The control mechanism of multi-stage fracture-related karst reservoirs of carbonate buried hills in Bohai Bay Basin
-
摘要: 新生古储的潜山油气已成为我国海域盆地的重要勘探领域。渤海湾盆地的沙西北地区是一个典型碳酸盐岩潜山带,由于对其发育的多期裂缝的控储作用及与之相关的岩溶性质缺乏研究,制约了碳酸盐岩潜山的油气勘探。本文通过详细分析沙西北地区碳酸盐岩潜山储层缝-洞系统发育特征,研究裂缝与岩溶的控储作用。结果表明,渤海海域渤中西南环下古生界碳酸盐岩潜山属于裂缝相关岩溶储层,储集空间主要为溶蚀孔洞、构造裂缝和沿构造裂缝溶蚀扩大孔洞,优质储层具有岩性选择性,泥晶白云岩和细晶白云岩发育的裂缝和溶蚀孔洞更好。储层主要发育3期裂缝,NW向和NEE向剪裂缝主要与印支期和燕山末期的两次构造挤压有关,第三期WE向张裂缝则与喜山期的拉张运动有关,挤压作用是形成高密度缝的主要机制,后期的伸展作用是裂缝松弛形成储集空间的必要条件。下古生界碳酸盐岩潜山储层经历了3期岩溶作用,分别为加里东稳定构造背景的岩溶、印支期挤压褶皱成山背景的岩溶和燕山期−新生代早期伸展背景的断块地垒岩溶。总之,渤海湾盆地沙西北地区碳酸盐岩潜山储层是多期次多类型构造−岩溶作用联合复合形成的,不同构造部位的联合复合程度差异分析是认识成储规律的重要因素。Abstract: The buried hill oil and gas reservoirs have become an important exploration field in China’s marine basins. The northwestern area of Shaleitian area of Bohai Bay Basin is a typical carbonate buried hill zone. Due to the lack of research on the reservoir control effect of multiple stage fractures and their related karstification, the oil and gas exploration of carbonate buried hills is restricted. This paper conducts a detailed analysis of the development characteristics of the fracture-cave system in carbonate buried hill reservoirs in the northwestern Shaleitian Uplift, and studies the reservoir control effects of fractures and karst. The results indicate that the lower Paleozoic carbonate buried hills in the northwestern area of Shaleitian Uplift belong to fracture related karst reservoirs. The reservoir space includes dissolution pores, structural fractures, and expansion pores along the structural fractures. High quality reservoirs have lithological selectivity, and fractures and dissolution pores developed in microlite crystalline dolomite and fine crystalline dolomite are better. The reservoir mainly develops three sets of fractures, with NW and NEE oriented shear fractures mainly related to two tectonic compressions during the Indosinian and Late Yanshanian . The third set of WE oriented tensile fractures is related to the intracratonic movement during the Himalayan orogeny, and compression is the main mechanism for forming high-density fractures. The later stage of extension is a necessary condition for the relaxation of fractures to form reservoir spaces. The Lower Paleozoic carbonate buried hill reservoirs have undergone three stages ofkarstification, which are karstification in the steady Caledonian tectonic background, karstification in the Indosinian compressive background, and fault block-horst karstification in the Yanshanian-Himalayan extensional background. In summary, the carbonate buried hill reservoirs in the northwestern Shaleitian Uplift are formed by multiple stages and multiple types of tectonic-karst processes, and the analysis of the differences in the degree of recombination in different structural parts is an important factor in understanding the reservoir formation mechanism.
-
Key words:
- buried hill reservoir /
- carbonate rock /
- fracture /
- karstification /
- Bohai Bay Basin
-
图 2 研究区下古生界碳酸盐岩典型岩性照片
a. 泥晶灰岩,多期裂缝充填,CFD-H井,冶里组,3740.04 m(-);b. 亮晶胶结砂屑灰岩,见粒间溶孔,CFD2-1-B井,上马家沟组,3 477.4 m (-);c. 纹层状泥-微晶白云岩,CFD2-1-B井,崮山组,3 708 m;d. 含生屑泥-微晶白云岩,CFD2-2-I井,冶里组,3 955 m (-);e. 细晶白云岩,发育裂缝及裂缝相关溶蚀孔洞, CFD2-1-A井,3 710 m;f. 灰质粉晶白云岩,CFD2-2-B井,亮甲山组,3 400 m (-);g. 细晶白云岩,发育大型溶孔,溶洞壁发育环边白云石,CFD2-1-B井,冶里组,3 830 m (-);h. 粉-细晶白云岩,裂缝内充填的白云石发育溶蚀孔,CFD2-1-B井,亮甲山组,3 709.3 m (-);i. 粉晶灰质白云岩,发育少量晶间孔,CFD2-2-C井,冶里组,3 640 m (-);j. 岩溶角砾白云岩,CFD2-1-B井,冶里组,3 547 m;k. 岩溶角砾灰岩,CFD2-2-I井,亮甲山组,3 566 m;l. 岩溶角砾白云岩,多组裂缝被方解石充填,CFD2-1-B井,上马家沟组,3 442.4 m
Fig. 2 The lithologic photographs of the carbonate in the study area
a.Micritic limestone, multi-stage fracture filling, Well CFD-H (3740.04 m), Yeli Formation; b. sparking cemented sand clastic limestone, intergranular solution pore, Well CFD2-1-B (3477.4 m), Shangmajiagou Formation; c. laminated mud-microcrystalline dolomite, Well CFD2-1-B (3708 m), Gushan Formation; d. clastic mud-microcrystalline dolomite, Well CFD2-2-I (3955 m), Yeli Formation; e. fine crystalline dolomite, development of cracks and fracture-related dissolution voids, Well CFD2-1-A (3710 m); f. calareous silty dolomite, Well CFD2-2-B (3400 m), Liangjiashan Formation; g. fine crystalline dolomite, large solution pores are develope and ring-edge dolomite is developed on the cave wall, Well CFD2-1-B (3830 m), Yeli Formation; h. powder-fine-geained dolomite, the dolomite filled in the fracture develops dissolution pores, Well CFD2-1-B (3709.3 m), Liangjiashan Formation; i. powdery gray dolomite with a small number of intergranular pores, Well CFD2-2-C (3640 m), Yeli Formation; j. karst breccia dolomite, Well CFD2-1-B (3547 m), Yeli Formation; l. karst breccia dolomite, several groups of cracks are filled with calcite, Well CFD2-1-B (3442.4 m), Shangmajiagou Formation
图 4 研究区裂缝发育特征及期次
a. 岩心发育两组剪切缝和一组张裂缝,第I组裂缝中充填细晶方解石,第II组裂缝中充填泥晶方解石,第III组裂缝未被充填。CFD2-2-N井,3 560 m;b. 剪切缝充填方解石脉体,CFD2-1-B井,3 450 m;c. 岩心中发育一组张裂缝,CFD2-1-B井,3 442 m;d. 两组剪切缝相互切割,CFD2-1-B井,3 706 m
Fig. 4 The characteristics and sequence of fracture families occurence in the study area
a. Two shearing fractures and one tensile fracture can be observed in the core. The fractures of Family I are filled with fine crystalline calcites, the fracture of Family II is filled with argillaceous calcites, and the fracture of Family III is not filled, Well CFD2-2-N (3 560 m); b. the shearing fractures are filled with calcite veins, Well CFD2-1-B (3 450 m); c. a tensional fracture observed in the cor, Well CFD2-1-B (3 442 m); d. the two families of fractures cut each other, Well CFD2-1-B (3 706 m)
图 5 渤中凹陷西南部碳酸盐岩埋藏丘钻孔成像测井中的天然裂缝(红色曲线代表构造裂缝,粉红色曲线代表诱导裂缝)
a. CFD2-1-A井的钻井诱导裂缝;b. CFD2-1-A井诱导缝与构造裂缝,孔隙沿裂缝发育;c. 诱导裂缝的走向玫瑰图显示了NWW向最大主应力;d, e. 根据图像测井计算的3组裂缝走向和倾角
Fig. 5 Natural fractures in the borehole image logs of carbonate burial hills in southwestern Bozhong sag. Red curves represent tectonic fractures. Pink curves represent induced fractures
a. Induced fractures from well CFD2-1-A; b. induced fractures and tectonic fractures from CFD2-1-A, the dissolved pores developed along the fracture; c. rose plot of induced fractures shows the NWW trending maximum principal stress; d, e. fracture strike and dip calculated from image logs
-
[1] Weeks A W. Geology of Petroleum[M]. 1967. (查阅网上资料, 未找到本条文献信息, 请确认Weeks A W. Geology of Petroleum[M]. 1967. (查阅网上资料, 未找到本条文献信息, 请确认) [2] 贾承造, 庞雄奇, 姜福杰. 中国油气资源研究现状与发展方向[J]. 石油科学通报, 2016, 1(1): 2−23. doi: 10.3969/j.issn.2096-1693.2016.01.001Jia Chengzao, Pang Xiongqi, Jiang Fujie. Research status and development directions of hydrocarbon resources in China[J]. Petroleum Science Bulletin, 2016, 1(1): 2−23. doi: 10.3969/j.issn.2096-1693.2016.01.001 [3] 马永生, 蔡勋育, 赵培荣. 深层、超深层碳酸盐岩油气储层形成机理研究综述[J]. 地学前缘, 2011, 18(4): 181−192.Ma Yongsheng, Cai Xunyu, Zhao Peirong. The research status and advances in porosity evolution and diagenesis of deep carbonate reservoir[J]. Earth Science Frontiers, 2011, 18(4): 181−192. [4] 侯明才, 曹海洋, 李慧勇, 等. 渤海海域渤中19-6构造带深层潜山储层特征及其控制因素[J]. 天然气工业, 2019, 39(1): 33−44. doi: 10.3787/j.issn.1000-0976.2019.01.004Hou Mingcai, Cao Haiyang, Li Huiyong, et al. Characteristics and controlling factors of deep buried-hill reservoirs in the BZ19-6 structural belt, Bohai Sea area[J]. Natural Gas Industry, 2019, 39(1): 33−44. doi: 10.3787/j.issn.1000-0976.2019.01.004 [5] 李慧勇, 牛成民, 许鹏, 等. 渤中13-2大型整装覆盖型潜山油气田的发现及其油气勘探意义[J]. 天然气工业, 2021, 41(2): 19−26. doi: 10.3787/j.issn.1000-0976.2021.02.003Li Huiyong, Niu Chengmin, Xu Peng, et al. Discovery of Bozhong 13-2 Archeanlarge monoblockvolatile buried hill oilfield and its oil and gas exploration significance[J]. Natural Gas Industry, 2021, 41(2): 19−26. doi: 10.3787/j.issn.1000-0976.2021.02.003 [6] 杨培山, 李功治. 任丘碳酸盐岩油藏的开发[J]. 石油学报, 1980(4): 57−64.Yang Peishan, Li Gongzhi. Development of carbonate reservoirs in the Renqiu oil field[J]. Acta Petrolei Sinica, 1980(4): 57−64. [7] 胡安文, 王飞龙, 王广源, 等. 渤海湾盆地渤中凹陷渤中21-22构造区CO2成因及其对油气成藏的影响[J]. 天然气地球科学, 2023, 34(12): 2151−2159.Hu Anwen, Wang Feilong, Wang Guangyuan, et al. The origin of CO2 and its influence on oil and gas accumulation in Bozhong 21-22 structure in the Bozhong Sag, Bohai Bay Basin[J]. Natural Gas Geoscience, 2023, 34(12): 2151−2159. [8] 周心怀. 渤中28-2南油田成藏模式及其勘探意义[J]. 中国海上油气, 2012, 24(5): 1−5,10.Zhou Xinhuai. The accumulation model of BZ28-2S oilfield and its exploration significance[J]. China Offshore Oil and Gas, 2012, 24(5): 1−5, 10. [9] 于海波, 王德英, 牛成民, 等. 渤海海域渤南低凸起碳酸盐岩潜山储层特征及形成机制[J]. 石油实验地质, 2015, 37(2): 150−156, 163. doi: 10.11781/sysydz201502150Yu Haibo, Wang Deying, Niu Chengmin, et al. Characteristics and formation mechanisms of buried hill carbonate reservoirs in Bonan Low Uplift, Bohai Bay[J]. Petroleum Geology & Experiment, 2015, 37(2): 150−156, 163. doi: 10.11781/sysydz201502150 [10] 叶涛, 王清斌, 黄志, 等. 碳酸盐岩层序地层格架对岩溶储层的控制作用——以渤海西南海域下古生界为例[J]. 吉林大学学报(地球科学版), 2021, 51(4): 991−1005.Ye Tao, Wang Qingbin, Huang Zhi, et al. Characteristic of sequence stratigraphic framework and its controls on reservoir: a case study of Lower-Paleozoic carbonate in southwest area of Bohai sea[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(4): 991−1005. [11] 余一欣, 周心怀, 徐长贵, 等. 渤海海域新生代断裂发育特征及形成机制[J]. 石油与天然气地质, 2011, 32(2): 273−279. doi: 10.11743/ogg20110216Yu Yixin, Zhou Xinhuai, Xu Changgui, et al. Characteristics and formation mechanisms of the Cenozoic faults in the Bohai Sea waters[J]. Oil & Gas Geology, 2011, 32(2): 273−279. doi: 10.11743/ogg20110216 [12] 马小明, 余元洲, 李云, 等. 千米桥古潜山凝析气藏油气富集规律新认识[J]. 天然气工业, 2009, 29(4): 25−26.Ma Xiaoming, Yu Yuanzhou, Li Yun, et al. Research on hydrocarbon enrichment in condensate gas reservoirs in Qianmiqiao buried hill[J]. Natural Gas Industry, 2009, 29(4): 25−26. [13] Liu Dawei, Cai Chunfang, Hu Yongjie, et al. Multistage dolomitization and formation of ultra-deep Lower Cambrian Longwangmiaoformation reservoir in central Sichuan Basin, China[J]. Marine and Petroleum Geology, 2021, 123: 104752. doi: 10.1016/j.marpetgeo.2020.104752 [14] 刘树根, 时华星, 王国芝, 等. 桩海潜山下古生界碳酸盐岩储层形成作用研究[J]. 天然气工业, 2007, 27(10): 1−5. doi: 10.3321/j.issn:1000-0976.2007.10.001Liu Shugen, Shi Huaxing, Wang Guozhi, et al. Formation mechanism of Lower Paleozoic carbonate reservoirs in Zhuanghai buried hill[J]. Natural Gas Industry, 2007, 27(10): 1−5. doi: 10.3321/j.issn:1000-0976.2007.10.001 [15] 王颖, 王英民, 赵锡奎, 等. 济阳坳陷断块型潜山油气成藏特征[J]. 天然气工业, 2005, 25(2): 10−13. doi: 10.3321/j.issn:1000-0976.2005.02.003Wang Ying, Wang Yingmin, Zhao Xikui, et al. Oil and gas reservoir formation characteristics of fault-block buried hills in Jiyang Depression[J]. Natural Gas Industry, 2005, 25(2): 10−13. doi: 10.3321/j.issn:1000-0976.2005.02.003 [16] 马帅, 王永诗, 王学军, 等. 济阳坳陷下古生界潜山内幕型白云岩储层发育特征及成因机理[J]. 地质论评, 2023, 69(S1): 279−280.Ma Shuai, Wang Yongshi, Wang Xuejun, et al. Characteristics and genetic mechanism of inner buried hill dolomite reservoir in Lower Paleozoic of Jiyang Depression[J]. Geological Review, 2023, 69(S1): 279−280. [17] 胡志伟, 吕丁友, 王德英, 等. 渤海海域前新生代关键构造期变形特征与潜山油气成藏意义[J]. 中国海上油气, 2023, 35(1): 50−62.Hu Zhiwei, Lv Dingyou, Wang Deying, et al. Deformation characteristics of critical tectonic periods during pre-Cenozoic and significance of buried hill hydrocarbon accumulation in the Bohai sea area[J]. China Offshore Oil and Gas, 2023, 35(1): 50−62. [18] Ye Tao, Chen Anqing, Niu Chengming, et al. Effective fractures linked with tectonic reactivation and multiple genetic fluids in the ultradeep Paleozoic carbonate buried hills of the BozhongSag, North China[J]. Marine and Petroleum Geology, 2022, 140: 105642. doi: 10.1016/j.marpetgeo.2022.105642 [19] Huang Zhi, Yang Haifeng, Ye Tao, et al. Characteristics and formation mechanism of Carbonate buried hill fractured-dissolved reservoirs in Bohai Sea, Bohai Bay Basin, China[J]. Frontiers in Earth Science, 2023, 11: 1135905. doi: 10.3389/feart.2023.1135905 [20] 姜福杰, 郭婧, 庞雄奇, 等. 渤海湾盆地南堡凹陷全油气系统3类油气资源联合评价[J]. 石油学报, 2023, 44(9): 1472−1486.Jiang Fujie, Guo Jing, Pang Xiongqi, et al. Joint evaluation of three types of oil-gas resources in whole petroleum system of Nanpusag, BohaiBay Basin[J]. Acta Petrolei Sinica, 2023, 44(9): 1472−1486. [21] 王洪宇, 付晓飞, 王海学, 等. 渤海湾盆地歧口凹陷断裂活动定量分析和评价对油气成藏的控制作用研究[J]. 地质学报, 2020, 94(10): 3062−3073. doi: 10.3969/j.issn.0001-5717.2020.10.018Wang Hongyu, Fu Xiaofei, Wang Haixue, et al. Research on the controlling effect of quantitative analysis and evaluation of fault activity on oil and gas accumulation in QikouSag of Bohai Bay Basin[J]. Acta Geologica Sinica, 2020, 94(10): 3062−3073. doi: 10.3969/j.issn.0001-5717.2020.10.018 [22] 郝奕玮, 骆满生, 徐增连, 等. 华北陆块新元古代-中生代沉积盆地划分及其构造演化[J]. 地球科学, 2014, 39(8): 1230−1242.HaoYiwei, Luo Mansheng, Xu Zenglian, et al. Division of sedimentary basins and its tectonic evolution in North China from newproterozoic to Mesozoic[J]. Earth Science, 2014, 39(8): 1230−1242. [23] 侯贵廷, 钱祥麟, 蔡东升. 渤海湾盆地中、新生代构造演化研究[J]. 北京大学学报(自然科学版), 2001, 37(6): 845−851.Hou Guiting, Qian Xianglin, Cai Dongsheng. The tectonic evolution of Bohai Basin in Mesozoic and Cenozoic time[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2001, 37(6): 845−851. [24] 李卓, 郭诚, 周立业, 等. 渤海S油田下古生界碳酸盐岩储层主控因素分析[J]. 广东石油化工学院学报, 2019, 29(3): 5−9. doi: 10.3969/j.issn.2095-2562.2019.03.002Li Zhuo, Guo Cheng, Zhou Liye, et al. Analysis on main controlling factors of Lower Paleozoic carbonate reservoir in Bohai S Oil field[J]. Journal of Guangdong University of Petrochemical Technology, 2019, 29(3): 5−9. doi: 10.3969/j.issn.2095-2562.2019.03.002 [25] 李阳, 金强, 钟建华, 等. 塔河油田奥陶系岩溶分带及缝洞结构特征[J]. 石油学报, 2016, 37(3): 289−298.Li Yang, Jin Qiang, Zhong Jianhua, et al. Karst zonings and fracture-cave structure characteristics of Ordovician reservoirs in Tahe oilfield, TarimBasin[J]. Acta Petrolei Sinica, 2016, 37(3): 289−298. [26] 柳建华, 蔺学旻, 张卫锋, 等. 塔河油田碳酸盐岩储层有效性测井评价实践与思考[J]. 石油与天然气地质, 2014, 35(6): 950−958.Liu Jianhua, Lin Xuemin, Zhang Weifeng, et al. Logging evaluation of carbonate reservoir effectiveness in Tahe oilfield, Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 950−958. [27] 童亨茂. 成像测井资料在构造裂缝预测和评价中的应用[J]. 天然气工业, 2006, 26(9): 58−61. doi: 10.3321/j.issn:1000-0976.2006.09.017Dong Hengmao. Application of imaging well logging data in prediction of structural fracture[J]. Natural Gas Industry, 2006, 26(9): 58−61. doi: 10.3321/j.issn:1000-0976.2006.09.017 [28] 丁文龙, 漆立新, 吕海涛, 等. 利用FMI资料分析塔河油田南部中-下奥陶统储层构造应力场[J]. 现代地质, 2009, 23(5): 852−859. doi: 10.3969/j.issn.1000-8527.2009.05.013Ding Wenlong, Qi Lixin, Lv Haitao, et al. Analysis of the Lower-Middle Ordovician reservoir tectonic stress field using FMI data in the south of Tahe Oilfield[J]. Geoscience, 2009, 23(5): 852−859. doi: 10.3969/j.issn.1000-8527.2009.05.013 [29] 黄继新, 彭仕宓, 王小军, 等. 成像测井资料在裂缝和地应力研究中的应用[J]. 石油学报, 2006, 27(6): 65−69.Huang Jixin, Peng Shimi, Wang Xiaojun, et al. Applications of imaging logging data in the research of fracture and ground stress[J]. Acta Petrolei Sinica, 2006, 27(6): 65−69. [30] 邓虎成, 周文, 周秋媚, 等. 新场气田须二气藏天然裂缝有效性定量表征方法及应用[J]. 岩石学报, 2013, 29(3): 1087−1097.Deng Hucheng, Zhou Wen, Zhou Qiumei, et al. Quantification characterization of the valid natural fractures in the 2ndXuMember, Xinchang gas field[J]. Acta Petrologica Sinica, 2013, 29(3): 1087−1097. [31] 翟明国. 克拉通化与华北陆块的形成[J]. 中国科学:地球科学, 2011, 41(8): 1037−1046.Zhai Mingguo. Cratonization and the Ancient North China continent[J]. Scientia Sinica (Terrae), 2011, 41(8): 1037−1046. [32] 李勇, 钟建华, 温志峰, 等. 印支运动对济阳坳陷构造形态形成演化的影响[J]. 地质论评, 2006, 52(3): 321−330. doi: 10.3321/j.issn:0371-5736.2006.03.013Li Yong, Zhong Jianhua, Wen Zhifeng, et al. Effects of Indosinian movements on tectonic formation and evolution, Jiyang Depression[J]. Geological Review, 2006, 52(3): 321−330. doi: 10.3321/j.issn:0371-5736.2006.03.013 [33] 索艳慧, 李三忠, 曹现志, 等. 中国东部中新生代反转构造及其记录的大洋板块俯冲过程[J]. 地学前缘, 2017, 24(4): 249−267.SuoYanhui, Li Sanzhong, Cao Xianzhi, et al. Mesozoic-Cenozoic inversion tectonics of East China and its implications for the subduction process of the oceanic plate[J]. Earth Science Frontiers, 2017, 24(4): 249−267. [34] 王宇, 徐春强, 郭玲莉, 等. 渤海湾盆地石臼坨东428潜山构造成因解析: 华北克拉通破坏的深度揭示[J]. 大地构造与成矿学, 2021, 45(1): 219−228.Wang Yu, Xu Chunqiang, GuoLingli, et al. Structural analysis of Shijiutuoeast 428 buried hill in Bohai Bay Basin: implications on destruction of the North China Craton[J]. Geotectonicaet Metallogenia, 2021, 45(1): 219−228. [35] Allen M B, Macdonald D I M, Xun Zhao, et al. Early Cenozoic two-phase extension and Late Cenozoic thermal subsidence and inversion of the Bohai Basin, northern China[J]. Marine and Petroleum Geology, 1997, 14(7/8): 951−972. [36] Liang Jintong, Wang Hongliang, Bai Ying, et al. Cenozoic tectonic evolution of the Bohai Bay Basin and its coupling relationship with Pacific Plate subduction[J]. Journal of Asian Earth Sciences, 2016, 127: 257−266. doi: 10.1016/j.jseaes.2016.06.012 [37] 黄雷, 周心怀, 刘池洋, 等. 渤海海域新生代盆地演化的重要转折期——证据及区域动力学分析[J]. 中国科学: 地球科学, 2012, 42(6): 893−904.Huang Lei, Liu Chiyang, Zhou Xinhuai, et al. The important turning points during evolution of Cenozoic Basin offshore the Bohai Sea: evidence and regional dynamics analysis[J]. Science China Earth Sciences, 2012, 55(3): 476−487. [38] 邵晓州, 王苗苗, 惠潇, 等. 鄂尔多斯盆地盐池地区裂缝特征、形成期次及发育模式[J]. 天然气地球科学, 2021, 32(10): 1510−1513. doi: 10.11764/j.issn.1672-1926.2021.04.009Shao Xiaozhou, Wang Miaomiao, Hui Xiao, et al. Characteristics, formationstages and development model of fractures in Yanchi area, Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(10): 1510−1513. doi: 10.11764/j.issn.1672-1926.2021.04.009 [39] 王国亭, 程立华, 孟德伟, 等. 鄂尔多斯盆地东部奥陶系古岩溶型碳酸盐岩致密储层特征、形成机理与天然气富集潜力[J]. 石油与天然气地质, 2018, 39(4): 685−695.Wang Guoting, Cheng Lihua, MengDewei, et al. Characterization and formation of the Ordovician tight paleokarst carbonates in the eastern Ordos Basin and its gas accumulation[J]. Oil & Gas Geology, 2018, 39(4): 685−695. [40] 傅恒, 韩建辉, 孟万斌, 等. 塔里木盆地塔中北坡奥陶系碳酸盐岩岩溶储层的形成机理[J]. 天然气工业, 2017, 37(3): 25−36.Fu Heng, Han Jianhui, MengWanbin, et al. Forming mechanism of the Ordovician karst carbonate reservoirs on the northern slope of Central Tarim Basin[J]. Natural Gas Industry, 2017, 37(3): 25−36. [41] 倪新锋, 张丽娟, 沈安江, 等. 塔里木盆地英买力—哈拉哈塘地区奥陶系碳酸盐岩岩溶型储层特征及成因[J]. 沉积学报, 2011, 29(3): 465−474.Ni Xinfeng, Zhang Lijuan, Shen Anjiang, et al. Characteristics and genesis of Ordovician carbonate karst reservoir in Yingmaili-Halahatangarea, TarimBasin[J]. Acta Sedimentologica Sinica, 2011, 29(3): 465−474. [42] 夏明军, 戴金星, 邹才能, 等. 鄂尔多斯盆地南部加里东期岩溶古地貌与天然气成藏条件分析[J]. 石油勘探与开发, 2007, 34(3): 291−298, 315.Xia Mingjun, Dai Jinxing, Zhou Caineng, et al. Caledonian karst palaeogeomorphology and the forming condition of gas pool, southern Ordos Basin[J]. Petroleum Exploration and Development, 2007, 34(3): 291−298, 315. [43] 王淑萍. 塔河油田下奥陶统碳酸盐岩缝洞型储层结构特征及成因模式[D]. 青岛: 中国石油大学(华东), 2015.Wang Shuping. Structural characteristics and genetic model of Lower Ordovician carbonate reservoirs inTaheOilfield[D]. Qingdao: China University of Petroleum (East China), 2015. [44] 李伟, 吴智平, 赵文栋. 渤海湾盆地区燕山期构造特征与盆地转型[J]. 地球物理学进展, 2010, 25(6): 2068−2077.Li Wei, Wu Zhiping, Zhao Wendong. Structural characteristics and Basin transformation in the Bohai Bay Basin in the Yanshanera[J]. Progress in Geophysics, 2010, 25(6): 2068−2077. [45] Luo Jian, Cao Haiyang, Chiarella D, et al. Ultra-deep carbonate basement reservoirs formed by polyphase fracture-related karstification in the Offshore Bohai Bay Basin, China[J]. Petroleum Science, 2023, 20(4): 2009−2025. doi: 10.1016/j.petsci.2023.03.021 [46] 侯贵廷, 叶良新, 杜庆娥. 渤张断裂带的构造机制及其地质意义[J]. 地质科学, 1999, 34(3): 375−380.Hou Guiting, Ye Liangxin, Du Qinge. Tectonic mechanism and geological significance of the Bozhang fault zone[J]. Scientia Geologica Sinica, 1999, 34(3): 375−380.