留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于星载合成孔径雷达图像交叉谱的全球海浪特征研究

李慧敏 何宜军 王臣 林文明 杨劲松

李慧敏,何宜军,王臣,等. 基于星载合成孔径雷达图像交叉谱的全球海浪特征研究[J]. 海洋学报,2024,46(3):111–117 doi: 10.12284/hyxb2024040
引用本文: 李慧敏,何宜军,王臣,等. 基于星载合成孔径雷达图像交叉谱的全球海浪特征研究[J]. 海洋学报,2024,46(3):111–117 doi: 10.12284/hyxb2024040
Li Huimin,He Yijun,Wang Chen, et al. Study of global ocean wave characteristics based on spaceborne SAR image cross-spectrum[J]. Haiyang Xuebao,2024, 46(3):111–117 doi: 10.12284/hyxb2024040
Citation: Li Huimin,He Yijun,Wang Chen, et al. Study of global ocean wave characteristics based on spaceborne SAR image cross-spectrum[J]. Haiyang Xuebao,2024, 46(3):111–117 doi: 10.12284/hyxb2024040

基于星载合成孔径雷达图像交叉谱的全球海浪特征研究

doi: 10.12284/hyxb2024040
基金项目: 国家自然科学基金项目(43006163, 42206179, 42027805)。
详细信息
    作者简介:

    李慧敏(1990—),女,山东省淄博市人,讲师,研究方向为微波海洋遥感。E-mail:Huimin.li@nuist.edu.cn

    通讯作者:

    何宜军,教授,博士生导师,研究方向为海洋遥感。E-mail: yjhe@nuist.edu.cn

  • 中图分类号: P731.21

Study of global ocean wave characteristics based on spaceborne SAR image cross-spectrum

  • 摘要: 星载合成孔径雷达(Synthetic Aperture Radar, SAR)因其全天时、全天候的观测能力,为全球海洋动力环境要素研究提供了重要数据支撑。然而,SAR海浪成像是非线性过程,现有理论中的近似求解会导致海浪谱反演的信息缺失。SAR图像交叉谱技术的提出一定程度上突破了这一限制,能够很好地量化海浪谱特性及海浪传播方向。本研究延续前人系列成果,利用最新提出的面向径向海浪的图像谱强度,开展不同尺度海浪随局地风速的变化趋势分析,并基于雷达视向图像谱强度提取了谱峰波数,进而结合欧洲空间局环境遥感卫星先进合成孔径雷达波模式在开阔大洋获取的近400万景SAR图像,分析了谱峰波数的全球分布特征,为量化全球风浪耦合过程提供新视角,揭示了海浪与风速耦合关系的空间分布与季节变化规律。
  • 图  1  欧洲环境卫星先进合成孔径雷达数据的全球空间分布

    a. 空间2.5° × 2.5°统计;b. 月统计

    Fig.  1  Global spatial distribution of Envisat/ASAR data

    a. Spatial grid of 2.5° × 2.5°; b. monthly data count

    图  2  MACS参数定义示意图

    a. SAR图像交叉谱,颜色表征归一化图像谱值(蓝色至红色取值0~1);b. MACS剖面

    Fig.  2  Schematic diagram of MACS parameter definition

    a. SAR cross-spectrum, color denotes the normalized image spectrum (values from blue to red are 0−1); b. MACS profile

    图  3  图像谱参数随风速变化趋势

    a. MACS47随风速变化的数据密度,黑色实线为均值及标准差;b. 不同波长MACS随风速变化

    Fig.  3  Variation of MACS versus the wind speed

    a. Data density of MACS47 relative to wind speed, solid black line indicates the mean and standard deviation; b. variation of MACS at various wavelengths with wind speed

    图  4  太平洋150°~145°W间MACS平均剖面随纬度的季节变化

    a. 冬季;b. 春季;c. 夏季;d. 秋季

    Fig.  4  Seasonal variation of averaged MACS profile over 150°−145°W along the latitude

    a. Winter; b. spring; c. summer; d. autumn

    图  5  3个选定纬度处的均值图像谱参数剖面(a)及其季节变化(b−d)

    Fig.  5  Averaged MACS profile at three selected latitude transects (a) and their seasonal variation (b−d)

    图  6  全球径向峰值波数的季节变化

    a−d分别为冬、春、夏、秋;等值线为0.04 rad/m;空间分辨率为2.5° × 2.5°

    Fig.  6  Seasonal average of range peak wavenumber at the global scale

    a−d are winter, spring, summer and autumn; the isoline is 0.04 rad/m; the spatial resolution is 2.5° × 2.5°

  • [1] Toba Y. Local balance in the air-sea boundary processes: I. On the growth process of wind waves[J]. Journal of Oceanography, 1972, 28(3): 109−120. doi: 10.1007/BF02109772
    [2] 陈戈, 杨杰, 张本涛, 等. 新一代海洋科学卫星的思考与展望[J]. 中国海洋大学学报(自然科学版), 2019, 49(10): 110−117.

    Chen Ge, Yang Jie, Zhang Bentao, et al. Thoughts and prospects on the new generation of marine science satellites[J]. Periodical of Ocean University of China, 2019, 49(10): 110−117.
    [3] Hauser D, Tison C, Amiot T, et al. SWIM: the first spaceborne wave scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 3000−3014. doi: 10.1109/TGRS.2017.2658672
    [4] Young I R. Seasonal variability of the global ocean wind and wave climate[J]. International Journal of Climatology, 1999, 19(9): 931−950. doi: 10.1002/(SICI)1097-0088(199907)19:9<931::AID-JOC412>3.0.CO;2-O
    [5] Young I R, Zieger S, Babanin A V. Global trends in wind speed and wave height[J]. Science, 2011, 332(6028): 451−455. doi: 10.1126/science.1197219
    [6] Hanley K E, Belcher S E, Sullivan P P. A global climatology of wind-wave interaction[J]. Journal of Physical Oceanography, 2010, 40(6): 1263−1282. doi: 10.1175/2010JPO4377.1
    [7] Stopa J E, Cheung K F, Tolman H L, et al. Patterns and cycles in the climate forecast system reanalysis wind and wave data[J]. Ocean Modelling, 2013, 70: 207−220. doi: 10.1016/j.ocemod.2012.10.005
    [8] Chen Ge, Chapron B, Ezraty R, et al. A global view of swell and wind sea climate in the ocean by satellite altimeter and scatterometer[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(11): 1849−1859. doi: 10.1175/1520-0426(2002)019<1849:AGVOSA>2.0.CO;2
    [9] Jiang Haoyu, Chen Ge. A global view on the swell and wind sea climate by the jason-1 mission: a revisit[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(8): 1833−1841. doi: 10.1175/JTECH-D-12-00180.1
    [10] Shimura T, Mori N, Mase H. Future projections of extreme ocean wave climates and the relation to tropical cyclones: ensemble experiments of MRI-AGCM3.2H[J]. Journal of Climate, 2015, 28(24): 9838−9856. doi: 10.1175/JCLI-D-14-00711.1
    [11] Portilla-Yandún J. The global signature of ocean wave spectra[J]. Geophysical Research Letters, 2018, 45(1): 267−276. doi: 10.1002/2017GL076431
    [12] 杨劲松. 合成孔径雷达海面风场、海浪和内波遥感技术[D]. 青岛: 中国海洋大学, 2001.

    Yang Jingsong. SAR remote sensing of sea surface wind field, ocean waves and internal waves [D]. Qingdao: Ocean University of China, 2001.
    [13] Stopa J E, Ardhuin F, Husson R, et al. Swell dissipation from 10 years of Envisat advanced synthetic aperture radar in wave mode[J]. Geophysical Research Letters, 2016, 43(7): 3423−3430. doi: 10.1002/2015GL067566
    [14] Ardhuin F, Collard F, Chapron B, et al. Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinel-1A[J]. Geophysical Research Letters, 2015, 42(7): 2317−2325. doi: 10.1002/2014GL062940
    [15] Li Xiaoming. A new insight from space into swell propagation and crossing in the global oceans[J]. Geophysical Research Letters, 2016, 43(10): 5202−5209. doi: 10.1002/2016GL068702
    [16] Li Huimin, Chapron B, Mouche A, et al. A new ocean SAR cross-spectral parameter: definition and directional property using the global sentinel-1measurements[J]. Journal of Geophysical Research: Oceans, 2019, 124(3): 1566−1577. doi: 10.1029/2018JC014638
    [17] Li Huimin, Stopa J, Mouche A, et al. Assessment of ocean wave spectrum using global Envisat/ASAR data and hindcast simulation[J]. Remote Sensing of Environment, 2021, 264: 112614. doi: 10.1016/j.rse.2021.112614
  • 加载中
图(6)
计量
  • 文章访问数:  436
  • HTML全文浏览量:  192
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-03
  • 修回日期:  2023-12-19
  • 网络出版日期:  2022-11-14
  • 刊出日期:  2024-03-31

目录

    /

    返回文章
    返回