Multi-frequency variability and mechanism of intra-seasonal sea surface height in the Sulawesi Sea
-
摘要: 本文利用1993–2022年卫星高度计观测数据,分析苏拉威西海海面高度多频率季节内变化信号的时空特征,利用罗斯贝标准模理论给出动力解释。谱分析显示,苏拉威西海海面高度变化存在很强的30~90 d的季节内信号,其平均功率谱密度为半年内信号平均功率谱密度的13倍。这些季节内信号具有离散、不连续的谱峰周期,其中54.0 d和64.4 d的峰值最大,分别为30~90 d信号平均谱值的28倍和23倍。罗斯贝标准模态理论分析显示,近封闭的苏拉威西深海盆存在离散的罗斯贝标准模态。卫星高度计观测的季节内变化与罗斯贝标准模态结果的二维空间结构演化、周期以及西传速度一致,罗斯贝标准模态解的叠加呈现出与海面高度变化相似的方差分布,这说明苏拉威西海海盆的固有振荡是其季节内变化特征形成的重要机制之一。Abstract: Based on the satellite altimeter observation data from 1993 to 2022, this paper analyzes the temporal and spatial characteristics of the multi frequency seasonal variation signal of sea surface height in the Sulawesi sea, and gives the dynamic interpretation by using Rossby standard mode theory. The spectral analysis shows that there is a strong intra-seasonal signal of 30–90 days in the sea surface height variation of Sulawesi sea, and its average power spectral density is 13 times of the average power spectral density of the signal in half a year. These seasonal signals have discrete and discontinuous spectral peak periods, and the peaks of 54.0 d and 64.4 d are the largest, which are 28 times and 23 times of the signal of 30–90 days, respectively. The theoretical analysis shows that the existence of Rossby standard modes in the nearly closed Sulawesi deep-sea basin. The seasonal variation observed by satellite altimeter is consistent with the two-dimensional spatial structure evolution, period and westward propagation velocity of Rossby standard mode results, the superposition of Rossby standard mode solutions presents a variance distribution similar to the sea surface height variation field. This shows that the inherent oscillation of Sulawesi Sea basin is one of the important mechanisms that contribute to its intra-seasonal variation.
-
图 2 苏拉威西海深海盆n = 1的前3个正压罗斯贝标准模态(a–c)和前3个斜压罗斯贝标准模态(d–f)的归一化海面高度分布,T为罗斯贝标准模态周期
Fig. 2 Normalized sea surface height distributions of the first 3 barotropic (a–c) and first 3 baroclinic (d–f) Rossby normal modes for the deep basin in the Sulawesi Sea when n = 1, with the Rossby standard mode period denoted as T
图 3 1993年1月1日至2022年12月31日苏拉威西海海面高度异常SLA时间序列功率密度谱
蓝色代表功率谱,红线代表频谱密度的平均值,白线代表各周期处所有格点频谱密度的均值,黑色线代表罗斯贝标准模态$ {\zeta }_{mn} $周期,绿色为0.95的置信下限
Fig. 3 Power spectral density of sea surface height anomaly (SLA) in Sulawesi Sea from 1993−01−01 to 2022−12−31
The blue color represents the power spectrum. The red line represents the average spectral density. The white line represents the mean spectral density at each period for all grid points. The black lines represent the periods of the Rossby normal modes $ {\zeta }_{mn} $. The green line represents the 0.95 confidence lower limit
图 4 苏拉威西海30~90 d带通滤波海面高度异常的方差分布(1993–2022年)
紫红色点线所围区域为方差大于7 cm2的高值区域,A点(海盆西侧3.125°N ,118.375°E)、B点(海盆中央3.125°N,120.875°E)以及C点(海盆东侧3.125°N,124.625°E,3 000 m以深)为小波分析所选的3个典型站位
Fig. 4 Variance distribution of sea surface height anomalies in the 30–90 day bandpass filtered Sulawesi Sea (1993−2022)
The purple-red dotted line encloses the high-variance area where the variance exceeds 7 cm2. Coordinates for point A (3.125°N, 118.375°E) on the western side of the basin, point B (3.125°N, 120.875°E) in the central basin, and point C (3.125°N, 124.625°E, at a depth of 3 000 m) are the three typical locations selected for wavelet analysis
图 6 海盆西侧(a)、海盆中央(b)和海盆东侧(c)SLA小波分析结果
黑色实线为0.95置信曲线,白色实线为影响锥曲线,白色虚线分别对应图3中最大峰值周期54.0 d和64.4 d,能量结果以10为底取对数
Fig. 6 Wavelet analysis results at the western side of the basin (a), the center of the basin (b), and the eastern side of the basin (c)
The black solid line represents the 0.95 confidence curve. The white solid line represents the cone of influence. The white dashed lines correspond to the peak periods of 54.0 d and 64.4 d in Fig. 3. The energy results are logarithms to the base 10
图 10 3.375°N纬线上的FLSA变化Hovmöller图
白色矩形区域为$ {\zeta }_{11}^{0} $、$ {\zeta }_{11}^{1} $和$ {\zeta }_{21}^{0} $模态FSLA相位交替变化显著时间段:a. 2019年12月10日至2020年2月18日,b. 2000年12月1日至2001年2月11日,c. 2001年12月31日至2002年3月31日,用以计算相位传播速度
Fig. 10 Hovmöller diagrams of FLSA changes along 3.375°N
The white rectangular areas represent significant periods of alternating phase changes in the $ {\zeta }_{11}^{0} $, $ {\zeta }_{11}^{1} $, and $ {\zeta }_{21}^{0} $ modes. These periods are: a. 2019-12-10 to 2020-02-18; b. 2000-12-01 to 2001-02-11; c. 2001-12-31 to 2002-03-31. They are used to calculate phase propagation velocity
表 1 对应图 2中6个模态的波参数
Tab. 1 Wave parameters corresponding to the 6 modes shown in Fig. 2
模态 行波纬向波长$ {\lambda }_{mn}/ $km 周期$ {T}_{mn}/ $d 西传速度$ {C}_{mn} $/ (cm∙s−1) $ {\zeta }_{11}^{0} $ 823.18 48.8 –19.53 $ {\zeta }_{21}^{0} $ 625.51 64.2 –11.28 $ {\zeta }_{31}^{0} $ 479.13 83.8 –6.62 $ {\zeta }_{11}^{1} $ 752.65 53.3 –16.33 $ {\zeta }_{21}^{1} $ 592.83 67.7 –10.13 $ {\zeta }_{31}^{1} $ 463.96 86.5 –6.21 -
[1] 杜岩, 方国洪. 印度尼西亚海与印度尼西亚贯穿流研究概述[J]. 地球科学进展, 2011, 26(11): 1131−1142.Du Yan, Fang Guohong. Progress on the study of the Indonesian seas and Indonesian Throughflow[J]. Advances in Earth Science, 2011, 26(11): 1131−1142. [2] Broecker W S. The great ocean conveyor[J]. Oceanography, 1991, 4(2): 79−89. doi: 10.5670/oceanog.1991.07 [3] 王琦, 孙萍, 辛明, 等. 东印度洋冬季印尼贯穿流影响区浮游植物群落结构特征[J]. 海洋与湖沼, 2023, 54(3): 732−746. doi: 10.11693/hyhz20221000265Wang Qi, Sun Ping, Xin Ming, et al. Structure of phytoplankton communities in winter Indonesian Throughflow affected areas in the eastern Indian Ocean[J]. Oceanologia et Limnologia Sinica, 2023, 54(3): 732−746. doi: 10.11693/hyhz20221000265 [4] Clarke A J, Liu X. Observations and dynamics of semiannual and annual sea levels near the eastern equatorial Indian Ocean boundary[J]. Journal of Physical Oceanography, 1993, 23(2): 386−399. doi: 10.1175/1520-0485(1993)023<0386:OADOSA>2.0.CO;2 [5] Clarke A J, Liu X. Interannual sea level in the northern and eastern Indian Ocean[J]. Journal of Physical Oceanography, 1994, 24(6): 1224−1235. doi: 10.1175/1520-0485(1994)024<1224:ISLITN>2.0.CO;2 [6] Yuan Dongliang, Wang Jing, Xu Tengfei, et al. Forcing of the Indian Ocean dipole on the interannual variations of the tropical Pacific Ocean: roles of the Indonesian Throughflow[J]. Journal of Climate, 2011, 24(14): 3593−3608. doi: 10.1175/2011JCLI3649.1 [7] Tokinaga H, Xie Shangping, Timmermann A, et al. Regional patterns of tropical Indo-Pacific climate change: evidence of the Walker circulation weakening[J]. Journal of Climate, 2012, 25(5): 1689−1710. doi: 10.1175/JCLI-D-11-00263.1 [8] 张晶, 魏泽勋, 李淑江, 等. 太平洋−印度洋贯穿流南海分支研究综述[J]. 海洋科学进展, 2014, 32(1): 107−120. doi: 10.3969/j.issn.1671-6647.2014.01.013Zhang Jing, Wei Zexun, Li Shujiang, et al. Overviews on studies of the South China Sea branch of the Pacific-Indian Ocean Throughflow[J]. Advances in Marine Science, 2014, 32(1): 107−120. doi: 10.3969/j.issn.1671-6647.2014.01.013 [9] 徐腾飞, 周慧. 海洋再分析资料中IOD-ENSO遥相关的海洋通道机制分析[J]. 海洋学报, 2016, 38(12): 23−35.Xu Tengfei, Zhou Hui. Oceanic channel dynamics of the IOD-ENSO teleconnection in oceanic reanalysis datasets[J]. Haiyang Xuebao, 2016, 38(12): 23−35. [10] Wajsowicz R C. Flow of a western boundary current through multiple straits: an electrical circuit analogy for the Indonesian throughflow and archipelago[J]. Journal of Geophysical Research: Oceans, 1996, 101(C5): 12295−12300. doi: 10.1029/95JC02615 [11] Susanto R D, Gordon A L. Velocity and transport of the Makassar Strait throughflow[J]. Journal of Geophysical Research: Oceans, 2005, 110(C1): C01005. [12] Gordon A L, Sprintall J, Van Aken H M, et al. The Indonesian throughflow during 2004–2006 as observed by the INSTANT program[J]. Dynamics of Atmospheres and Oceans, 2010, 50(2): 115−128. doi: 10.1016/j.dynatmoce.2009.12.002 [13] Susanto R D, Ffield A, Gordon A L, et al. Variability of Indonesian throughflow within Makassar Strait, 2004–2009[J]. Journal of Geophysical Research: Oceans, 2012, 117(C9): C09013. [14] 王露, 谢玲玲, 周磊, 等. 印尼贯穿流源区马鲁古海和哈马黑拉海水团来源的气候态分析[J]. 海洋学报, 2018, 40(3): 1−15.Wang Lu, Xie Lingling, Zhou Lei, et al. Climatological analysis of water mass sources of Indonesia Throughflow in the Molukka Sea and Halmahera Sea[J]. Haiyang Xuebao, 2018, 40(3): 1−15. [15] S. 村内, W. J. 路德威格. 苏禄海和苏拉威西海的构造[J]. 海洋科技资料, 1975(10): 48−53.Murauchi S, Ludwig W J. Structure of the Sulu Sea and Sulawesi Sea[J]. Marine Science Bulletin, 1975(10): 48−53. [16] Lukas R, Firing E, Hacker P, et al. Observations of the Mindanao Current during the western equatorial Pacific Ocean circulation study[J]. Journal of Geophysical Research: Oceans, 1991, 96(C4): 7089−7104. doi: 10.1029/91JC00062 [17] Miyama T, Awaji T, Akitomo K, et al. Study of seasonal transport variations in the Indonesian seas[J]. Journal of Geophysical Research: Oceans, 1995, 100(C10): 20517−20541. doi: 10.1029/95JC01667 [18] Gordon A L, Susanto R D, Vranes K. Cool Indonesian throughflow as a consequence of restricted surface layer flow[J]. Nature, 2003, 425(6960): 824−828. doi: 10.1038/nature02038 [19] Gordon A L. Oceanography of the Indonesian seas and their throughflow[J]. Oceanography, 2005, 18(4): 14−27. doi: 10.5670/oceanog.2005.01 [20] Wang Lu, Zhou Lei, Xie Lingling, et al. Seasonal and interannual variability of water mass sources of Indonesian Throughflow in the Maluku Sea and the Halmahera Sea[J]. Acta Oceanologica Sinica, 2019, 38(4): 58−71. doi: 10.1007/s13131-019-1413-7 [21] Iskandar M R, Wardhani P W K, Suga T. Seasonal variability of the mixed layer depth in The Sulawesi Sea[J]. Oseanologi dan Limnologi di Indonesia, 2021, 6(3): 163−178. doi: 10.14203/oldi.2021.v6i3.384 [22] Qiu Bo, Mao Ming, Kashino Y. Intraseasonal variability in the Indo-Pacific throughflow and the regions surrounding the Indonesian seas[J]. Journal of Physical Oceanography, 1999, 29(7): 1599−1618. doi: 10.1175/1520-0485(1999)029<1599:IVITIP>2.0.CO;2 [23] Chen Xiao, Qiu Bo, Chen Shuiming, et al. Interannual modulations of the 50-day oscillations in the Celebes Sea: dynamics and impact[J]. Journal of Geophysical Research: Oceans, 2018, 123(7): 4666−4679. doi: 10.1029/2018JC013960 [24] Hu Shijian, Sprintall J, Guan Cong, et al. Spatiotemporal features of intraseasonal oceanic variability in the Philippine Sea from mooring observations and numerical simulations[J]. Journal of Geophysical Research: Oceans, 2018, 123(7): 4874−4887. doi: 10.1029/2017JC013653 [25] Gordon A L, Fine R A. Pathways of water between the Pacific and Indian oceans in the Indonesian seas[J]. Nature, 1996, 379(6561): 146−149. doi: 10.1038/379146a0 [26] Ffield A, Gordon A L. Tidal mixing signatures in the Indonesian Seas[J]. Journal of Physical Oceanography, 1996, 26(9): 1924−1937. doi: 10.1175/1520-0485(1996)026<1924:TMSITI>2.0.CO;2 [27] Arief D, Murray S P. Low-frequency fluctuations in the Indonesian Throughflow through Lombok Strait[J]. Journal of Geophysical Research: Oceans, 1996, 101(C5): 12455−12464. doi: 10.1029/96JC00051 [28] Du Yan, Liu Kai, Zhuang Wei, et al. The Kelvin wave processes in the equatorial Indian Ocean during the 2006–2008 IOD events[J]. Atmospheric and Oceanic Science Letters, 2012, 5(4): 324−328. doi: 10.1080/16742834.2012.11447007 [29] 曹国娇, 魏泽勋, 徐腾飞, 等. 印度尼西亚贯穿流及其周边海域季节内变化研究综述[J]. 海洋科学, 2015, 39(10): 125−133. doi: 10.11759/hykx20141211001Cao Guojiao, Wei Zexun, Xu Tengfei, et al. Progress on the study of oceanic intraseasonal variability in the Indonesian throughflow and its adjacent regions[J]. Marine Sciences, 2015, 39(10): 125−133. doi: 10.11759/hykx20141211001 [30] Chong J C, Sprintall J, Hautala S, et al. Shallow throughflow variability in the outflow straits of Indonesia[J]. Geophysical Research Letters, 2000, 27(1): 125−128. doi: 10.1029/1999GL002338 [31] Pujiana K, Gordon A L, Sprintall J, et al. Intraseasonal variability in the Makassar Strait thermocline[J]. Journal of Marine Research, 2009, 67(6): 757−777. doi: 10.1357/002224009792006115 [32] Watanabe H, Kashino Y, Yamaguchi H, et al. Moored Measurement of the Indonesian Throughflow at the Southwestern Edge of the Philippine Sea[M]. 1997. [33] 袁东亮, 周慧, 王铮, 等. 印尼贯穿流源区环流的多尺度变异及其科学重要性[J]. 海洋与湖沼, 2017, 48(6): 1156−1168. doi: 10.11693/hyhz20170800217Yuan Dongliang, Zhou Hui, Wang Zheng, et al. The multi-scale variability of the oceancirculation at the pacific entrance of the Indonesian Throughflow and its scientific importance[J]. Oceanologia et Limnologia Sinica, 2017, 48(6): 1156−1168. doi: 10.11693/hyhz20170800217 [34] Pedlosky J. Geophysical Fluid Dynamics[M]. 2nd ed. New York: Springer, 1987. [35] Ahlquist J E. Climatology of normal mode Rossby waves[J]. Journal of the Atmospheric Sciences, 1985, 42(19): 2059−2068. doi: 10.1175/1520-0469(1985)042<2059:CONMRW>2.0.CO;2 [36] Xie Lingling, Zheng Quanan. New insight into the South China Sea: Rossby normal modes[J]. Acta Oceanologica Sinica, 2017, 36(7): 1−3. doi: 10.1007/s13131-017-1077-0 [37] Lin Zikuan, Zhang Shaoqing, Zhang Zhengguang, et al. The Rossby normal mode as a physical linkage in a machine learning forecast model for the SST and SSH of South China Sea deep basin[J]. Journal of Geophysical Research: Oceans, 2023, 128(9): e2023JC019851. doi: 10.1029/2023JC019851 [38] Xie Lingling, Zheng Quanan, Zhang Shuwen, et al. The Rossby normal modes in the South China Sea deep basin evidenced by satellite altimetry[J]. International Journal of Remote Sensing, 2018, 39(2): 399−417. doi: 10.1080/01431161.2017.1384591 [39] Iskandar I, Mardiansyah W, Masumoto Y, et al. Intraseasonal Kelvin waves along the southern coast of Sumatra and Java[J]. Journal of Geophysical Research: Oceans, 2005, 110(C4): C04013. [40] Schiller A, Wijffels S E, Sprintall J, et al. Pathways of intraseasonal variability in the Indonesian Throughflow region[J]. Dynamics of Atmospheres and Oceans, 2010, 50(2): 174−200. doi: 10.1016/j.dynatmoce.2010.02.003 [41] Xie Lingling, Zheng Quanan, Tian Jiwei, et al. Cruise observation of Rossby waves with finite wavelengths propagating from the Pacific to the South China Sea[J]. Journal of Physical Oceanography, 2016, 46(10): 2897−2913. [42] 郑全安, 谢玲玲, 郑志文, 等. 南海中尺度涡研究进展[J]. 海洋科学进展, 2017, 35(2): 131−158. doi: 10.3969/j.issn.1671-6647.2017.02.001Zheng Quanan, Xie Lingling, Zheng Zhiwen, et al. Progress in research of mesoscale eddies in the South China Sea[J]. Advances in Marine Science, 2017, 35(2): 131−158. doi: 10.3969/j.issn.1671-6647.2017.02.001 [43] Yang Haiyuan, Wu Lixin, Sun Shantong, et al. Selective response of the South China Sea circulation to summer monsoon[J]. Journal of Physical Oceanography, 2017, 47(7): 1555−1568. doi: 10.1175/JPO-D-16-0288.1 [44] Zhang Haoran, Yu Yi, Gao Zhibin, et al. Seasonal and interannual variability of fronts and their impact on chlorophyll-a in the Indonesian Seas[J]. Journal of Physical Oceanography, 2023, 53(12): 2847−2859. doi: 10.1175/JPO-D-23-0041.1 [45] Hao Zhanjiu, Xu Zhenhua, Feng Ming. et al. Spatiotemporal variability of mesoscale eddies in the Indonesian Seas[J]. Remote Sensing, 2021, 13(5): 1017. doi: 10.3390/rs13051017 [46] 赵宇慧, 马继望, 梁湘三. 南海一个罗斯贝标准模态的特征与归因[J]. 海洋学报, 2023, 45(10): 31−41.Zhao Yuhui, Ma Jiwang, Liang Xiangsan. Characteristics and attributions of a Rossby normal mode in the South China Sea[J]. Haiyang Xuebao, 2023, 45(10): 31−41. [47] Li Mingting, Yuan Dongliang, Gordon A L, et al. A strong sub-thermocline intrusion of the North Equatorial Subsurface Current into the Makassar Strait in 2016–2017[J]. Geophysical Research Letters, 2021, 48(8): e2021GL092505. doi: 10.1029/2021GL092505 -