Application of Empirical Path Model based on kernel density estimation in the construction of synthetic typhoon in Northwest Pacific Ocean
-
摘要: 合理评估台风对沿海区域的影响程度与风险对于科学抵御台风灾害而言十分重要,而我国具有详细的台风观测记录至今也仅有60多年的历史,这使得在推算具有一定重现期的极值风速及相应的极值波高和潮位等特征参数时存在局限性,同时台风观测样本量的不足也限制了如深度学习等数据驱动型模型在台风灾害预报中的应用。因此,有必要基于实际台风行进规律构建虚拟台风以克服历史数据量不足的问题。故本文采用基于核密度估计的经验路径模型,在西北太平洋海域构建了18 671场虚拟台风,将虚拟台风的起始与终止位置、发生频数、行进速度和行进方向等参数与实际发生的台风进行统计意义上的对比分析。结果表明,基于本文方法构建的虚拟台风总体上符合西北太平洋历史台风的行进规律。通过这些虚拟台风的构建,可为中国沿海极值波浪和风暴增水研究提供数据量足够且性能可靠的虚拟台风样本数据库。Abstract: Reliable assessment of the impact and risk of typhoons on coastal areas is very important for scientific resistance to typhoon disasters. China has a detailed typhoon observation record with a history of only 60 years, which makes it limited in estimating extreme wind speed with a long recurrence period and corresponding extreme wave height and tide level. The insufficient records also limits the application of data-driven models in typhoon disaster prediction. Therefore, it is necessary to construct synthetic typhoons based on the actual typhoon travel law to overcome the problem of insufficient historical observations. In this paper, 18 671 synthetic typhoons were constructed in the Northwest Pacific Ocean by using the Empirical Path Model based on kernel density estimation, and the parameters such as the start and end position, frequency of occurrence, travel speed and direction of the synthetic typhoons were statistically compared and analyzed with historical typhoons. The results show that the synthetic typhoon constructed based on the proposed method is generally consistent with the traveling characteristics of historical typhoons in the Northwest Pacific Ocean. Through the construction of these synthetic typhoons, a synthetic typhoon database with sufficient data and reliable performance can be provided for the study of extreme wave and storm surge along the coast of China.
-
表 1 热带气旋分类标准
Tab. 1 Standard for classification of tropical cyclones
热带气旋类型 底层中心附近最大平均风速(10 min平均风速)/(m·s−1) 超强台风 ≥ 51 强台风 41.5~50.9 台风 32.7~41.4 强热带风暴 24.5~32.6 热带风暴 17.2~24.4 热带低压 10.8~17.1 表 2 各分布的5%显著水平下的KS检验
Tab. 2 KS test at 5% significance level for each distribution
分布类型 $ {D}_{n} $ 样本量 $ {D}_{\mathrm{c}\mathrm{r}\mathrm{i}\mathrm{t},\; 0.05} $ 泊松分布
(台风年发生频数)0.066 62 0.173 伽马分布
(台风初始移速)0.026 1520 0.035 双峰分布
(台风初始移向)0.015 1520 0.035 -
[1] 中华人民共和国自然资源部. 中国海洋灾害公报[R]. 北京: 中华人民共和国自然资源部, 2013−2022.Ministry of Natural Resources of the People’s Republic of China. Bulletn of china marine disaster[R]. Beijing: Ministry of Natural Resources of the People’s Republic of China, 2013−2022. [2] 卞建云. 江苏沿海台风风暴潮数值模拟与增水极值分析[D]. 扬州: 扬州大学, 2020.Bian Jianyun. Numerical simulation and statistical analysis of typhoon storm surge along Jiangsu Province[D]. Yangzhou: Yangzhou University, 2020. [3] 李雪, 宋冲, 巩艺杰, 等. 山东沿海台风浪数值模拟与统计分析[J]. 海洋湖沼通报, 2018(1): 27−33. doi: 10.13984/j.cnki.cn37-1141.2018.01.004Li Xue, Song Chong, Gong Yijie, et al. Numerical simulation and statistic analysis of typhoon wave height around Shandong Coastal Area[J]. Transactions of Oceanology and Limnology, 2018(1): 27−33. doi: 10.13984/j.cnki.cn37-1141.2018.01.004 [4] 李亚林. 基于Vickery风场数值模拟的台风极值风速预测[D]. 北京: 北京交通大学, 2023.Li Yalin. Prediction of typhoon extreme wind speeds based on vickery wind field numerical simulation[D]. Beijing: Beijing Jiaotong University, 2023. [5] Ying Ming, Zhang Wei, Yu Hui, et al. An overview of the China meteorological administration tropical cyclone database[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(2): 287−301. doi: 10.1175/JTECH-D-12-00119.1 [6] Bi Chunwei, Zhao Yunpeng, Sun Xiongxiong, et al. An efficient artificial neural network model to predict the structural failure of high-density polyethylene offshore net cages in typhoon waves[J]. Ocean Engineering, 2020, 196: 106793. doi: 10.1016/j.oceaneng.2019.106793 [7] Bajo M, Umgiesser G. Storm surge forecast through a combination of dynamic and neural network models[J]. Ocean Modelling, 2010, 33(1/2): 1−9. [8] French J, Mawdsley R, Fujiyama T, et al. Combining machine learning with computational hydrodynamics for prediction of tidal surge inundation at estuarine ports[J]. Procedia IUTAM, 2017, 25: 28−35. doi: 10.1016/j.piutam.2017.09.005 [9] 陈希, 李妍, 沙文钰, 等. 人工神经网络技术在台风浪预报中的应用[J]. 海洋科学, 2003, 27(2): 63−67.Chen Xi, Li Yan, Sha Wenyu, et al. Application of the neural network in ocean wave forecast of typhoon[J]. Marine Sciences, 2003, 27(2): 63−67. [10] Reza Hashemi M, Spaulding M L, Shaw A, et al. An efficient artificial intelligence model for prediction of tropical storm surge[J]. Natural Hazards, 2016, 82(1): 471−491. doi: 10.1007/s11069-016-2193-4 [11] Russell L R. Probability distributions for texas gulf coast hurricane effects of engineering interest[D]. Stanford: Stanford University, 1969. [12] Russell L R. Probability distributions for hurricane effects[J]. Journal of the Waterways, Harbors and Coastal Engineering Division, 1971, 97(1): 139−154. doi: 10.1061/AWHCAR.0000056 [13] ASCE. Minimum design loads for buildings and other structures: ASCE/SEI 7−10[S]. Reston: American Society of Civil Engineers, 2005. [14] Actions S D. AS/NZS 1170.2: 2021, Structural design actions. Part 2: wind actions[S]. [S.l. : s.n.], 2002. [15] Vickery P J, Twisdale L A. Prediction of hurricane wind speeds in the United States[J]. Journal of Structural Engineering, 1995, 121(11): 1691−1699. doi: 10.1061/(ASCE)0733-9445(1995)121:11(1691) [16] James M K, Mason L B. Synthetic tropical cyclone database[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2005, 131(4): 181−192. doi: 10.1061/(ASCE)0733-950X(2005)131:4(181) [17] Nederhoff K, Hoek J, Leijnse T, et al. Simulating synthetic tropical cyclone tracks for statistically reliable wind and pressure estimations[J]. Natural Hazards and Earth System Sciences, 2021, 21(3): 861−878. doi: 10.5194/nhess-21-861-2021 [18] Leijnse T W B, Giardino A, Nederhoff K, et al. Generating reliable estimates of tropical-cyclone-induced coastal hazards along the Bay of Bengal for current and future climates using synthetic tracks[J]. Natural Hazards and Earth System Sciences, 2022, 22(6): 1863−1891. doi: 10.5194/nhess-22-1863-2022 [19] Bakker T M, Antolínez J A A, Leijnse T W B, et al. Estimating tropical cyclone-induced wind, waves, and surge: a general methodology based on representative tracks[J]. Coastal Engineering, 2022, 176: 104154. doi: 10.1016/j.coastaleng.2022.104154 [20] Hoek J. Tropical cyclone statistical wind estimation[D]. Delft: Delft University of Technology, 2017. [21] Simiu E, Scanlan R H. Wind Effects on Structures: Fundamentals and Applications to Design[M]. 3rd ed. New York: John Wiley, 1996. [22] Yasui H, Ohkuma T, Marukawa H, et al. Study on evaluation time in typhoon simulation based on Monte Carlo method[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12/15): 1529−1540. [23] Vickery P J, Skerlj P F, Twisdale L A. Simulation of hurricane risk in the U. S. using empirical track model[J]. Journal of Structural Engineering, 2000, 126(10): 1222−1237. doi: 10.1061/(ASCE)0733-9445(2000)126:10(1222) [24] Kaplan J, DeMaria M. A simple empirical model for predicting the decay of tropical cyclone winds after landfall[J]. Journal of Applied Meteorology, 1995, 34(11): 2499−2512. doi: 10.1175/1520-0450(1995)034<2499:ASEMFP>2.0.CO;2 [25] Georgiou P N. Design wind speeds in tropical cyclone-prone regions[D]. London: Western University, 1986. [26] Vickery P J, Wadhera D, Twisdale Jr L A, et al. U. S. hurricane wind speed risk and uncertainty[J]. Journal of Structural Engineering, 2009, 135(3): 301−320. doi: 10.1061/(ASCE)0733-9445(2009)135:3(301)