Characteristics analysis of summer-autumn extreme wave events in the Arctic Ocean
-
摘要: 本文利用ERA5再分析资料,使用超阈值方法筛选得到了1979−2021年8−10月北冰洋各海域的极端大浪事件数据集,分析了大浪事件的频数、极端波高的变化、海浪能流和浪向分布特征以及大浪事件中的海冰变化。结果表明:随着海冰减少,北极大浪活动范围扩大,除巴伦支海以外的海域都存在大浪活动增多的现象,东西伯利亚海、拉普捷夫海的极端波高以约3.5 cm/a和2 cm/a的速度显著增长,事件频数增长到约每年4起;相比其他海域,拉普捷夫海的大浪浪向以偏南为主,波浪更易传播到冰区,平均能流为5~8 kW/m。大浪事件伴随的海冰变化主要发生在边缘冰区,与风场方向有关:向冰风场更多时候伴随着海冰减少,而离冰风场更多伴随着海冰增加。Abstract: This study used ERA5 reanalysis data to collect an extreme wave event dataset for various regions in the Arctic Ocean during August to October from 1979 to 2021. The analysis focused on the frequency of extreme wave events, changes in extreme wave heights, features of wave power and wave direction distribution, as well as the change of sea ice during wave events. The results suggest that as sea ice decreases, the range of extreme wave activity in the Arctic expands. All regions, except the Barents Sea, exhibit an increase in the occurrence of extreme wave events. In particular, extreme wave heights in the East Siberian Sea and Laptev Sea have significantly increased at rates of approximately 3.5 cm/a and 2 cm/a, respectively, with event frequency reaching around 4 events per year. The dominant wave direction in the Laptev Sea is southerly, facilitating more frequent wave propagation into the ice zone compared to other seas, with an average wave energy flux ranging from 5−8 kW/m. The changes in sea ice within extreme wave events primarily occur in the marginal ice zones and are associated with wind direction: sea ice is more likely to decrease with on-ice winds, while it is more likely to increase with off-ice winds.
-
Key words:
- Arctic Ocean /
- ocean wave /
- sea ice /
- extreme event /
- POT method
-
图 1 2006年9−10月波弗特−楚科奇海的海冰覆盖度和有效波高逐日变化曲线
蓝线为多年平均的海冰覆盖度,阴影区域标注了伴随海冰减少的海浪事件,红色虚线为波高达到最大的时刻
Fig. 1 Daily variations in sea ice coverage and significant wave height in the Beaufort-Chukchi Sea for September to October 2006
Extreme wave events with sea ice reduction are shaded. The blue line represents the multi-year average of sea ice coverage, and the red dashed line indicates the moment of maximum wave height
图 3 北极夏秋季(8−10月)大浪(波高>3 m)活跃时间(单位:h)在1979−1999年(a)和2000−2020年(b)的空间分布及两时期差异(c)
蓝线为海冰密集度0.3平均位置;大西洋一侧由于海浪活动明显强于其他区域,单独使用了一套色板
Fig. 3 Spatial distribution of active hours of extreme waves (wave height > 3 m) during the Arctic summer−autumn (August−October) in 1979−1999 (a) and 2000−2020 (b), along with the differences between the two periods (c)
The blue line represents the average position of sea ice concentration at 0.3; a separate colorbar is used for the Atlantic sectiondue to significantly stronger wave activity than other regions
图 4 各海域8−10月大浪事件最大波高的年际变化(a−g)和大浪事件频数年际变化(h)
通过0.1显著性水平统计检验的趋势线用虚线画出
Fig. 4 Interannual variations in the maximum wave heights of extreme wave events in various sea regions from August to October (a−g) and interannual variations in the number of extreme wave events (h)
Trend lines determined through statistical tests at a 0.1 significance level are represented by dashed lines
图 6 各海域8−10月大浪事件波浪能流(单位:kW/m)的频率分布
实线(虚线)为开阔水域(边缘冰区);黑色(灰色)三角为开阔水域(边缘冰区)的平均波浪能流
Fig. 6 Frequency distribution of wave energy flux during extreme wave events in various sea regions from August to October (unit: kW/m)
Solid (dashed) lines represent open water/marginal ice zones; black (gray) triangles represent average wave energy flux in open water (marginal ice zones)
图 7 大浪事件前后海冰面积变化统计(a)、向冰传播的大浪事件前后海冰面积变化统计(b)和不向冰传播的大浪事件前后海冰面积变化统计(c)
Fig. 7 Statistics of sea ice area changes before and after extreme wave events (a), statistics of sea ice area changes before and after extreme wave events propagating towards ice (b) and statistics of sea ice area changes before and after extreme wave events not propagating towards the ice (c)
图 8 大浪事件期间平均海平面气压异常(等值线)、10 m风速(箭头)和波高(填色)(a−c),大浪事件前后海冰密集度变化(填色)及平均海冰运动场(箭头)(d−f)
Fig. 8 The average SLP anomalies (contours), 10 m wind speed (arrows), and wave height (shading) during the extreme wave events (a−c), changes in sea ice concentration (shading) before and after extreme wave events, along with the average sea ice motion field (arrows) (d−f)
表 1 1979−2021年8−10月各海域利用POT方法筛选出的极端海浪事件样本数统计
Tab. 1 Statistical summary of the number of extreme wave event samples selected using the POT method in various sea regions from August to October, 1979−2021
波弗特海 楚科奇海 东西伯利亚海 拉普捷夫海 喀拉海 巴伦支海 格陵兰海 8月 58 94 39 54 95 187 246 9月 117 164 70 87 162 285 285 10月 146 219 79 62 277 307 214 总计 321 477 188 203 534 779 745 -
[1] Zhang Jinlun, Lindsay R, Schweiger A, et al. The impact of an intense summer cyclone on 2012 Arctic sea ice retreat[J]. Geophysical Research Letters, 2013, 40(4): 720−726. doi: 10.1002/grl.50190 [2] Frey K E, Moore G W K, Cooper L W, et al. Divergent patterns of recent sea ice cover across the Bering, Chukchi, and Beaufort seas of the Pacific Arctic Region[J]. Progress in Oceanography, 2015, 136: 32−49. doi: 10.1016/j.pocean.2015.05.009 [3] Francis O P, Panteleev G G, Atkinson D E. Ocean wave conditions in the Chukchi Sea from satellite and in situ observations[J]. Geophysical Research Letters, 2011, 38(24): L24610. [4] Liu Qingxiang, Babanin A V, Zieger S, et al. Wind and wave climate in the Arctic Ocean as observed by altimeters[J]. Journal of Climate, 2016, 29(22): 7957−7975. doi: 10.1175/JCLI-D-16-0219.1 [5] Wang X L, Feng Yang, Swail V R, et al. Historical changes in the Beaufort–Chukchi–Bering Seas surface winds and waves, 1971–2013[J]. Journal of Climate, 2015, 28(19): 7457−7469. doi: 10.1175/JCLI-D-15-0190.1 [6] Waseda T, Webb A, Sato K, et al. Correlated increase of high ocean waves and winds in the ice-free waters of the Arctic Ocean[J]. Scientific Reports, 2018, 8(1): 4489. doi: 10.1038/s41598-018-22500-9 [7] Waseda T, Nose T, Kodaira T, et al. Climatic trends of extreme wave events caused by Arctic Cyclones in the western Arctic Ocean[J]. Polar Science, 2021, 27: 100625. doi: 10.1016/j.polar.2020.100625 [8] Stopa J E, Ardhuin F, Girard-Ardhuin F. Wave climate in the Arctic 1992–2014: seasonality and trends[J]. The Cryosphere, 2016, 10(4): 1605−1629. doi: 10.5194/tc-10-1605-2016 [9] Asplin M G, Galley R, Barber D G, et al. Fracture of summer perennial sea ice by ocean swell as a result of Arctic storms[J]. Journal of Geophysical Research: Oceans, 2012, 117(C6): C06025. [10] Casas-Prat M, Wang X L. Sea ice retreat contributes to projected increases in extreme Arctic Ocean surface waves[J]. Geophysical Research Letters, 2020, 47(15): e2020GL088100. doi: 10.1029/2020GL088100 [11] Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999−2049. doi: 10.1002/qj.3803 [12] Patra A, Min S K, Son S W, et al. Hemispheric asymmetry in future wave power changes: seasonality and physical mechanisms[J]. Journal of Geophysical Research: Oceans, 2021, 126(12): e2021JC017687. doi: 10.1029/2021JC017687 [13] Parkinson C L, Cavalieri D J, Gloersen P, et al. Arctic sea ice extents, areas, and trends, 1978–1996[J]. Journal of Geophysical Research: Oceans, 1999, 104(C9): 20837−20856. doi: 10.1029/1999JC900082 [14] Meier W N, Stroeve J, Fetterer F. Whither Arctic sea ice? A clear signal of decline regionally, seasonally and extending beyond the satellite record[J]. Annals of Glaciology, 2007, 46: 428−434. doi: 10.3189/172756407782871170 [15] Bell R J, Gray S L, Jones O P. North Atlantic storm driving of extreme wave heights in the North Sea[J]. Journal of Geophysical Research: Oceans, 2017, 122(4): 3253−3268. doi: 10.1002/2016JC012501 [16] Menéndez M, Méndez F J, Losada I J, et al. Variability of extreme wave heights in the northeast Pacific Ocean based on buoy measurements[J]. Geophysical Research Letters, 2008, 35(22): L22607. [17] Myslenkov S, Platonov V, Kislov A, et al. Thirty-nine-year wave hindcast, storm activity, and probability analysis of storm waves in the Kara Sea, Russia[J]. Water, 2021, 13(5): 648. doi: 10.3390/w13050648 [18] Wang Xue, Lu Ran, Wang Shaoyin, et al. Assessing CMIP6 simulations of Arctic sea ice drift: Role of near-surface wind and surface ocean current in model performance[J]. Advances in Climate Change Research, 2023, 14(5): 691−706. doi: 10.1016/j.accre.2023.09.005 [19] 郝光华, 沈辉, 田忠翔, 等. 北冰洋高纬度区域海冰及气象特征分析[J]. 海洋学报, 2021, 43(7): 90−99.Hao Guanghua, Shen Hui, Tian Zhongxiang, et al. The characteristics of sea ice and atmospheric factors over the high latitude Arctic region[J]. Haiyang Xuebao, 2021, 43(7): 90−99. [20] 牟龙江, 赵进平. 格陵兰海海冰外缘线变化特征分析[J]. 地球科学进展, 2013, 28(6): 709−717. doi: 10.11867/j.issn.1001-8166.2013.06.0709Mu Longjiang, Zhao Jinping. Variability of the Greenland Sea ice edge[J]. Advances in Earth Science, 2013, 28(6): 709−717. doi: 10.11867/j.issn.1001-8166.2013.06.0709 [21] Collins III C O, Rogers W E, Marchenko A, et al. In situ measurements of an energetic wave event in the Arctic marginal ice zone[J]. Geophysical Research Letters, 2015, 42(6): 1863−1870. doi: 10.1002/2015GL063063 [22] Mioduszewski J, Vavrus S, Wang Muyin. Diminishing Arctic sea ice promotes stronger surface winds[J]. Journal of Climate, 2018, 31(19): 8101−8119. doi: 10.1175/JCLI-D-18-0109.1 [23] Thomson J, Rogers W E. Swell and sea in the emerging Arctic Ocean[J]. Geophysical Research Letters, 2014, 41(9): 3136−3140. doi: 10.1002/2014GL059983