留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有限水深波浪作用下弱惯性塑料块体漂移规律

冯曦 柳其岩 徐青云 倪兴也 冯卫兵

冯曦,柳其岩,徐青云,等. 有限水深波浪作用下弱惯性塑料块体漂移规律[J]. 海洋学报,2024,46(4):1–12 doi: 10.12284/hyxb2024009
引用本文: 冯曦,柳其岩,徐青云,等. 有限水深波浪作用下弱惯性塑料块体漂移规律[J]. 海洋学报,2024,46(4):1–12 doi: 10.12284/hyxb2024009
Feng Xi,Liu Qiyan,Xu Qingyun, et al. Drift of weakly inertial plastic blocks under wave action of finite-water-depth[J]. Haiyang Xuebao,2024, 46(4):1–12 doi: 10.12284/hyxb2024009
Citation: Feng Xi,Liu Qiyan,Xu Qingyun, et al. Drift of weakly inertial plastic blocks under wave action of finite-water-depth[J]. Haiyang Xuebao,2024, 46(4):1–12 doi: 10.12284/hyxb2024009

有限水深波浪作用下弱惯性塑料块体漂移规律

doi: 10.12284/hyxb2024009
基金项目: 海南省海洋地质资源与环境重点实验室开放课题项目(23-HNHYDZZYHJKFO37);中国港湾工程有限责任公司项目(2015-ZJKJ-01);装备预研教育部联合基金项目(8091B022123);港口航道泥沙工程交通行业重点实验室开放课题(YK223001-3);水利工程智能建设与运维全国重点实验室开放基金(HESS-2403)。
详细信息
    作者简介:

    冯曦(1987—),女,江苏省南京市人,教授,主要从事海岸水动力和海岸带灾害研究。E-mail:xifeng@hhu.edu.cn

  • 中图分类号: P731.2

Drift of weakly inertial plastic blocks under wave action of finite-water-depth

  • 摘要: 塑料漂浮垃圾对海洋环境影响巨大,在近岸的传播过程主要受波浪作用。针对塑料漂浮垃圾在近岸的运动特征,以往研究尚不深入。本文采用物理模型实验,对塑料漂浮物在有限水深波浪作用下的漂移规律开展研究,探讨了弱惯性塑料块体水平漂移速度与漂浮物性状以及波陡之间的关系。实验结果表明,塑料块体的漂移量受斯托克斯漂移与欧拉回流的共同影响,与二阶拉格朗日漂移理论吻合良好。在漂浮物尺寸远小于波长的情况下,漂浮物尺寸以及密度的改变对漂移没有显著的影响;漂浮物的漂移量与波陡的平方成正比,根据本文的实验及以往公开发表的实验数据,修正了经验公式,为塑料漂浮物在近岸的传播与预测提供了有益借鉴。
  • 图  1  物理模型实验波浪水槽布局(a)、拍摄装置(b)和基于深度学习的目标检测方法(YoloX)(c)

    Fig.  1  Layout of the physical model experiment wave flume (a), imaging device (b), and object detection method based on deep learning (YoloX) (c)

    图  2  不同波况的波面过程(a)、M3波况下波面过程的小波分析(b)、M3波况下波面过程的波能谱分析(c)和M3波况下波浪沿程的波能谱分析(d)

    Fig.  2  Wave surface processes under different wave conditions (a), wavelet analysis of the wave surface processes under M3 wave condition (b), wave energy spectrum analysis of the wave surface processes under M3 wave condition (c), and wave energy spectrum analysis along wave propagation under M3 wave condition (d)

    图  3  3次重复性实验水平方向的ADV测速(a),实验所测流速与理论流速对比(b),拉格朗日漂移、斯托克斯漂移和欧拉回流的关系(c)

    Fig.  3  Three repetitions of horizontal ADV velocity measurements in experiments (a), comparison between experimental and theoretical flow velocities (b), relationship between Lagrange drift and Stokes drift and Eulerian return flow (c)

    图  4  部分工况下塑料漂浮块体的漂移轨迹(a)和M3工况下不同塑料漂浮块体的漂移量时间过程线(b)

    Fig.  4  Trajectories of plastic floating blocksunder certain conditions (a) and time series of driftdistance for different plastic floating blocks under M3 condition (b)

    图  5  M3工况(a)与M5工况(b)下,实验塑料漂浮块体漂移过程线与水质点漂移理论对比

    Fig.  5  Comparison between experimentaldrifting time series of plastic floating blocks and theoretical drifting time series of water particles, under M3 condition (a) and M5 condition (b)

    图  6  塑料漂浮块体无量纲化的水平漂移速度与波陡的关系

    Fig.  6  Relationship between non-dimensional horizontal drift velocity of plastic floating blocks and wave steepness

    图  7  塑料漂浮块体无量纲化的水平漂移速度与尺寸(a)、密度(b)的关系

    Fig.  7  Relationship between non-dimensional horizontal drift velocity of plastic floating blocksand size (a) , as well as density (b)

    表  1  物理模型实验设计的波浪要素

    Tab.  1  Wave parameters in the design of the physical model experiment

    波况 初始水深d0/m 初始波高H0/m 初始波周期T0/s 水深d/m 波高H/m 波周期T/s 波长L/m 波速c/(m·s−1) 波陡S* 相对水深kd
    M1 0.6 0.074 0.75 0.3 0.060 0.75 0.86 1.14 0.220 2.199
    M2 0.6 0.069 1 0.3 0.063 1 1.37 1.37 0.144 1.374
    M3 0.6 0.051 1.5 0.3 0.064 1.5 2.34 1.56 0.086 0.805
    M4 0.6 0.039 2 0.3 0.056 2 3.26 1.63 0.054 0.579
    M5 0.6 0.113 1.5 0.3 0.155 1.5 2.34 1.56 0.207 0.805
    M6 0.5 0.064 1.5 0.2 0.095 1.5 1.98 1.32 0.151 0.636
    注:*S = aka为振幅,k为波数,0.01 < S ≤ 0.1,属于二阶斯托克斯波理论;S > 0.1,属于三阶斯托克斯波理论。
    下载: 导出CSV

    表  2  实验塑料漂浮块体属性

    Tab.  2  Properties of experimental plastic floating block

    漂浮物材质 形状 尺寸*/m 相对密度(ρ/ρw** 斯托克斯数St***
    PP 球体 0.012 0.9 0.055~0.147
    PLA 正方体 0.02 0.8 0.086
    PLA 正方体 0.03 0.8 0.107
    PLA 正方体 0.04 0.8 0.096~0.255
    PLA 正方体 0.04 0.6 0.17
    PLA 正方体 0.04 0.4 0.199
    PLA 正方体 0.04 0.2 0.245
    注:*球体尺寸为直径(D),正方体尺寸为边长(l)。**水槽内为清水,取密度ρw=1 g/cm3***St的范围与该属性漂浮物参与的波况相关,波周期较小,St较大。
    下载: 导出CSV

    A1  字符说明及单位

    A1  Symbol illustration and dimension

    字符 说明 单位
    d 设计静水深 m
    H 设计波高 m
    T 设计波周期 s
    d0 造波机所在位置处静水深 m
    H0 造波机所在位置处波高 m
    T0 造波机所在位置处波周期 s
    a 波振幅 m
    k 波数 m−1
    L 波长 m
    S 波陡
    c 波速 m/s
    ρ 塑料漂浮物密度 g/cm3
    ρw 实验水槽内水密度 g/cm3
    l 塑料漂浮块体边长 m
    D 塑料漂浮球体直径 m
    St 斯托克斯数,与漂浮物属性相关,St $\ll $ 1,代表漂浮物弱惯性
    t 时间 s
    x 水平方向距离,且向岸为正 m
    z 距离静水面的距离,且向上为正 m
    x0 漂浮物/水质点水平方向初始位置 m
    z0 漂浮物/水质点垂直方向初始位置 m
    θ 相位,θ = kxwt rad
    θ0 初始相位,θ0 = kx0wt rad
    ω 角频率 rad/s
    uw.exp 实验测量流速 m/s
    uw 水质点二阶斯托克斯理论水平方向流速 m/s
    ww 水质点二阶斯托克斯理论垂直方向流速 m/s
    uS, 2nd 二阶斯托克斯波理论下的水质点水平漂移速度 m/s
    uE 欧拉流速 m/s
    uL, 2nd 二阶拉格朗日理论下的水质点水平漂移速度 m/s
    udrift.exp 实验观测到的水平漂移速度 m/s
    χ1 待定系数
    f 频率 Hz
    Sf 能量谱密度(能量谱) m2·s
    τp 漂浮物的反应时间 s
    wp 漂浮物沉降速度 m/s
    g 重力加速度 m/s2
    注:“−”表示无单位。
    下载: 导出CSV
  • [1] 刘璇, 孙鑫, 朱宏楠, 等. 我国近海漂浮垃圾污染现状及应对建议[J]. 环境卫生工程, 2021, 29(5): 23−29.

    Liu Xuan, Sun Xin, Zhu Hongnan, et al. Pollution status and treatment policies of the offshore floating garbage in China[J]. Environmental Sanitation Engineering, 2021, 29(5): 23−29.
    [2] Ostle C, Thompson R C, Broughton D, et al. The rise in ocean plastics evidenced from a 60-year time series[J]. Nature Communications, 2019, 10(1): 1622. doi: 10.1038/s41467-019-09506-1
    [3] Van Sebille E, Aliani S, Law K L, et al. The physical oceanography of the transport of floating marine debris[J]. Environmental Research Letters, 2020, 15(2): 023003. doi: 10.1088/1748-9326/ab6d7d
    [4] 罗龙娟, 李桂娇, 刘树函. 大湾区典型海域海洋垃圾来源研究及防治建议[J]. 环境影响评价, 2022, 44(5): 91−96.

    Luo Longjuan, Li Guijiao, Liu Shuhan. Study on the source of marine debris in typical sea area of the Greater Bay Area and its prevention and control suggestions[J]. Environmental Impact Assessment, 2022, 44(5): 91−96.
    [5] 房瑞, 段志勇, 刘在智, 等. 海洋垃圾治理技术综述[J]. 综合智慧能源, 2023, 45(5): 70−79.

    Fang Rui, Duan Zhiyong, Liu Zaizhi, et al. Review on marine litter treatment technologies[J]. Integrated Intelligent Energy, 2023, 45(5): 70−79.
    [6] 殷燕, 屈优优, 项海芳, 等. 2020−2022年临海市近岸海域海洋垃圾分布特征研究[J]. 环境生态学, 2023, 5(7): 63−70.

    Yin Yan, Qu Youyou, Xiang Haifang et al. Study on distribution characteristics of marine debris in Linhai coastal waters from 2020 to 2022[J]. Environmental Ecology, 2023, 5(7): 63−70.
    [7] Elipot S, Lumpkin R, Perez R C, et al. A global surface drifter data set at hourly resolution[J]. Journal of Geophysical Research: Oceans, 2016, 121(5): 2937−2966. doi: 10.1002/2016JC011716
    [8] Liang J H, Wan X, Rose K A, et al. Horizontal dispersion of buoyant materials in the ocean surface boundary layer[J]. Journal of Physical Oceanography, 2018, 48(9): 2103−2125. doi: 10.1175/JPO-D-18-0020.1
    [9] Kukulka T, Veron F. Lagrangian investigation of wave-driven turbulence in the ocean surface boundary layer[J]. Journal of Physical Oceanography, 2019, 49(2): 409−429. doi: 10.1175/JPO-D-18-0081.1
    [10] Lentz S J, Fewings M R. The wind-and wave-driven inner-shelf circulation[J]. Annual Review of Marine Science, 2012, 4(1): 317−343. doi: 10.1146/annurev-marine-120709-142745
    [11] Elgar S, Guza R T. Shoaling gravity waves: comparisons between field observations, linear theory, and a nonlinear model[J]. Journal of Fluid Mechanics, 1985, 158: 47−70. doi: 10.1017/S0022112085002543
    [12] Stokes G G. On the Theory of Oscillatory Waves[M]. Cambridge: Cambridge University Press, 2009: 411−455.
    [13] Deike L, Pizzo N, Melville W K. Lagrangian transport by breaking surface waves[J]. Journal of Fluid Mechanics, 2017, 829: 364−391. doi: 10.1017/jfm.2017.548
    [14] Pizzo N, Melville W K, Deike L. Lagrangian transport by nonbreaking and breaking deep-water waves at the ocean surface[J]. Journal of Physical Oceanography, 2019, 49(4): 983−992. doi: 10.1175/JPO-D-18-0227.1
    [15] Pasternak G, Zviely D, Ariel A, et al. Message in a bottle–the story of floating plastic in the eastern Mediterranean sea[J]. Waste Management, 2018, 77: 67−77. doi: 10.1016/j.wasman.2018.04.034
    [16] Isobe A, Kubo K, Tamura Y, et al. Selective transport of microplastics and mesoplastics by drifting in coastal waters[J]. Marine Pollution Bulletin, 2014, 89(1/2): 324−330.
    [17] Kataoka T, Hinata H. Evaluation of beach cleanup effects using linear system analysis[J]. Marine Pollution Bulletin, 2015, 91(1): 73−81. doi: 10.1016/j.marpolbul.2014.12.026
    [18] Schulz M, Matthies M. Artificial neural networks for modeling time series of beach litter in the southern North Sea[J]. Marine Environmental Research, 2014, 98: 14−20. doi: 10.1016/j.marenvres.2014.03.014
    [19] Granado I, Basurko O C, Rubio A, et al. Beach litter forecasting on the south-eastern coast of the Bay of Biscay: a bayesian networks approach[J]. Continental Shelf Research, 2019, 180: 14−23. doi: 10.1016/j.csr.2019.04.016
    [20] Santamaria F, Boffetta G, Afonso M M, et al. Stokes drift for inertial particles transported by water waves[J]. Europhysics Letters, 2013, 102(1): 14003. doi: 10.1209/0295-5075/102/14003
    [21] DiBenedetto M H, Koseff J R, Ouellette N T. Orientation dynamics of nonspherical particles under surface gravitywaves[J]. Physical Review Fluids, 2019, 4(3): 034301. doi: 10.1103/PhysRevFluids.4.034301
    [22] Alsina J M, Jongedijk C E, Van Sebille E. Laboratory measurements of the wave-induced motion of plastic particles: influence of wave period, plastic size and plastic density[J]. Journal of Geophysical Research: Oceans, 2020, 125(12): e2020JC016294. doi: 10.1029/2020JC016294
    [23] Ryan P G. Does size and buoyancy affect the long-distance transport of floating debris?[J]. Environmental Research Letters, 2015, 10(8): 084019. doi: 10.1088/1748-9326/10/8/084019
    [24] Ge Z, Liu S, Wang F, et al. YOLOX: Exceeding YOLO series in 2021[J/OL]. arxiv: 2107.08430, 2021. http://arxiv.org/abs/2107.08430.
    [25] Monismith S G, Cowen E A, Nepf H M, et al. Laboratory observations of mean flows under surface gravity waves[J]. Journal of Fluid Mechanics, 2007, 573: 131−147. doi: 10.1017/S0022112006003594
    [26] Paprota M, Sulisz W, Reda A. Experimental study of wave-induced mass transport[J]. Journal of Hydraulic Research, 2016, 54(4): 423−434. doi: 10.1080/00221686.2016.1168490
    [27] Grue J, Kolaas J. Experimental particle paths and drift velocity in steep waves at finite water depth[J]. Journal of Fluid Mechanics, 2017, 810: R1. doi: 10.1017/jfm.2016.726
    [28] Huang Guoxing, Law A W K, Huang Zhenhua. Wave-induced drift of small floating objects in regular waves[J]. Ocean Engineering, 2011, 38(4): 712−718. doi: 10.1016/j.oceaneng.2010.12.015
    [29] Calvert R, McAllister M L, Whittaker C, et al. A mechanism for the increased wave-induced drift of floating marine litter[J]. Journal of Fluid Mechanics, 2021, 915: A73. doi: 10.1017/jfm.2021.72
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  187
  • HTML全文浏览量:  93
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-02
  • 修回日期:  2024-01-30
  • 网络出版日期:  2024-05-16
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回