留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用FY-4B地球静止气象卫星观测南海北部内孤立波及传播速度

李熙莹 孟俊敏 孙丽娜 张昊 贺凯飞

李熙莹,孟俊敏,孙丽娜,等. 利用FY-4B地球静止气象卫星观测南海北部内孤立波及传播速度[J]. 海洋学报,2024,46(7):1–15 doi: 10.12284/hyxb2024036
引用本文: 李熙莹,孟俊敏,孙丽娜,等. 利用FY-4B地球静止气象卫星观测南海北部内孤立波及传播速度[J]. 海洋学报,2024,46(7):1–15 doi: 10.12284/hyxb2024036
Li Xiying,Meng Junmin,Sun Li’na, et al. Observation and propagation velocity study of internal solitary waves in the northern South China Sea based on the FY-4B geostationary meteorological satellite[J]. Haiyang Xuebao,2024, 46(7):1–15 doi: 10.12284/hyxb2024036
Citation: Li Xiying,Meng Junmin,Sun Li’na, et al. Observation and propagation velocity study of internal solitary waves in the northern South China Sea based on the FY-4B geostationary meteorological satellite[J]. Haiyang Xuebao,2024, 46(7):1–15 doi: 10.12284/hyxb2024036

利用FY-4B地球静止气象卫星观测南海北部内孤立波及传播速度

doi: 10.12284/hyxb2024036
基金项目: 国家自然科学基金项目(U2006207,42006164)。
详细信息
    作者简介:

    李熙莹(1999—),女,内蒙古呼和浩特市人,研究方向为海洋测绘与遥感。E-mail:lixiying327531@163.com

    通讯作者:

    孟俊敏(1973—),男,内蒙古呼和浩特市人,研究员,研究方向为海洋SAR遥感,海洋内波遥感探测等。E-mail:mengjm@fio.org.cn

  • 中图分类号: P715.6

Observation and propagation velocity study of internal solitary waves in the northern South China Sea based on the FY-4B geostationary meteorological satellite

  • 摘要: 本文利用中国新一代静止轨道气象卫星FY-4B数据开展了南海北部海域内孤立波观测及传播速度研究。首先使用500 m分辨率的全圆盘ARGI数据对FY-4B卫星可观测内波区域进行了讨论,确认了南海北部为研究区域。之后利用250 m分辨率的GHI数据使用多时相图像比较法(Multitemporal Image Comparison Method,MTI)计算了南海北部内孤立波的传播速度,其平均传播速度为1.78 m/s,东部深海区平均传播速度为3.02 m/s,向西传播至东沙群岛附近后平均速度减小至1.90 m/s,经过东沙群岛分裂后南部比北部传播速度更快,分别为2.08 m/s 和1.54 m/s;最终在向西传播到近岸区域后内孤立波传播速度减小至0.42 m/s,直至最终消散。将MTI方法与两层模式下扩展KdV方程(extended Korteweg-de Vries,eKdV)计算得到的理论传播速度进行了对比,二者相关系数达到了0.89,证明eKdV理论方程对南海北部内孤立波传播速度反演的可行性,但仍具有一定的局限。最后将实测数据与遥感影像匹配计算内孤立波传播速度的结果与单一遥感影像计算内孤立波传播速度的结果进行了比较,两者相关性达到了0.93。本文验证了静止轨道卫星光学遥感数据的高时间分辨率特点对内孤立波传播速度研究具有的较大优势,对南海北部内孤立波参数反演等研究工作具有一定意义。
  • 图  1  ARGI数据可观测ISW的区域情况

    Fig.  1  Regional observations of ISW unsing ARGI data

    图  2  夏至、冬至太阳耀斑区分布

    Fig.  2  The sun glint region distribution of winter solstice and summer solstice

    图  3  预处理后的FY-4B 250 m GHI影像

    Fig.  3  A preprocessed FY-4B 250 m GHI image

    图  4  GHI数据预处理流程

    Fig.  4  GHI data preprocessing process

    图  5  MTI法计算内孤立波传播速度

    Fig.  5  Propagation velocity of internal solitary wave by MTI method

    图  6  内孤立波传播速度

    Fig.  6  Propagation velocity of internal solitary wave

    图  7  内孤立波峰间距离$ l $

    Fig.  7  Peak-to-peak distance ($ l $) of ISW

    图  8  春、夏、秋季南海北部极限振幅极值情况

    Fig.  8  Extreme amplitude of the northern South China Sea in spring, summer, and autumn

    图  9  南海北部实测内孤立波振幅统计与潮流预测情况

    Fig.  9  Statistics of measured internal solitary wave amplitudes and tidal current predictions in the northern South China Sea

    图  10  实测振幅的A/H计算结果

    Fig.  10  The A/H calculation result of the measured amplitude

    图  11  不同月份温度、盐度、密度及浮频率

    Fig.  11  Temperature, salinity, density, and buoyancy frequency in different months

    图  12  两层模式下南海北部不同月份上层厚度

    Fig.  12  Upper layer thickness in different months of the northern South China Sea under a two-layer model

    图  13  MTI方法与eKdV方法部分结果比较

    Fig.  13  Comparison between MTI method and eKdV method

    图  14  温度链实测数据

    Fig.  14  Temperature chain measured data

    表  1  GHI数据及ARGI数据参数介绍

    Tab.  1  Introduction of GHI and ARGI data characteristics

    GHI ARGI
    波段/μm 全色 0.55~0.75
    空间分辨率/m 250 500
    时间分辨率/min 1 15
    探测范围 不定区域 固定区域
    观测范围示意图
    下载: 导出CSV

    表  2  FY-4B ARGI数据各海区可观测内波的最佳时间段

    Tab.  2  The optimal time period of observed internal waves in each sea area of FY-4B ARGI data

    海区 空间范围 日期 最佳时间段
    南海北部 19°~22.5°N, 116°~120.5°E 2023年5月6日 03:00−07:00 UTC
    苏禄海 6°~9°N, 117.5°~121.5°E 2023年5月12日 04:00−07:00 UTC
    西里伯斯海 3°~6.5°N, 120°~124.5°E 2023年3月25日 04:00−07:00 UTC
    弗洛勒斯海 5.5°~8.5°S, 122°~127°E 2023年3月24日 04:00−06:00 UTC
    马鲁古海 0.5°~3.5°S, 123.5°~128°E 2022年6月1日 02:00−06:00 UTC
    龙目海峡 6°S~9.5°S, 114°~118.5°E 2023年3月12日 04:00−07:00 UTC
    下载: 导出CSV

    表  3  MTI法计算内孤立波波速

    Tab.  3  Calculating internal solitary wave velocity using MTI method

    d1 d2 d3 d4 d5 d6 d7 d8
    平均距离/km 2.114 2.380 2.177 1.996 1.761 1.725 1.405 2.967
    传播时间/min 20 20 20 20 20 20 20 20
    传播速度(vi)/(m·s−1) 1.76 1.98 1.81 1.66 1.47 1.44 1.17 2.47
    时间段速度(v)/(m·s−1) 1.8025 1.6375
    总平均($ \bar{v} $)/(m·s−1) 1.72
    下载: 导出CSV

    表  4  FY-4B数据与实测数据ISWs发生时间

    Tab.  4  Time of occurrence of ISWs between FY-4B data and measured data

    日期 7月20日 8月26日 8月27日 9月3日 9月13日 9月14日 9月15日 9月16日
    成像时间1 04:00:00 03:01:00 03:11:00 07:01:00 04:01:00 05:01:00 06:01:00 06:41:00
    成像时间2 05:30:00 01:17:00 01:12:00 06:48:00 05:21:00 03:38:00 04:36:00 06:01:00
    实测发生时间3 05:29:00 01:16:40 00:47:30 06:48:20 02:12:30 03:37:40 04:35:50 05:59:30
    时间1至时间2时间差/s 5 400 6 240 7 140 780 4 800 4 980 5 100 2 400
    时间1至时间3时间差/s 5 340 6 260 8 610 760 6 510 5 000 5 110 2 490
    时间1至时间2距离/m 9 940 10 669 11 880 1 237 9 330 9 472 8 622 5 294
    时间1至时间3距离/m 10 253 10 825 15 291 1 177 12 716 9 351 7 912 5 400
    时间1至时间2平均速度/(m·s−1) 1.84 1.71 1.66 1.59 1.95 1.90 1.69 2.21
    时间1至时间3平均速度/(m·s−1) 1.92 1.73 1.77 1.55 1.95 1.87 1.55 2.17
    相关系数R 0.93
    下载: 导出CSV
  • [1] Meng Junmin, Sun Li’na, Zhang Hao, et al. Remote sensing survey and research on internal solitary waves in the South China Sea-Western Pacific-East Indian Ocean (SCS-WPAC-EIND)[J]. Acta Oceanologica Sinica, 2022, 41(10): 154−170. doi: 10.1007/s13131-022-2018-0
    [2] Wang Tongxin, Huang Xiaodong, Zhao Wei, et al. Internal solitary wave activities near the Indonesian submarine wreck site inferred from satellite images[J]. Journal of Marine Science and Engineering, 2022, 10(2): 197. doi: 10.3390/jmse10020197
    [3] Rivera-Rosario G A, Diamessis P J, Jenkins J T. Bed failure induced by internal solitary waves[J]. Journal of Geophysical Research: Oceans, 2017, 122(7): 5468−5485. doi: 10.1002/2017JC012935
    [4] Liu Bingqing, Yang Hong, Ding Xianwen, et al. Tracking the internal waves in the South China Sea with environmental satellite sun glint images[J]. Remote Sensing Letters, 2014, 5(7): 609−618. doi: 10.1080/2150704X.2014.949365
    [5] Huang Xiaodong, Chen Zhaohui, Zhao Wei, et al. An extreme internal solitary wave event observed in the northern South China Sea[J]. Scientific Reports, 2016, 6(1): 30041. doi: 10.1038/srep30041
    [6] 孙丽娜, 张杰, 孟俊敏. 2010—2015年南海和苏禄海内孤立波时空分布特征分析[J]. 海洋科学进展, 2019, 37(3): 398−408.

    SUN Li’na, ZHANG Jie, MENG Junmin. Analysis of spatio-temporal distribution of internal solitary waves in the South China Sea and Sulu Sea (2010—2015)[J]. Advances in Marine Science, 2019, 37(3): 398−408.
    [7] Jackson C R. An empirical model for estimating the geographic location of nonlinear internal solitary waves[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(10): 2243−2255. doi: 10.1175/2009JTECHO638.1
    [8] Zhang Xudong, Zhang Jie, Fan Chenqing, et al. Observations of internal waves with high sampling data of radar altimetry and MODIS images[J]. International Journal of Remote Sensing, 2018, 39(21): 7405−7416. doi: 10.1080/01431161.2018.1470700
    [9] Zhang Xudong, Li Xiaofeng. Satellite data-driven and knowledge-informed machine learning model for estimating global internal solitary wave speed[J]. Remote Sensing of Environment, 2022, 283: 113328. doi: 10.1016/j.rse.2022.113328
    [10] 胡蓓蕾. 基于高时间分辨率静止轨道光学卫星的海洋内波观测研究[D]. 青岛: 自然资源部第一海洋研究所, 2022.

    Hu Beilei. Oceanic internal waves observation based on high-temporal resolution geostationary orbit optical satellites[D]. Qingdao: First Institute of Oceanography, MNR, 2022.
    [11] 马志多, 孟俊敏, 孙丽娜, 等. 利用FY-4A气象卫星观测海洋内波[J]. 海洋科学, 2021, 45(2): 32−39.

    Ma Zhiduo, Meng Junmin, Sun Li’na, et al. Observation of internal waves in the ocean using FY-4A meteorological satellite[J]. Marine Sciences, 2021, 45(2): 32−39.
    [12] Li Xiying, Meng Junmin, Sun Li’na, et al. A study of internal solitary waves in the northern South China Sea using the Geo High-Speed Imager of the FY-4B satellite[J]. International Journal of Remote Sensing, 2023, 44(7): 2216−2235. doi: 10.1080/01431161.2023.2197132
    [13] Lindsey D T, Nam S H, Miller S D. Tracking oceanic nonlinear internal waves in the Indonesian seas from geostationary orbit[J]. Remote Sensing of Environment, 2018, 208: 202−209. doi: 10.1016/j.rse.2018.02.018
    [14] Garcia H E, Boyer T P, Baranova O K, et al. WORLD OCEAN ATLAS 2018 product documentation[R]. Silver Spring: Ocean Climate Laboratory, NCEI/NESDIS/NOAA, 2019.
    [15] Zhao Zhongxiang, Klemas V, Zheng Quanan, et al. Estimating parameters of a two-layer stratified ocean from polarity conversion of internal solitary waves observed in satellite SAR images[J]. Remote Sensing of Environment, 2004, 92(2): 276−287. doi: 10.1016/j.rse.2004.05.014
    [16] 甘锡林, 黄韦艮, 杨劲松, 等. 利用多源遥感卫星数据研究南海内波的时空分布特征[J]. 遥感技术与应用, 2007, 22(2): 242−245.

    Gan Xilin, Huang Weigen, Yang Jinsong, et al. The study of spatial and temporal distribution characteristics of internal waves in the South China Sea from multi-satellite data[J]. Remote Sensing Technology and Application, 2007, 22(2): 242−245.
    [17] Li Xiaofeng, Jackson C R, Pichel W G. Internal solitary wave refraction at Dongsha Atoll, South China Sea[J]. Geophysical Research Letters, 2013, 40(12): 3128−3132. doi: 10.1002/grl.50614
    [18] Korteweg D J, De Vries G. XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1895, 39(240): 422−443. doi: 10.1080/14786449508620739
    [19] Sun Li’na, Zhang Jie, Meng Junmin. Study on the propagation velocity of internal solitary waves in the Andaman Sea using Terra/Aqua-MODIS remote sensing images[J]. Journal of Oceanology and Limnology, 2021, 39(6): 2195−2208. doi: 10.1007/s00343-020-0280-6
    [20] Yang Hong, Liu Bingqing, Zhao Zhongxiang, et al. Inferring internal wave phase speed from multi-satellite observations[C]//Proceedings of 2014 IEEE Geoscience and Remote Sensing Symposium. Quebec City: IEEE, 2014: 4768-4771.
    [21] Farmer D M, Alford M H, Lien R C, et al. From Luzon strait to Dongsha Plateau: stages in the life of an internal wave[J]. Oceanography, 2011, 24(4): 64−77. doi: 10.5670/oceanog.2011.95
    [22] 孙丽娜, 张杰, 孟俊敏. 基于遥感与现场观测数据的南海北部内波传播速度[J]. 海洋与湖沼, 2018, 49(3): 471−480.

    Sun Li’na, Zhang Jie, Meng Junmin. On propagation velocity of internal solitary waves in the northern South China Sea with remote sensing and in-situ observations data[J]. Oceanologia et Limnologia Sinica, 2018, 49(3): 471−480.
    [23] Rong Lintai, Xiong Xuejun, Chen Liang. Assessment of KdV and EKdV theories for simulating internal solitary waves in the continental slope of the South China Sea[J]. Continental Shelf Research, 2023, 256: 104944. doi: 10.1016/j.csr.2023.104944
    [24] Grimshaw R, Pelinovsky E, Talipova T, et al. Simulation of the transformation of internal solitary waves on oceanic shelves[J]. Journal of Physical Oceanography, 2004, 34(12): 2774−2791. doi: 10.1175/JPO2652.1
    [25] Xue Jingshuang, Graber H C, Lund B, et al. Amplitudes estimation of large internal solitary waves in the Mid-Atlantic Bight using synthetic aperture radar and marine X-band radar images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(6): 3250−3258. doi: 10.1109/TGRS.2012.2221467
    [26] 曾智, 李晓明, 任永政, 等. 基于TerraSAR-X卫星数据的内孤立波参数和海表流速信息提取的探索研究[J]. 海洋学报, 2020, 42(1): 90−101.

    Zeng Zhi, Li Xiaoming, Ren Yongzheng, et al. Exploratory research on the retrieval of internal wave parameters and sea surface current velocity based on TerraSAR-X satellite data[J]. Haiyang Xuebao, 2020, 42(1): 90−101.
    [27] Lien R C, Tang T Y, Chang M H, et al. Energy of nonlinear internal waves in the South China Sea[J]. Geophysical Research Letters, 2005, 32(5): L05615.
    [28] Li Xiaofeng, Zhao Zhongxiang, Pichel W G. Internal solitary waves in the northwestern South China Sea inferred from satellite images[J]. Geophysical Research Letters, 2008, 35(13): L13605.
    [29] Grue J, Trulsen K. Waves in Geophysical Fluids: Tsunamis, Rogue Waves, Internal Waves and Internal Tides[M]. Vienna: Springer, 2006.
    [30] Cui Junnan, Dong Sheng, Wang Zhifeng. Study on applicability of internal solitary wave theories by theoretical and numerical method[J]. Applied Ocean Research, 2021, 111: 102629. doi: 10.1016/j.apor.2021.102629
    [31] Jia Tong, Liang Jianjun, Li Xiaoming, et al. Retrieval of internal solitary wave amplitude in shallow water by tandem spaceborne SAR[J]. Remote Sensing, 2019, 11(14): 1706. doi: 10.3390/rs11141706
    [32] Kawaguchi Y, Wagawa T, Yabe I, et al. Mesoscale-dependent near-inertial internal waves and microscale turbulence in the Tsushima Warm Current[J]. Journal of Oceanography, 2021, 77(2): 155−171. doi: 10.1007/s10872-020-00583-1
    [33] Chen Zhiwu, Xie Jieshuo, Wang Dongxiao, et al. Density stratification influences on generation of different modes internal solitary waves[J]. Journal of Geophysical Research:Oceans, 2014, 119(10): 7029−7046. doi: 10.1002/2014JC010069
    [34] Xie Huarong, Xu Qing, Zheng Quanan, et al. Assessment of theoretical approaches to derivation of internal solitary wave parameters from multi-satellite images near the Dongsha Atoll of the South China Sea[J]. Acta Oceanologica Sinica, 2022, 41(6): 137−145. doi: 10.1007/s13131-022-2015-3
    [35] 王晶, 郭凯, 孙美玲, 等. 3层模型的内波传播方程与参数反演[J]. 遥感学报, 2015, 19(2): 188−194.

    Wang Jing, Guo Kai, Sun Meiling, et al. Nonlinear Schrὅdinger equation and parametric inversion of internal wave propagation using three-layer model[J]. Journal of Remote Sensing, 2015, 19(2): 188−194.
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  20
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-22
  • 修回日期:  2023-12-01
  • 刊出日期:  2024-07-01

目录

    /

    返回文章
    返回