The Characteristics of Propagation and Evolution of Composite Shore Reefs in the Context of Complex Island and Reef Topography and Their Impact on Sea Walls
-
摘要: 真实海洋环境中真实的的岛礁通常具有地形是复合式地貌,复合的,礁坪呈现出是非平整的特征。以往大量的研究工作主要关注简化的台阶式岛礁模型,并未对复合式岸礁非平整礁坪对波浪传播演变特性的影响开展深入的研究工作。为了弥补前人研究的不足,本文开展了物理模型试验,系统研究了类海啸波在复合式岸礁上的传播演变特性,以往的研究并没有考虑礁坪地形的非平整性对孤立波带来的影响,因此本文并且分析了入射波高,礁坪水深的影响。为了研究不同入射波条件下非平整礁坪几何特征对类海啸波传播演变以及海墙载荷特性的影响,本文进一步开展了一系列的高分辨率数值计算。先通过物理试验来验证数值模拟方法的准确性,再用数值计算研究了孤立波的入射波高和礁坪淹没水深2种波浪要素以及第二礁坪高度、礁坪台阶位置和礁前斜坡坡度3种复杂岛礁地形因素影响下孤立波的沿程最大波高、反射系数、最大爬高、海墙的最大冲击压强分布、海墙的最大总力与总力矩的变化规律。研究结果表明:孤立波的反射系数随入射波高的增大而减小,随礁坪水深的增大而增大,最大爬高随入射波高的增大而增大,随礁前斜坡的cotα增大而减小。海墙的最大总力与最大总力矩随入射波高和礁坪水深的增大而增大,随第二礁坪的高度增大而降低。海墙上最大冲击压强出现的位置会随入射波高的增大、礁坪水深的增大、礁坪台阶距离海墙距离的减小而上升。研究结果可为进一步保护沿海设施免受极端海洋环境的影响提供一定的参考。Abstract: In real ocean environments, natural reefs typically exhibit complex topography, with reef platforms presenting non-uniform characteristics. Previous extensive research has mainly focused on simplified stepped reef models and has not conducted in-depth studies on the impact of non-uniform reef platforms on the propagation and evolution characteristics of waves. To address the shortcomings of previous research, this paper conducted physical model experiments to systematically study the propagation and evolution characteristics of tsunami-like waves over complex reef platforms. Previous studies did not consider the impact of the non-uniformity of reef platform topography on solitary waves, therefore, this paper also analyzed the effects of incident wave height and reef platform water depth. To investigate the impact of non-uniform reef platform geometric characteristics on the propagation and evolution of tsunami-like waves and the load characteristics of sea walls under different incident wave conditions, this paper further carried out a series of high-resolution numerical calculations. First, physical experiments were used to verify the accuracy of the numerical simulation method, and then numerical calculations were used to study the effects of two wave parameters, incident wave height and reef platform submergence depth, as well as three complex reef topography factors: the height of the second reef platform, the position of the reef platform steps, and the slope of the reef front slope on the maximum wave height along the path, reflection coefficient, maximum run-up height, distribution of the maximum impact pressure on the sea wall, and the variation of the maximum total force and total moment on the sea wall. The research results indicate that the reflection coefficient of solitary waves decreases with increasing incident wave height and increases with increasing reef platform water depth. The maximum run-up height increases with increasing incident wave height and decreases with increasing cotα of the reef front slope. The maximum total force and maximum total moment on the sea wall increase with increasing incident wave height and reef platform water depth, and decrease with increasing height of the second reef platform. The position of the maximum impact pressure on the sea wall rises with increasing incident wave height, increasing reef platform water depth, and decreasing distance between the reef platform steps and the sea wall. The research results can provide a reference for further protecting coastal facilities from the impact of extreme marine environments.
-
Key words:
- tsunami-like waves /
- non-uniform reef /
- sea wall /
- maximum run-up height /
- impact pressure
-
表 1 浪高仪位置
Tab. 1 Position of the Wave Height Gauge
浪高仪编号 WG1 WG2 WG3 WG4 WG5 WG6 WG7 位置/m 12.8 13.121 13.679 19.372 23.85 24.642 25.535 浪高仪编号 WG8 WG9 WG10 WG11 WG12 WG13 WG14 位置/m 26.468 26.963 27.434 27.612 27.883 28.747 30.224 表 2 孤立波试验工况表
Tab. 2 Table of Isolated Wave Test Conditions
H0 / m hr / m Hp / m Lp / m cotα 0.02、0.04、0.06、0.08、0.1 0、0.025、0.05、0.075 0.125 0.974 8.271 表 3 孤立波的数值模拟验证工况表
Tab. 3 Table of Numerical Simulation Verification Conditions for Solitary Waves
H0 / m h / m Hp / m Lp / m cotα 0.06 0.655 0.125 0.974 8.271 表 4 不同入射波高下孤立波的数值模拟工况表
Tab. 4 Numerical Simulation Working Conditions for Solitary Waves under Different Incident Wave Heights
H0 / m h / m Hp / m Lp / m cotα 0.02、0.04、0.06、0.08、0.1 0.655 0.125 0.974 8.271 表 5 不同礁坪水深下孤立波的数值模拟工况表
Tab. 5 Numerical Simulation Working Conditions for Solitary Waves on Reef Flats at Different Water Depths
h*r H0 / m Hp / m Lp / m cotα 0、 0.0397 、0.0763 、0.1100.06 0.125 0.974 8.271 表 6 不同第二礁坪高度下孤立波的数值模拟工况表
Tab. 6 Numerical Simulation Working Conditions for Solitary Waves at Different Heights of the Second Reef
Hp / m H0 / m h / m Lp / m cotα 0.075、0.1、0.125、0.15、0.175 0.06 0.655 1 8 表 7 不同礁坪台阶位置下孤立波的数值模拟工况表
Tab. 7 Numerical Simulation Working Conditions for Solitary Waves at Different Reef Platform Step Positions
Lp / m H0 / m h / m Hp / m cotα 0、0.5、1、1.5、2 0.06 0.655 0.125 8 表 8 不同礁前斜坡角度下孤立波的数值模拟工况表
Tab. 8 Numerical Simulation Working Conditions for Solitary Waves under Different Reef-Front Slope Angles
cotα H0 / m h / m Hp / m Lp / m 4、6、8、10、12 0.06 0.655 0.125 1 -
[1] Cho Y S, Park K Y, Lin T H. Run-up heights of nearshore tsunamis based on quadtree grid system[J]. Ocean Engineering, 2004, 31(8/9): 1093−1109. [2] Synolakis C E, Bernard E N. Tsunami science before and beyond Boxing Day 2004[J]. Philosophical Transactions of the Royal Society. Mathematical, Physical, and Engineering Sciences, 2006, 364(1845): 2231−2265. doi: 10.1098/rsta.2006.1824 [3] 姚远, 蔡树群, 王盛安. 海啸波数值模拟的研究现状[J]. 海洋科学进展, 2007, 25(4): 487−494. doi: 10.3969/j.issn.1671-6647.2007.04.016Yao Yuan, Cai Shuqun, Wang Sheng'an. Present status of study on numerical simulation of tsunami wave[J]. Advances in Marine Science, 2007, 25(4): 487−494. doi: 10.3969/j.issn.1671-6647.2007.04.016 [4] Ferrario F, Beck M W, Storlazzi C D, et al. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation[J]. Nature Communications, 2014, 5: 3794. doi: 10.1038/ncomms4794 [5] Qu K, Ren X Y, Kraatz S. Numerical investigation of tsunami-like wave hydrodynamic characteristics and its comparison with solitary wave[J]. Applied Ocean Research, 2017, 63: 36−48. doi: 10.1016/j.apor.2017.01.003 [6] Sato S, Okayasu A, Yeh H, et al. Delayed survey of the 2011 Tohoku tsunami in the former exclusion zone in Minami-Soma, Fukushima Prefecture[J]. Pure and Applied Geophysics, 2014, 171(12): 3229−3240. doi: 10.1007/s00024-014-0809-8 [7] Harinarayana T, Hirata N. Destructive earthquake and disastrous tsunami in the Indian Ocean, what next?[J]. Gondwana Research, 2005, 8(2): 246−257. doi: 10.1016/S1342-937X(05)71123-0 [8] Mori N, Takahashi T. Nationwide post event survey and analysis of the 2011 Tohoku earthquake tsunami[J]. Coastal Engineering Journal, 2012, 54(1): 1250001. [9] 黎满球, 朱良生, 隋世峰. 珊瑚礁坪波浪的衰减特性分析[J]. 海洋工程, 2003, 21(2): 71−75. doi: 10.3969/j.issn.1005-9865.2003.02.012Li Manqiu, Zhu Liangsheng, Sui Shifeng. Characteristics of wave attenuation on the coral reef[J]. The Ocean Engineering, 2003, 21(2): 71−75. doi: 10.3969/j.issn.1005-9865.2003.02.012 [10] 姚宇, 何文润, 李宇, 等. 基于 Navier-Stokes 方程珊瑚岛礁附近孤立波传播变形数值模拟[J]. 哈尔滨工程大学学报, 2018, 39(2): 392−398.Yao Yu, He Wenrun, Li Yu, et al. Numerical investigation of solitary wave transformation over reef islands based on Naiver-Stokes equations[J]. Journal of Harbin Engineering University, 2018, 39(2): 392−398. [11] 孙志林, 方若舟, 刘维杰. 孤立波在岸礁地形上传播与爬坡数值模拟研究[J]. 海洋工程, 2018, 36(6): 10−16, doi: 10.16483/j.issn.1005-9865.2018.06.002Sun Zhilin, Fang Ruozhou, Liu Weijie. Numerical modelling of solitary wave propagation and runup over fringing reefs[J]. The Ocean Engineering, 2018, 36(6): 10−16, doi: 10.16483/j.issn.1005-9865.2018.06.002 [12] Roeber V, Cheung K F. Boussinesq-type model for energetic breaking waves in fringing reef environments[J]. Coastal Engineering, 2012, 70: 1−20. doi: 10.1016/j.coastaleng.2012.06.001 [13] 卢坤, 屈科, 姚宇, 等. 基于类海啸波型的岛礁水动力特性数值模拟研究[J]. 海洋通报, 2021, 40(2): 121−132.Lu Kun, Qu Ke, Yao Yu, et al. Numerical investigation of hydrodynamic characteristics of fringing reef under the impact of tsunami-like wave[J]. Marine Science Bulletin, 2021, 40(2): 121−132. [14] 肖理, 房克照, 孙家文, 等. 孤立波对礁坪上直墙冲击试验和RANS数值模拟[J]. 海洋工程, 2021, 39(4): 86−95, doi: 10.16483/j.issn.1005-9865.2021.04.010Xiao Li, Fang Kezhao, Sun Jiawen, et al. Experiment and RANS simulation of the impact of solitary wave on a straight wall mounted on reef flat[J]. The Ocean Engineering, 2021, 39(4): 86−95, doi: 10.16483/j.issn.1005-9865.2021.04.010 [15] Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598−1605. doi: 10.2514/3.12149