31−39. doi: 10.11737/j.issn.1003-0239.2021.05.005Zheng Xiangjing, Li Xueding, Xu Xiao, et al. Numerical simulation and characteristic analysis of ocean waves in the Taiwan Strait[J]. Marine Forecasts, 2021, 38(5): 31−39. doi: 10.11737/j.issn.1003-0239.2021.05.005 [25] Zhao Shaohua, Qi Hongshuai, Cai Feng, et al. Morphological and sedimentary features of sandy-muddy transitional beaches in estuaries and bays along mesotidal to macrotidalcoasts[J]. Earth Surface Processes and Landforms, 2020, 45(7): 1660−1676. doi: 10.1002/esp.4837 [26] Jan Sen, Wang J, Chern C S, et al. Seasonal variation of the circulation in the Taiwan Strait[J]. Journal of Marine Systems, 2002, 35(3/4): 249−268. [27] Hong Huasheng, Zhang Caiyun, Shang Shaoling, et al. Interannual variability of summer coastal upwelling in the Taiwan Strait[J]. Continental Shelf Research, 2009, 29(2): 479−484. doi: 10.1016/j.csr.2008.11.007 [28] Zhou Jieqiong, Wu Ziyin, Zhao Dineng, et al. Giant sand waves on the Taiwan Banks, southern Taiwan Strait: distribution, morphometric relationships, and hydrologic influence factors in a tide-dominated environment[J]. Marine Geology, 2020, 427: 106238. doi: 10.1016/j.margeo.2020.106238 [29] BaoJingjing, Cai Feng, Shi Fengyan, et al. Morphodynamic response of sand waves in the Taiwan Shoal to a passing tropical storm[J]. Marine Geology, 2020, 426: 106196. doi: 10.1016/j.margeo.2020.106196 [30] 刘金芳, 刘忠, 顾翼炎, 等. 台湾海峡水文要素特征分析[J]. 海洋预报, 2002, 19(3): 22−32. doi: 10.3969/j.issn.1003-0239.2002.03.003Liu Jinfang, Liu Zhong, Gu Yiyan, et al. Analysis of the hydrographic elements features in Taiwan Strait[J]. Marine Forecasts, 2002, 19(3): 22−32. doi: 10.3969/j.issn.1003-0239.2002.03.003 [31] 吴頔, 王勇智, 孙永根. 台湾海峡M2分潮潮汐潮流特征分布及机制研究[J]. 应用海洋学学报, 2020, 39(4): 460−468. doi: 10.3969/J.ISSN.2095-4972.2020.04.002Wu Di, Wang Yongzhi, Sun Yonggen. Distribution and mechanism of M2 tide and tidal current in Taiwan Strait[J]. Journal of Applied Oceanography, 2020, 39(4): 460−468. doi: 10.3969/J.ISSN.2095-4972.2020.04.002 [32] 李传顺, 石学法, 高树基, 等. 台湾河流沉积物的黏土矿物组成特征与物质来源[J]. 科学通报, 2012, 57(2/3): 169−177.Li Chuanshun, Shi Xuefa, Kao Shuji, et al. Clay mineral composition and their sources for the fluvial sediments of Taiwanese rivers[J]. Chinese Science Bulletin, 2012, 57(6): 673−681. [33] Wan Shiming, Li Anchun, Clift P D, et al. Increased contribution of terrigenous supply from Taiwan to the northern South China Sea since 3 Ma[J]. Marine Geology, 2010, 278(1/4): 115−121. [34] Yang Shouye, Wang Zhongbo, Dou Yanguang, et al. Chapter 21 A review of sedimentation since the Last Glacial Maximum on the continental shelf of eastern China[J]. Geological Society, London, Memoirs, 2014, 41(1): 293−303. doi: 10.1144/M41.21 [35] 陈峰, 王海鹏, 郑志凤, 等. 闽江口水下三角洲的形成与演变──Ⅰ. 水下三角洲形成的环境因子与地貌发育[J]. 台湾海峡, 1998, 17(4): 396−401.Chen Feng, Wang Haipeng, Zheng Zhifeng, et al. Formation and evolution of underwater delta in Minjiang Estuary—I. Formative environment factors of underwater delta and its geomorphological development[J]. Journal of Oceanography in Taiwan Strait, 1998, 17(4): 396−401. [36] Wu Ziyin, Zhao Dineng, Syvitski J P M, et al. Anthropogenic impacts on the decreasing sediment loads of nine major rivers in China, 1954−2015[J]. Science of the Total Environment, 2020, 739: 139653. doi: 10.1016/j.scitotenv.2020.139653 [37] 林惠来. 台湾海峡西岸历史年代风沙的初探[J]. 台湾海峡, 1982, 1(2): 74−82.Lin Huilai. A preliminary investigation of historical wind-drift sands along the western coast of the Taiwan Strait[J]. Taiwan Strait, 1982, 1(2): 74−82. [38] Zhou Jieqiong, Wu Ziyin, Zhao Dineng, et al. Effect of topographic background on sand wave migration on the eastern Taiwan Banks[J]. Geomorphology, 2022, 398: 108030. doi: 10.1016/j.geomorph.2021.108030 [39] 周勐佳, 吴自银, 马胜中, 等. 台湾海峡晚更新世以来的高分辨率地震地层学研究[J]. 海洋学报, 2016, 38(9): 76−88.Zhou Mengjia, Wu Ziyin, Ma Shengzhong, et al. High resolution seismic stratigraphy research in the Taiwan Strait since late Pleistocene[J]. Haiyang Xuebao, 2016, 38(9): 76−88. [40] Dadson S J, Hovius N, Chen H, et al. Links between erosion, runoff variability and seismicity in the Taiwan orogen[J]. Nature, 2003, 426(6967): 648−651. doi: 10.1038/nature02150 [41] Water Environments. MIKE 21 &MIKE 3 flow model FM-hydrodynamic and transport module scientific documentation[R]. Water Environments, 2017. [42] 李孟国. 海岸河口泥沙数学模型研究进展[J]. 海洋工程, 2006, 24(1): 139−154. doi: 10.3969/j.issn.1005-9865.2006.01.022Li Mengguo. A review on mathematical models of sediment in coastal and estuarine waters[J]. The Ocean Engineering, 2006, 24(1): 139−154. doi: 10.3969/j.issn.1005-9865.2006.01.022 [43] Shen Junqiang, Qiu Yun, GuoXiaogang, et al. The spatio-temporal variation of wintertime subtidal currents in the western Taiwan Strait[J]. Acta Oceanologica Sinica, 2017, 36(11): 4−13. [44] 李平原, 路剑飞, 夏真, 等. 南海北部陆坡30 ka以来的沉积环境演变[J]. 海洋地质与第四纪地质, 2020, 40(6): 14−21.Li Pingyuan, Lu Jianfei, Xia Zhen, et al. Sedimentary environmental evolution for the past 30 ka of the northern continental slope of the South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 14−21. [45] Huh C A, Chen Weifang, Hsu F H, et al. Modern (<100 years) sedimentation in the Taiwan Strait: rates and source-to-sink pathways elucidated from radionuclides and particle size distribution[J]. Continental Shelf Research, 2011, 31(1): 47−63. doi: 10.1016/j.csr.2010.11.002 [46] 石学法, 刘升发, 乔淑卿, 等. 东海闽浙沿岸泥质区沉积特征与古环境记录[J]. 海洋地质与第四纪地质, 2010, 30(4): 19−30.Shi Xuefa, Liu Shengfa, Qiao Shuqing, et al. Depositional features angPalaeoenvironmental records of the mud deposits in Min-Zhe coastal mud area, East China Sea[J]. Marine Geology & Quaternary Geology, 2010, 30(4): 19−30. [47] 苏贤泽. 福建近岸泥质沉积物泥沙来源区剖析[M]//《台湾海峡及邻近海域海洋科学讨论会论文集》编辑委员会. 台湾海峡及邻近海域海洋科学讨论会论文集. 北京: 海洋出版社, 1995: 170−175.Su Xianze. A dissection on silt source of muddy sediments off Fujian coast[M]//《Proceedings of symposium of marine sciences in the Taiwan Strait and its adjacent waters》editorial board. Proceedings of symposium of marine sciences in the Taiwan Strait and its adjacent waters. Beijing: China Ocean Press, 1995: 170−175. [48] Lee T, You Chenfeng, Liu T K. Model-dependent 10Be sedimentation rates for the Taiwan Strait and their tectonic significance[J]. Geology, 1993, 21(5): 423−426. doi: 10.1130/0091-7613(1993)021<0423:MDBSRF>2.3.CO;2 [49] Ning X, Liu Z, Cai Y, et al. Physicobiological oceanographic remote sensing of the East China Sea: satellite and in situ observations[J]. Journal of Geophysical Research: Oceans, 1998, 103(C10): 21623−21635. doi: 10.1029/98JC01612 [50] Castelltort S, Nagel S, Mouthereau F, et al. Sedimentology of early pliocene sandstones in the south-western Taiwan foreland: implications for basin physiography in the early stages of collision[J]. Journal of Asian Earth Sciences, 2011, 40(1): 52−71. doi: 10.1016/j.jseaes.2010.09.005 [51] 冯士筰, 李凤岐, 李少菁. 海洋科学导论[M]. 北京: 高等教育出版社, 1999.Feng Shizuo, Li Fengqi, Li Shaojing. An Introduction to Marine Science[M]. Beijing: Higher Education Press, 1999. [52] Chang J H, Hsu H H, Su C C, et al. Tectono-sedimentary control on modern sand deposition on the forebulge of the western Taiwan Foreland Basin[J]. Marine and Petroleum Geology, 2015, 66: 970−977. doi: 10.1016/j.marpetgeo.2015.08.004 [53] 李立, 郭小钢, 吴日升. 台湾海峡南部的海洋锋[J]. 台湾海峡, 2000, 19(2): 147−156.Li Li, GuoXiaogang, Wu Risheng. Oceanic fronts in southern Taiwan Strait[J]. Journal of Oceanography in Taiwan Strait, 2000, 19(2): 147−156. [54] 肖晖, 郭小钢, 吴日升. 台湾海峡水文特征研究概述[J]. 台湾海峡, 2002, 21(1): 126−138.Xiao Hui, Guo Xiaogang, Wu Risheng. Summarization of studies on hydrographic characteristics in Taiwan Strait[J]. Journal of Oceanography in Taiwan Strait, 2002, 21(1): 126−138. [55] 许志峰, 王明亮, 洪阿实, 等. 台湾海峡西部海域晚更新世以来沉积物年代与沉积速率[J]. 台湾海峡, 1989, 8(2): 114−121.Xu Zhifeng, Wang Mingliang, Hong Ashi, et al. Ages of sediments and sedimentation rates of the western Taiwan Strait since late Pleistocene[J]. Journal of Oceanography in Taiwan Strait, 1989, 8(2): 114−121. [56] 刘东艳, 吕婷, 林磊, 等. 我国近海陆架锋面与生态效应研究回顾[J]. 海洋科学进展, 2022, 40(4): 725−741. doi: 10.12362/j.issn.1671-6647.20220719001Liu Dongyan, Lü Ting, Lin Lei, et al. Review of fronts and its ecological effects in the shelf sea of China[J]. Advances in Marine Science, 2022, 40(4): 725−741. doi: 10.12362/j.issn.1671-6647.20220719001 [57] Zhou Jieqiong, Wu Ziyin, Jin Xianglong, et al. Observations and analysis of giant sand wave fields on the Taiwan Banks, northern South China Sea[J]. Marine Geology, 2018, 406: 132−141. doi: 10.1016/j.margeo.2018.09.015 [58] 周洁琼. 台湾浅滩多尺度海底沙波特征、迁移规律及动力机制研究[D]. 杭州: 浙江大学, 2019.Zhou Jieqiong. Characteristics, migration and dynamic mechanism of multi-scale sand waves in the Taiwan Banks[D]. Hangzhou: Zhejiang University, 2019.