留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双频段雷达高度计数据的海面阵风反演研究

林静 张有广

林静,张有广. 基于双频段雷达高度计数据的海面阵风反演研究[J]. 海洋学报,2024,46(4):133–142 doi: 10.12284/hyxb2024039
引用本文: 林静,张有广. 基于双频段雷达高度计数据的海面阵风反演研究[J]. 海洋学报,2024,46(4):133–142 doi: 10.12284/hyxb2024039
Lin Jing,Zhang Youguang. Research of sea surface gust inversion by dual band radar altimeter data[J]. Haiyang Xuebao,2024, 46(4):133–142 doi: 10.12284/hyxb2024039
Citation: Lin Jing,Zhang Youguang. Research of sea surface gust inversion by dual band radar altimeter data[J]. Haiyang Xuebao,2024, 46(4):133–142 doi: 10.12284/hyxb2024039

基于双频段雷达高度计数据的海面阵风反演研究

doi: 10.12284/hyxb2024039
基金项目: 国家重点研发计划新型海洋观测资料同化技术支撑项目(2021YFC3101502)。
详细信息
    作者简介:

    林静(1999—),女,福建省莆田市人,主要从事海面风场研究。E-mail:2213400005@hhu.edu.cn

    通讯作者:

    张有广(1971—),男,山东省济南市人,研究员,主要从事海洋微波遥感研究。E-mail:zhangyouguang@mail.nsoas.org.cn

  • 中图分类号: P714+.2

Research of sea surface gust inversion by dual band radar altimeter data

  • 摘要: 海面阵风是海洋资源开发、海洋防灾减灾和海洋科研等领域所需的重要海洋动力环境信息。但迄今为止,海面阵风观测数据严重缺失,阻碍了阵风预报、应用研究等方面的发展。本文利用双频的HY-2B卫星高度计C、Ku波段的后向散射系数,对现有海面风速($ {U}_{10} $)进行修正,建立了阵风风速($ {U}_{{\mathrm{g}}} $)反演算法。反演结果与美国国家浮标数据中心(NDBC)2018−2022年的浮标数据进行真实性检验,相关系数(R)为0.91,均方根误差(RMSE)为1.82 m/s;国外同类卫星Jason-3基于本方法的反演结果与2018−2022年NDBC站点数据进行检验,RMSE优于常规2 m/s精度要求;反演结果与处于不同纬度的近海远洋站点进行个例验证,RMSE均优于2 m/s。因此,本文在现有的HY-2B卫星高度计海面风速观测数据的基础上,利用不同波段信息实现了海面阵风的观测,具有较高的观测精度。同时,该方法也适用于相同观测体制的国外卫星高度计。
  • 图  1  HY-2B卫星雷达高度计C波段后向散射系数示意图

    Fig.  1  Schematic diagram of the backscattering coefficient of the C-band sea surface observed by the HY-2B satellite radar altimeter

    图  2  HY-2B卫星雷达高度计Ku波段后向散射系数示意图

    Fig.  2  Schematic diagram of the backscattering coefficient of the Ku-band sea surface observed by the HY-2B satellite radar altimeter

    图  3  NDBC浮标位置示意图

    Fig.  3  Schematic diagram of the position of the NDBC buoy

    图  4  HY-2B卫星雷达高度计观测海面风速示意图

    Fig.  4  Schematic diagram of sea surface wind speed observed by the HY-2B satellite radar altimeter

    图  5  NDBC浮标海面风速(ub)以及阵风风速(ug)的散点对比

    Fig.  5  Scatter comparison of the sea surface wind speed (ub) and gust wind speed (ug) of the NDBC buoy

    图  6  HY-2B卫星雷达高度计海面风速(U10)和NDBC浮标海面风速(ub)以及阵风风速(ug)的散点对比

    Fig.  6  Scatter comparison of the sea surface wind speed (U10) of the HY-2B satellite radar altimeter and the sea surface wind speed (ub) and gust wind speed (ug) of the NDBC buoy

    图  7  HY-2B卫星雷达高度计海面风速(U10)和NDBC浮标海面风速(ub)与NDBC浮标阵风风速(ug)间的绝对误差

    Fig.  7  The absolute error between the HY-2B satellite radar altimeter sea surface wind speed (U10) and the NDBC buoy surface wind speed (ub) and the NDBC buoy gust wind speed (ug)

    图  8  C、Ku波段后向散射系数与阵风风速之间的关系

    Fig.  8  Relationship between the backscattering coefficients of C and Ku bands and gust wind speed

    图  9  HY-2B卫星雷达高度计观测海面阵风示意图

    Fig.  9  Schematic diagram of sea gusts observed by the HY-2B satellite radar altimeter

    图  10  HY-2B卫星雷达高度计与NDBC浮标阵风数据散点分析

    Fig.  10  Scatter analysis of gust data of HY-2B satellite radar altimeter and NDBC buoy data

    图  11  HY-2B卫星雷达高度计海面风速与海面阵风绝对误差折线图

    Fig.  11  Line chart of HY-2B satellite radar altimeter sea surface wind speed and sea surface gust absolute error

    图  12  Jason-3卫星雷达高度计与NDBC浮标阵风数据散点对比

    Fig.  12  Scatter comparison of Jason-3 satellite radar altimeter and NDBC buoy gust data

    图  13  NDBC浮标位置示意图

    Fig.  13  Schematic diagram of the position of the NDBC buoy

    图  14  HY-2B卫星雷达高度计与NDBC浮标阵风数据散点对比

    Fig.  14  Scatter comparison of HY-2B satellite radar altimeter vs. NDBC buoy gust data

    表  1  Gourrion模型参数

    Tab.  1  Gourrion model parameters

    参数 a b
    $ {\sigma }^{0} $ −0.343 36 0.069 09
    SWH 0.087 25 0.063 74
    $ {U}_{10} $ 0.1 0.284 4
    下载: 导出CSV

    表  2  Gourrion模型参数

    Tab.  2  Gourrion model parameters

    参数 矩阵元素
    Wx −33.950 62 −11.033 94
    −3.934 28 −0.058 34
    Wy 0.540 12 10.404 81
    $ {B}_{x}^{{\mathrm{T}}} $ 18.063 78 −0.372 28
    $ {B}_{y}^{{\mathrm{T}}} $ −2.283 87 ...
    P $ {a}_{{\sigma }^{0}}+{b}_{{\sigma }^{0}}{\sigma }^{0} $ $ {a}_{{\mathrm{SWH}}}+{b}_{{\mathrm{SWH}}}{\mathrm{SWH}} $
    下载: 导出CSV

    表  3  HY-2B卫星雷达高度计与NDBC浮标数据对比分析结果及浮标具体信息

    Tab.  3  Comparative analysis results of HY-2B satellite radar altimeter and NDBC buoy data and specific information of buoys

    NDBC
    浮标站点
    纬度 经度 距离大陆架/(n mile) 卫星与NDBC浮标海面风速 卫星与NDBC浮标阵风风速
    RMSE/(m·s−1 R RMSE/(m·s−1 R
    46070 55.05°N 175.26°E 142 1.51 0.95 1.76 0.96
    46075 53.97°N 160.79°W 85 1.62 0.94 1.81 0.95
    44011 41.09°N 66.56°W 170 1.95 0.91 1.83 0.95
    46006 40.76°N 137.38°W 600 1.65 0.93 1.89 0.94
    44008 40.50°N 69.25°W 54 1.78 0.93 1.88 0.95
    41008 31.40°N 80.87°W 40 1.95 0.90 1.48 0.94
    51003 19.20°N 160.64°W 205 1.39 0.88 1.40 0.91
    41040 14.54°N 53.14°W 470 1.21 0.90 1.35 0.90
    下载: 导出CSV
  • [1] 姜祝辉, 黄思训, 刘刚, 等. 星载雷达高度计反演海面风速进展[J]. 海洋通报, 2011, 30(5): 588−594.

    Jiang Zhuhui, Huang Sixun, Liu Gang, et al. Research on the development of surface wind speed retrieval from satellite radar altimeter[J]. Marine Science Bulletin, 2011, 30(5): 588−594.
    [2] 大气科学名词审定委员会. 大气科学名词[M]. 3版. 北京: 科学出版社, 2009.

    Approval Committee of Atmospheric Science Terms. Chinese Terms in Atmospheric Science[M]. 3rd ed. Beijing: Science Press, 2009.
    [3] 李永平, 郑运霞, 方平治. 2009年“莫拉克”台风登陆过程阵风特征分析[J]. 气象学报, 2012, 70(6): 1188−1199.

    Li Yongping, ZhengYunxia, Fang Pingzhi. Analysis of the characteristics of gusts during the landing of Typhoon Morakot (2009)[J]. Acta Meteorologica Sinica, 2012, 70(6): 1188−1199.
    [4] Jung C, Schindler D, Buchholz A, et al. Global gust climate evaluation and its influence on wind turbines[J]. Energies, 2017, 10(10): 1474. doi: 10.3390/en10101474
    [5] Larose G L, Mann J. Gust loading on streamlined bridge decks[J]. Journal of Fluids and Structures, 1998, 12(5): 511−536. doi: 10.1006/jfls.1998.0161
    [6] 岑国基, 张金根. 大跨度桥梁施工抗风设计问题[J]. 桥梁建设, 1988(3): 57−63, 56.

    Cen Guoji, Zhang Jingen. Wind-resistant design of long-span bridge construction[J]. Bridge Construction, 1988(3): 57−63, 56.
    [7] Kwon S D, Chang S P. Suppression of flutter and gust response of bridges using actively controlled edge surfaces[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 88(2/3): 263−281.
    [8] 魏晓琳, 王德立, 贺佳佳, 等. 深圳沿海地区阵风系数的特征[J]. 广东气象, 2016, 38(5): 33−36, 41.

    Wei Xiaolin, Wang Deli, He Jiajia, et al. Characteristics analysis on gust factors over coastal areas in Shenzhen[J]. Guangdong Meteorology, 2016, 38(5): 33−36, 41.
    [9] 尹尽勇, 刘涛, 张增海, 等. 冬季黄渤海大风天气与渔船风损统计分析[J]. 气象, 2009, 35(6): 90−95.

    Yin Jinyong, Liu Tao, Zhang Zenghai, et al. Statistical analysis of the weather system types causing strong winds and fishery boat windage loss accidents in Bohai Sea and Yellow Sea in winter[J]. Meteorological Monthly, 2009, 35(6): 90−95.
    [10] 丁杏农. 浅谈横风使船舶产生横漂的机理[J]. 云南交通科技, 1997, 13(1): 46−48.

    Ding Xingnong. A brief discussion on the mechanism of transverse drift of ships caused by crosswind[J]. Yunnan Communication Science and Technology, 1997, 13(1): 46−48.
    [11] 荣艳敏, 阎丽凤, 盛春岩, 等. 山东精细化海区风的MOS预报方法研究[J]. 海洋预报, 2015, 32(3): 59−67.

    Rong Yanmin, Yan Lifeng, Sheng Chunyan, et al. A study on MOS forecasting method of gale wind in Shandong coast[J]. Marine Forecasts, 2015, 32(3): 59−67.
    [12] Brasseur O. Development and application of a physical approach to estimating wind gusts[J]. Monthly Weather Review, 2001, 129(1): 5−25. doi: 10.1175/1520-0493(2001)129<0005:DAAOAP>2.0.CO;2
    [13] 董双林. 中国的阵风极值及其统计研究[J]. 气象学报, 2001, 59(3): 327−333.

    Dong Shuanglin. Gust extremes in China and its statistical study[J]. Acta Meteorologica Sinica, 2001, 59(3): 327−333.
    [14] Fan Lei, Zheng Chongwei, Zhou Hongjin, et al. Gust characteristic analysis of wind energy resource in the western Pacific Ocean[J]. Journal of Coastal Research, 2020, 99(S1): 404−410.
    [15] 胡海川, 刘珺, 林建. 基于预报方程的我国近海阵风预报[J]. 气象, 2022, 48(3): 334−344.

    Hu Haichuan, Liu Jun, Lin Jian. Application of prediction equation to gust forecasting for Chinese offshore areas[J]. Meteorological Monthly, 2022, 48(3): 334−344.
    [16] 张有广, 蒋城飞, 贾永君, 等. HY-2B卫星载荷联合观测海面阵风的一种反演方法[J]. 海洋学报, 2022, 44(11): 133−143.

    Zhang Youguang, Jiang Chengfei, Jia Yongjun, et al. An inversion method for joint observation of wind gusts by HY-2B satellite remote sensors[J]. Haiyang Xuebao, 2022, 44(11): 133−143.
    [17] Hsu S A, Meindl E A, Gilhousen D B. Determining the power-law wind-profile exponent under near-neutral stability conditions at sea[J]. Journal of Applied Meteorology, 1994, 33(6): 757−765. doi: 10.1175/1520-0450(1994)033<0757:DTPLWP>2.0.CO;2
    [18] Hwang P A, Teague W J, Jacobs G A, et al. A statistical comparison of wind speed, wave height, and wave period derived from satellite altimeters and ocean buoys in the Gulf of Mexico region[J]. Journal of Geophysical Research: Oceans, 1998, 103(C5): 10451−10468. doi: 10.1029/98JC00197
    [19] Gourrion J, Vandemark D, Bailey S, et al. Satellite altimeter models for surface wind speed developed using ocean satellite crossovers[R]. 2000.
    [20] Sharoni S M H, Md Reba M N, Hossain M S. Tropical cyclone wind speed estimation from satellite altimeter-derived ocean parameters[J]. Journal of Geophysical Research: Oceans, 2021, 126(4): e2020JC016988. doi: 10.1029/2020JC016988
    [21] 刘花, 王静, 齐义泉, 等. 南海北部近岸海域Jason-1卫星高度计与浮标观测结果的对比分析[J]. 热带海洋学报, 2013, 32(5): 15−22.

    Liu Hua, Wang Jing, Qi Yiquan, et al. Comparison of Jason-1 satellite altimeter and buoy measurements in the coastal water of the northern South China Sea[J]. Journal of Tropical Oceanography, 2013, 32(5): 15−22.
    [22] Hwang C, Kao E C, Parsons B. Global derivation of marine gravity anomalies from Seasat, Geosat, ERS-1 and TOPEX/POSEIDON altimeter data[J]. Geophysical Journal International, 1998, 134(2): 449−459. doi: 10.1111/j.1365-246X.1998.tb07139.x
    [23] Gower J F R. Intercalibration of wave and wind data from TOPEX/POSEIDON and moored buoys off the west coast of Canada[J]. Journal of Geophysical Research: Oceans, 1996, 101(C2): 3817−3829. doi: 10.1029/95JC03281
    [24] Cotton P D, Carter D J T. Cross calibration of TOPEX, ERS-I, and Geosat wave heights[J]. Journal of Geophysical Research: Oceans, 1994, 99(C12): 25025−25033. doi: 10.1029/94JC02131
    [25] 陈戈. 卫星高度计反演海面风速——模式函数与应用实例[J]. 遥感学报, 1999, 3(4): 305−311, 325.

    Chen Ge. On retrieving sea surface wind speed from satellite altimeters: model functions and an application case[J]. Journal of Remote Sensing, 1999, 3(4): 305−311, 325.
    [26] Farjami H, Golubkin P, Chapron B. Impact of the sea state on altimeter measurements in coastal regions[J]. Remote Sensing Letters, 2016, 7(10): 935−944. doi: 10.1080/2150704X.2016.1201224
    [27] Zappa C J, Laxague N J M, Brumer S E, et al. The impact of wind gusts on the ocean thermal skin layer[J]. Geophysical Research Letters, 2019, 46(20): 11301−11309. doi: 10.1029/2019GL083687
    [28] Lyu M, Potter H, Collins C O, et al. The impacts of gustiness on the evolution of surface gravity waves[J]. Geophysical Research Letters, 2023, 50(12): e2023GL104085. doi: 10.1029/2023GL104085
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  132
  • HTML全文浏览量:  62
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-23
  • 修回日期:  2024-03-25
  • 网络出版日期:  2024-05-20
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回