Research of sea surface gust inversion by dual band radar altimeter data
-
摘要: 海面阵风是海洋资源开发、海洋防灾减灾和海洋科研等领域所需的重要海洋动力环境信息。但迄今为止,海面阵风观测数据严重缺失,阻碍了阵风预报、应用研究等方面的发展。本文利用双频的HY-2B卫星高度计C、Ku波段的后向散射系数,对现有海面风速(
$ {U}_{10} $ )进行修正,建立了阵风风速($ {U}_{{\mathrm{g}}} $ )反演算法。反演结果与美国国家浮标数据中心(NDBC)2018−2022年的浮标数据进行真实性检验,相关系数(R)为0.91,均方根误差(RMSE)为1.82 m/s;国外同类卫星Jason-3基于本方法的反演结果与2018−2022年NDBC站点数据进行检验,RMSE优于常规2 m/s精度要求;反演结果与处于不同纬度的近海远洋站点进行个例验证,RMSE均优于2 m/s。因此,本文在现有的HY-2B卫星高度计海面风速观测数据的基础上,利用不同波段信息实现了海面阵风的观测,具有较高的观测精度。同时,该方法也适用于相同观测体制的国外卫星高度计。Abstract: Sea surface gusts are important marine dynamic environmental information required for the development of marine resources, marine disaster prevention and reduction, and marine scientific research. However, so far, there has been a serious lack of observational data on sea surface gusts, which has hindered the development of gust forecasting, application research, and other aspects. This article uses the backscatter coefficients in the C and Ku bands of the dual frequency HY-2B satellite altimeter to correct the existing sea surface wind speed ($ {U}_{10} $ ) and gust wind speed ($ {U}_{{\mathrm{g}}} $ ) inversion algorithm. The inversion results were verified for authenticity with the buoy data from the National Buoy Data Center (NDBC) of the United States from 2018 to 2022. The correlation coefficient (R) was 0.91, and the root mean square error (RMSE) was 1.82 m/s; based on the inversion results of this method and the NDBC station data from 2018 to 2022, the RMSE of similar foreign satellites Jason-3 is superior to the conventional 2 m/s accuracy requirement; the inversion results were verified with individual cases of offshore and oceanic stations at different latitudes, and the RMSE was better than 2 m/s. Therefore, based on the existing HY-2B satellite altimeter sea surface wind speed observation data, this article uses different band information to achieve observation of sea surface gusts, which has high observation accuracy. Meanwhile, this method is also applicable to foreign satellite altimeters with the same observation system.-
Key words:
- radar altimeter /
- inversion method /
- sea surface gusts /
- HY-2B satellite /
- Backscattering Coefficient
-
表 1 Gourrion模型参数
Tab. 1 Gourrion model parameters
参数 a b $ {\sigma }^{0} $ −0.343 36 0.069 09 SWH 0.087 25 0.063 74 $ {U}_{10} $ 0.1 0.284 4 表 2 Gourrion模型参数
Tab. 2 Gourrion model parameters
参数 矩阵元素 Wx −33.950 62 −11.033 94 −3.934 28 −0.058 34 Wy 0.540 12 10.404 81 $ {B}_{x}^{{\mathrm{T}}} $ 18.063 78 −0.372 28 $ {B}_{y}^{{\mathrm{T}}} $ −2.283 87 ... P $ {a}_{{\sigma }^{0}}+{b}_{{\sigma }^{0}}{\sigma }^{0} $ $ {a}_{{\mathrm{SWH}}}+{b}_{{\mathrm{SWH}}}{\mathrm{SWH}} $ 表 3 HY-2B卫星雷达高度计与NDBC浮标数据对比分析结果及浮标具体信息
Tab. 3 Comparative analysis results of HY-2B satellite radar altimeter and NDBC buoy data and specific information of buoys
NDBC
浮标站点纬度 经度 距离大陆架/(n mile) 卫星与NDBC浮标海面风速 卫星与NDBC浮标阵风风速 RMSE/(m·s−1) R RMSE/(m·s−1) R 46070 55.05°N 175.26°E 142 1.51 0.95 1.76 0.96 46075 53.97°N 160.79°W 85 1.62 0.94 1.81 0.95 44011 41.09°N 66.56°W 170 1.95 0.91 1.83 0.95 46006 40.76°N 137.38°W 600 1.65 0.93 1.89 0.94 44008 40.50°N 69.25°W 54 1.78 0.93 1.88 0.95 41008 31.40°N 80.87°W 40 1.95 0.90 1.48 0.94 51003 19.20°N 160.64°W 205 1.39 0.88 1.40 0.91 41040 14.54°N 53.14°W 470 1.21 0.90 1.35 0.90 -
[1] 姜祝辉, 黄思训, 刘刚, 等. 星载雷达高度计反演海面风速进展[J]. 海洋通报, 2011, 30(5): 588−594.Jiang Zhuhui, Huang Sixun, Liu Gang, et al. Research on the development of surface wind speed retrieval from satellite radar altimeter[J]. Marine Science Bulletin, 2011, 30(5): 588−594. [2] 大气科学名词审定委员会. 大气科学名词[M]. 3版. 北京: 科学出版社, 2009.Approval Committee of Atmospheric Science Terms. Chinese Terms in Atmospheric Science[M]. 3rd ed. Beijing: Science Press, 2009. [3] 李永平, 郑运霞, 方平治. 2009年“莫拉克”台风登陆过程阵风特征分析[J]. 气象学报, 2012, 70(6): 1188−1199.Li Yongping, ZhengYunxia, Fang Pingzhi. Analysis of the characteristics of gusts during the landing of Typhoon Morakot (2009)[J]. Acta Meteorologica Sinica, 2012, 70(6): 1188−1199. [4] Jung C, Schindler D, Buchholz A, et al. Global gust climate evaluation and its influence on wind turbines[J]. Energies, 2017, 10(10): 1474. doi: 10.3390/en10101474 [5] Larose G L, Mann J. Gust loading on streamlined bridge decks[J]. Journal of Fluids and Structures, 1998, 12(5): 511−536. doi: 10.1006/jfls.1998.0161 [6] 岑国基, 张金根. 大跨度桥梁施工抗风设计问题[J]. 桥梁建设, 1988(3): 57−63, 56.Cen Guoji, Zhang Jingen. Wind-resistant design of long-span bridge construction[J]. Bridge Construction, 1988(3): 57−63, 56. [7] Kwon S D, Chang S P. Suppression of flutter and gust response of bridges using actively controlled edge surfaces[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 88(2/3): 263−281. [8] 魏晓琳, 王德立, 贺佳佳, 等. 深圳沿海地区阵风系数的特征[J]. 广东气象, 2016, 38(5): 33−36, 41.Wei Xiaolin, Wang Deli, He Jiajia, et al. Characteristics analysis on gust factors over coastal areas in Shenzhen[J]. Guangdong Meteorology, 2016, 38(5): 33−36, 41. [9] 尹尽勇, 刘涛, 张增海, 等. 冬季黄渤海大风天气与渔船风损统计分析[J]. 气象, 2009, 35(6): 90−95.Yin Jinyong, Liu Tao, Zhang Zenghai, et al. Statistical analysis of the weather system types causing strong winds and fishery boat windage loss accidents in Bohai Sea and Yellow Sea in winter[J]. Meteorological Monthly, 2009, 35(6): 90−95. [10] 丁杏农. 浅谈横风使船舶产生横漂的机理[J]. 云南交通科技, 1997, 13(1): 46−48.Ding Xingnong. A brief discussion on the mechanism of transverse drift of ships caused by crosswind[J]. Yunnan Communication Science and Technology, 1997, 13(1): 46−48. [11] 荣艳敏, 阎丽凤, 盛春岩, 等. 山东精细化海区风的MOS预报方法研究[J]. 海洋预报, 2015, 32(3): 59−67.Rong Yanmin, Yan Lifeng, Sheng Chunyan, et al. A study on MOS forecasting method of gale wind in Shandong coast[J]. Marine Forecasts, 2015, 32(3): 59−67. [12] Brasseur O. Development and application of a physical approach to estimating wind gusts[J]. Monthly Weather Review, 2001, 129(1): 5−25. doi: 10.1175/1520-0493(2001)129<0005:DAAOAP>2.0.CO;2 [13] 董双林. 中国的阵风极值及其统计研究[J]. 气象学报, 2001, 59(3): 327−333.Dong Shuanglin. Gust extremes in China and its statistical study[J]. Acta Meteorologica Sinica, 2001, 59(3): 327−333. [14] Fan Lei, Zheng Chongwei, Zhou Hongjin, et al. Gust characteristic analysis of wind energy resource in the western Pacific Ocean[J]. Journal of Coastal Research, 2020, 99(S1): 404−410. [15] 胡海川, 刘珺, 林建. 基于预报方程的我国近海阵风预报[J]. 气象, 2022, 48(3): 334−344.Hu Haichuan, Liu Jun, Lin Jian. Application of prediction equation to gust forecasting for Chinese offshore areas[J]. Meteorological Monthly, 2022, 48(3): 334−344. [16] 张有广, 蒋城飞, 贾永君, 等. HY-2B卫星载荷联合观测海面阵风的一种反演方法[J]. 海洋学报, 2022, 44(11): 133−143.Zhang Youguang, Jiang Chengfei, Jia Yongjun, et al. An inversion method for joint observation of wind gusts by HY-2B satellite remote sensors[J]. Haiyang Xuebao, 2022, 44(11): 133−143. [17] Hsu S A, Meindl E A, Gilhousen D B. Determining the power-law wind-profile exponent under near-neutral stability conditions at sea[J]. Journal of Applied Meteorology, 1994, 33(6): 757−765. doi: 10.1175/1520-0450(1994)033<0757:DTPLWP>2.0.CO;2 [18] Hwang P A, Teague W J, Jacobs G A, et al. A statistical comparison of wind speed, wave height, and wave period derived from satellite altimeters and ocean buoys in the Gulf of Mexico region[J]. Journal of Geophysical Research: Oceans, 1998, 103(C5): 10451−10468. doi: 10.1029/98JC00197 [19] Gourrion J, Vandemark D, Bailey S, et al. Satellite altimeter models for surface wind speed developed using ocean satellite crossovers[R]. 2000. [20] Sharoni S M H, Md Reba M N, Hossain M S. Tropical cyclone wind speed estimation from satellite altimeter-derived ocean parameters[J]. Journal of Geophysical Research: Oceans, 2021, 126(4): e2020JC016988. doi: 10.1029/2020JC016988 [21] 刘花, 王静, 齐义泉, 等. 南海北部近岸海域Jason-1卫星高度计与浮标观测结果的对比分析[J]. 热带海洋学报, 2013, 32(5): 15−22.Liu Hua, Wang Jing, Qi Yiquan, et al. Comparison of Jason-1 satellite altimeter and buoy measurements in the coastal water of the northern South China Sea[J]. Journal of Tropical Oceanography, 2013, 32(5): 15−22. [22] Hwang C, Kao E C, Parsons B. Global derivation of marine gravity anomalies from Seasat, Geosat, ERS-1 and TOPEX/POSEIDON altimeter data[J]. Geophysical Journal International, 1998, 134(2): 449−459. doi: 10.1111/j.1365-246X.1998.tb07139.x [23] Gower J F R. Intercalibration of wave and wind data from TOPEX/POSEIDON and moored buoys off the west coast of Canada[J]. Journal of Geophysical Research: Oceans, 1996, 101(C2): 3817−3829. doi: 10.1029/95JC03281 [24] Cotton P D, Carter D J T. Cross calibration of TOPEX, ERS-I, and Geosat wave heights[J]. Journal of Geophysical Research: Oceans, 1994, 99(C12): 25025−25033. doi: 10.1029/94JC02131 [25] 陈戈. 卫星高度计反演海面风速——模式函数与应用实例[J]. 遥感学报, 1999, 3(4): 305−311, 325.Chen Ge. On retrieving sea surface wind speed from satellite altimeters: model functions and an application case[J]. Journal of Remote Sensing, 1999, 3(4): 305−311, 325. [26] Farjami H, Golubkin P, Chapron B. Impact of the sea state on altimeter measurements in coastal regions[J]. Remote Sensing Letters, 2016, 7(10): 935−944. doi: 10.1080/2150704X.2016.1201224 [27] Zappa C J, Laxague N J M, Brumer S E, et al. The impact of wind gusts on the ocean thermal skin layer[J]. Geophysical Research Letters, 2019, 46(20): 11301−11309. doi: 10.1029/2019GL083687 [28] Lyu M, Potter H, Collins C O, et al. The impacts of gustiness on the evolution of surface gravity waves[J]. Geophysical Research Letters, 2023, 50(12): e2023GL104085. doi: 10.1029/2023GL104085