留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1900-2023年大型火山喷发对西北太平洋热带气旋频率的影响

孙鸿根 韩岩松 姜伟 黄英雪 梁珍怡 余克服

孙鸿根,韩岩松,姜伟,等. 1900-2023年大型火山喷发对西北太平洋热带气旋频率的影响[J]. 海洋学报,2024,46(x):1–12 doi: 10.12284/hyxb2024-00
引用本文: 孙鸿根,韩岩松,姜伟,等. 1900-2023年大型火山喷发对西北太平洋热带气旋频率的影响[J]. 海洋学报,2024,46(x):1–12 doi: 10.12284/hyxb2024-00
Sun Honggen,Han Yansong,Jiang Wei, et al. Impacts of major volcanic activities on the frequency of Northwest Pacific tropical cyclones from 1900 to 2022[J]. Haiyang Xuebao,2024, 46(x):1–12 doi: 10.12284/hyxb2024-00
Citation: Sun Honggen,Han Yansong,Jiang Wei, et al. Impacts of major volcanic activities on the frequency of Northwest Pacific tropical cyclones from 1900 to 2022[J]. Haiyang Xuebao,2024, 46(x):1–12 doi: 10.12284/hyxb2024-00

1900-2023年大型火山喷发对西北太平洋热带气旋频率的影响

doi: 10.12284/hyxb2024-00
基金项目: 国家重点研发计划项目(2023YFF0804801),广西壮族自治区重大人才项目(GXR-1BGQ2424020),大学生创新创业训练计划(202310593498)。
详细信息
    作者简介:

    孙鸿根(2002—),男,广东惠州人,主要从事海洋科学研究,E-mail:3512335324@qq.com

    通讯作者:

    姜伟(1989—),男,河北昌黎人,博士,副教授,主要从事海洋地质学与全球变化研究,E-mail: jianwe@gxu.edu.cn

  • 中图分类号: P732

Impacts of major volcanic activities on the frequency of Northwest Pacific tropical cyclones from 1900 to 2022

  • 摘要: 大型火山喷发后形成的平流层硫酸盐气溶胶层会抑制热带气旋的生成和发展,但相关研究主要集中在大西洋,较少涉及其他海域。西北太平洋是生成热带气旋最多的海域,探索其气候影响因素有利于深度理解热带气旋的生成和发展机制。本文根据记录在国际最佳轨道数据库和中国气象局数据库的西北太平洋热带气旋数据,比较了1900-2023年大型火山喷发前后西北太平洋海表温度和热带气旋数量的变化,从而对大型火山喷发对西北太平洋的热带气旋活动的影响开展了讨论。通过比较火山喷发前两年和喷发后两年内热带气旋数量的变化,发现:在大型火山喷发后西北太平洋热带气旋生成数量显著减少。海表温度显著响应了低纬度火山的喷发,而对于高纬度火山的喷发则没有明显反应。本研究表明,大型火山喷发后气溶胶强迫的增加与热带气旋频次联系紧密,但其造成的海表温度降低可能并非热带气旋减少的直接原因,其影响机制可能与气溶胶强迫造成的热带辐合带偏移有关,但仍需进一步探究。
  • 图  1  1900年至2022年西北太平洋热带气旋路径图(绿色为常规气旋路径,红色为火山喷发年份气旋路径)

    Fig.  1  Track map of tropical cyclones in the Northwest Pacific from 1900 to 2022(Green lines are the normal cyclone tracks, red ones are the volcanic eruption year cyclone tracks)

    图  2  自1900年起火山喷发后气溶胶强迫与热带气旋频数插值(ΔTC)(图(a)为全球年平均平流层气溶胶光学深度(SAOD)变化图。图(b)为北半球和南半球SAOD分布图(数据来源于GAO08),其中正值表示北半球相比南半球较高,反之亦然。图(c)为大型火山喷发后热带气旋平均差值图,ΔTC为热带气旋平均差值,其中ΔTC =(TCy+TCy+1)/2−(TCy−1+TCy−2),y为喷发后第一个年份,使用国际最佳路径数据集的数据计算。

    Fig.  2  Aerosol forcing and TC anomalies after volcanic eruptions since 1900: Figure (a) shows the global annual mean stratospheric aerosol optical depth (SAOD) variation. Figure (b) shows the distribution of SAOD in the Northern and Southern Hemispheres(data from GAO08), where positive values indicate that the Northern Hemisphere is higher than the Southern Hemisphere,the opposite is the same. Figure (c) shows the mean difference of tropical cyclones after a major eruption, where ΔTC Indicates a tropical cyclone anomaly. ΔTC =(TCy+TCy+1)/2−(TCy−1+TCy−2) and y is the first year after the eruption, calculated using data from the International Best track dataset.

    图  3  研究中所使用的火山位置图

    Fig.  3  The volcano map used in the study

    图  4  火山喷发后各级别热带气旋变化图

    Fig.  4  Map of changes of tropical cyclones by class after volcanic eruption

    图  5  火山喷发前后不同年份热带气旋频次变化

    Fig.  5  Variation of tropical cyclone frequency in different years before and after volcanic eruption

    图  6  国际最佳路径数据库热带气旋变化箱式图(IQR: 四分位距)

    Fig.  6  IBTrACS Database box chart of tropical cyclone changes (IQR: interquartile range)

    图  7  中国气象局数据库热带气旋变化箱式图

    Fig.  7  China Meteorological Administration database tropical cyclone change box chart

    图  8  火山喷发前后海表温度变化箱式图

    Fig.  8  Box chart of sea surface temperature changes before and after volcanic eruption

    图  9  SAOD与SST关系图(ΔSST表示海表温度异常,ΔSST =(SSTy+1+SSTy)/2−(SSTy−1+SSTy−2),y表示喷发后第一年)

    Fig.  9  Relationship between SAOD and sea surface temperature(ΔSST Indicates abnormal sea surface temperature ΔSST =(SSTy+1+SSTy)/2−(SSTy−1+SSTy−2), y is the first year after the eruption)

    表  1  1900年至2023年主要火山喷发事件列表

    Tab.  1  List of major volcanic eruptions during 1900-2023

    火山 纬度 经度 VEI 喷发月 喷发年 SAOD 喷发后
    第一年
    圣玛利亚 北纬14.75 南纬91.55 6 10 1902 0.025 1903
    诺瓦鲁普塔 北纬58.27 西经155.16 6 9 1912 0.076 1913
    圣托里尼 北纬36.24 东经25.24 5 8 1925 0.074 1925
    未知 0.044 1944
    阿贡 南纬8.34 东经115.51 5 3 1963 0.110 1963
    未知 1968 0.034 1968
    未知 1976 0.030 1976
    圣海伦斯 北纬46.20 西经122.18 5 5 1980 0.075 1980
    厄尔奇琼 北纬17.36 西经93.23 5 3 1982 0.090 1982
    皮纳图博 北纬15.13 东经120.35 6 6 1991 0.200 1991
    哈德逊 南纬45.90 西经72.97 5 8 1991 0.200 1991
    汤加 南纬20.54 西经175.38 5 1 2022 0.025 2022
    下载: 导出CSV

    表  2  南半球火山SAOD集中情况与喷发后热带气旋变化

    Tab.  2  SAOD concentrations and post-eruption tropical cyclones in Southern Hemisphere volcanoes

    火山名称 北半球
    SAOD
    南半球
    SAOD
    喷发前热带
    气旋数量
    喷发后热带
    气旋数量
    圣玛利亚 0 0.025 28 32
    阿贡 0.04 0.07 77 65
    汤加 0 0.025 46 46
    下载: 导出CSV
  • [1] 端义宏, 余晖, 伍荣生. 热带气旋强度变化研究进展[J]. 气象学报, 2005, 63(5): 636−645. doi: 10.3321/j.issn:0577-6619.2005.05.009

    Duan Yihong, Yu Hui, Wu Rongsheng. Review of the research in the intensity change of tropical cyclone[J]. Acta Meteorologica Sinica, 2005, 63(5): 636−645. doi: 10.3321/j.issn:0577-6619.2005.05.009
    [2] 赵鹏国, 银燕, 肖辉, 等. 气溶胶对热带气旋强度及电过程影响的数值模拟研究[J]. 气象科学, 2016, 36(1): 1−9. doi: 10.3969/2015jms.0012

    Zhao Pengguo, Yin Yan, Xiao Hui, et al. Numerical simulation of the effects of aerosol on the intensity and electrification of tropical cyclone[J]. Journal of the Meteorological Sciences, 2016, 36(1): 1−9. doi: 10.3969/2015jms.0012
    [3] 中华人民共和国应急管理部. 应急管理部发布2019年8月全国自然灾害基本情况[EB/OL]. (2019-09-04). https://www.mem.gov.cn/xw/bndt/201909/t20190904_336230.shtml. (查阅网上资料,未找到引用日期信息,请确认)

    Ministry of Emergency Management of the People’s Republic of China. Basic information on natural disasters in august 2019[EB/OL]. (2019-09-04). https://www.mem.gov.cn/xw/bndt/201909/t20190904_336230.shtml.
    [4] 何祖谋. 台风“杜苏芮”共造成我省266.69万人受灾[N]. 福建日报, 2023-08-01(002).

    He Zumou. Typhoon "Doksuri" caused a total of 2, 666, 900 people in our province affected[N]. Fujian Daily, 2023-08-01(002). (查阅网上资料, 未找到对应的英文翻译, 请确认)
    [5] Bhatia K T, Vecchi G A, Knutson T R, et al. Recent increases in tropical cyclone intensification rates[J]. Nature Communications, 2019, 10(1): 635.
    [6] Mei Wei, Xie Shangping. Intensification of landfalling typhoons over the northwest Pacific since the late 1970s[J]. Nature Geoscience, 2016, 9(10): 753−757. doi: 10.1038/ngeo2792
    [7] Yan Qing, Zhang Zhongshi, Wang Huijun. Divergent responses of tropical cyclone genesis factors to strong volcanic eruptions at different latitudes[J]. Climate Dynamics, 2018, 50(5): 2121−2136.
    [8] Schneider D P, Ammann C M, Otto-Bliesner B L, et al. Climate response to large, high-latitude and low-latitude volcanic eruptions in the Community Climate System Model[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D15): D15101.
    [9] Robock A. Volcanic eruptions and climate[J]. Reviews of Geophysics, 2000, 38(2): 191−219. doi: 10.1029/1998RG000054
    [10] Evan A T. Atlantic hurricane activity following two major volcanic eruptions[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D6): D06101.
    [11] Guevara-Murua A, Hendy E J, Rust A C, et al. Consistent decrease in North Atlantic Tropical Cyclone frequency following major volcanic eruptions in the last three centuries[J]. Geophysical Research Letters, 2015, 42(21): 9425−9432. doi: 10.1002/2015GL066154
    [12] Intergovernmental Panel on Climate Change (IPCC). Climate phenomena and their relevance for future regional climate change[M]//Stocker T F, Qin D, Plattner G K, et al. Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014: 1217−1308.
    [13] 杨桂山, 施雅风. 西北太平洋热带气旋频数的变化及与海表温度的相关研究[J]. 地理学报, 1999, 54(1): 22−29. doi: 10.3321/j.issn:0375-5444.1999.01.003

    Yang Guishan, Shi Yafeng. Changes in the frequencies of tropical cyclones and their relationships to sea surface temperature in the northwestern pacific[J]. Acta Geographica Sinica, 1999, 54(1): 22−29. doi: 10.3321/j.issn:0375-5444.1999.01.003
    [14] 李崇银, 穆明权. 厄尔尼诺的发生与赤道西太平洋暖池次表层海温异常[J]. 大气科学, 1999, 23(5): 513−521. doi: 10.3878/j.issn.1006-9895.1999.05.01

    Li Chongyin, Mu Mingquan. El Niño occurrence and sub-struface ocean temperature anomalies in the pacific warm pool[J]. Chinese Journal of Atmospheric Sciences, 1999, 23(5): 513−521. doi: 10.3878/j.issn.1006-9895.1999.05.01
    [15] Gray W M. Hurricanes: their formation, structure and likely role in the tropical circulation[M]//Shaw D B. Meteorology Over the Tropical Oceans. Bracknell: Royal Meteorological Society, 1979: 155−218.
    [16] Matsuura T, Yumoto M, Iizuka S. A mechanism of interdecadal variability of tropical cyclone activity over the western North Pacific[J]. Climate Dynamics, 2003, 21(2): 105−117. doi: 10.1007/s00382-003-0327-3
    [17] 杨亚新. 近70年来西北太平洋热带气旋发生源地和频数的气候特征[J]. 江苏航运职业技术学院学报, 2023, 22(1): 20−24. doi: 10.3969/j.issn.2097-0358.2023.01.005

    Yang Yaxin. Climatic characteristics of the source and frequency of tropical cyclones in the Northwest Pacific Ocean over the past 70 years[J]. Journal of Jiangsu Shipping College, 2023, 22(1): 20−24. doi: 10.3969/j.issn.2097-0358.2023.01.005
    [18] 炎利军, 黄先香, 于玉斌, 等. 近58年西北太平洋热带气旋频数的气候变化特征[C]//2006年华南地区学术交流会论文集. 广州: 广西气象学会, 2006: 1−3.

    Yan Lijun, Huang Xianxiang, Yu Yubin, et al. Climate change characteristics of tropical cyclone frequency in the Northwest Pacific Ocean in recent 58 years[C]//Proceedings of the 2006 South China Academic Exchange Conference. Guangzhou: Guangxi Meteorological Society, 2006: 1−3. (查阅网上资料, 未找到对应的英文翻译, 请确认)
    [19] Gao Chaochao, Robock A, Ammann C. Volcanic forcing of climate over the past 1500 years: an improved ice core-based index for climate models[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D23): D23111.
    [20] Stothers R B. The great Tambora eruption in 1815 and its aftermath[J]. Science, 1984, 224(4654): 1191−1198. doi: 10.1126/science.224.4654.1191
    [21] Crowley T J, Unterman M B. Technical details concerning development of a 1200 yr proxy index for global volcanism[J]. Earth System Science Data, 2013, 5(1): 187−197. doi: 10.5194/essd-5-187-2013
    [22] Sato M, Hansen J E, Mccormick M P, et al. Stratospheric aerosol optical depths, 1850–1990[J]. Journal of Geophysical Research: Atmospheres, 1993, 98(D12): 22987−22994. doi: 10.1029/93JD02553
    [23] Kennedy B. Underestimated volcanic hazard of Santorini[J]. Nature Geoscience, 2024, 17(4): 278−279.
    [24] Michalsky J J, Stokes G M. Mt. St. Helens' aerosols: some tropospheric and stratospheric effects[J]. Journal of Applied Meteorology and Climatology, 1983, 22(4): 640−648. doi: 10.1175/1520-0450(1983)022<0640:MSHAST>2.0.CO;2
    [25] Zhu Yunqian, Bardeen C G, Tilmes S, et al. Perturbations in stratospheric aerosol evolution due to the water-rich plume of the 2022 Hunga-Tonga eruption[J]. Communications Earth & Environment, 2022, 3(1): 248.
    [26] Chiacchio M, Pausata F S R, Messori G, et al. On the links between meteorological variables, aerosols, and tropical cyclone frequency in individual ocean basins[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(2): 802−822.
    [27] Evangelista H, Castagna A, Correia A, et al. The 1991 explosive Hudson volcanic eruption as a geochronological marker for the Northern Antarctic Peninsula[J]. Anais da Academia Brasileira de Ciências, 2022, 94(S1): e20210810.
    [28] Knapp K R, Kruk M C, Levinson D H, et al. The international best track archive for climate stewardship (IBTrACS) unifying tropical cyclone data[J]. Bulletin of the American Meteorological Society, 2010, 91(3): 363−376. doi: 10.1175/2009BAMS2755.1
    [29] Knapp K R, Kossin J P. New global tropical cyclone data set from ISCCP B1 geostationary satellite observations[J]. Journal of Applied Remote Sensing, 2007, 1(1): 013505. doi: 10.1117/1.2712816
    [30] Zuo Meng, Man Wenmin, Zhou Tianjun, et al. Different impacts of northern, tropical, and southern volcanic eruptions on the tropical Pacific SST in the last millennium[J]. Journal of Climate, 2018, 31(17): 6729−6744.
    [31] Rayner N A, Parker D E, Horton E B, et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D14): 4407.
    [32] Gray W M. Global view of the origin of tropical disturbances and storms[J]. Monthly Weather Review, 1968, 96(10): 669−700. doi: 10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2
    [33] Vecchi G A, Soden B J. Effect of remote sea surface temperature change on tropical cyclone potential intensity[J]. Nature, 2007, 450(7172): 1066−1070.
    [34] Zheng Z W. Unusual warming in the coastal region of northern South China Sea and its impact on the sudden intensification of tropical cyclone Tembin (2012)[J]. Advances in Meteorology, 2014, 2014. (查阅网上资料, 未找到本条文献信息, 请确认)
    [35] Vincent E M, Lengaigne M, Menkes C E, et al. Interannual variability of the South Pacific Convergence Zone and implications for tropical cyclone genesis[J]. Climate Dynamics, 2011, 36(9): 1881−1896.
    [36] Holland G J. The maximum potential intensity of tropical cyclones[J]. Journal of the Atmospheric Sciences, 1997, 54(21): 2519−2541. doi: 10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2
    [37] Webster P J, Holland G J, Curry J A, et al. Changes in tropical cyclone number, duration, and intensity in a warming environment[J]. Science, 2005, 309(5742): 1844−1846. doi: 10.1126/science.1116448
    [38] Oman L, Robock A, Stenchikov G, et al. Climatic response to high‐latitude volcanic eruptions[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D13): D13103.
    [39] Wu Zhiyuan, Jiang Changbo, Conde M, et al. The long-term spatiotemporal variability of sea surface temperature in the northwest Pacific and China offshore[J]. Ocean Science, 2020, 16(1): 83−97. doi: 10.5194/os-16-83-2020
    [40] Hegerl G C, Crowley T J, Baum S K, et al. Detection of volcanic, solar and greenhouse gas signals in paleo‐reconstructions of Northern Hemispheric temperature[J]. Geophysical Research Letters, 2003, 30(5): 1242.
    [41] Robock A, Taylor K E, Stenchikov G L, et al. GCM evaluation of a mechanism for El Niño triggering by the El Chichón ash cloud[J]. Geophysical Research Letters, 1995, 22(17): 2369−2372. doi: 10.1029/95GL02065
    [42] Handler P. Possible association of stratospheric aerosols and El Nino type events[J]. Geophysical Research Letters, 1984, 11(11): 1121−1124. doi: 10.1029/GL011i011p01121
    [43] Stevenson S, Fasullo J T, Otto-Bliesner B L, et al. Role of eruption season in reconciling model and proxy responses to tropical volcanism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(8): 1822−1826.
    [44] Quinn W H, Neal V T, Antunez De Mayolo S E. El Niño occurrences over the past four and a half centuries[J]. Journal of Geophysical Research: Oceans, 1987, 92(C13): 14449−14461.
    [45] Guo Yipeng, Tan Zhemin. Westward migration of tropical cyclone rapid-intensification over the Northwestern Pacific during short duration El Niño[J]. Nature Communications, 2018, 9(1): 1507. doi: 10.1038/s41467-018-03945-y
    [46] Guo Yipeng, Tan Zhemin. Influence of different ENSO types on tropical cyclone rapid intensification over the western North Pacific[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(11): e2020JD033059. doi: 10.1029/2020JD033059
    [47] Gergis J L, Fowler A M. A history of ENSO events since A. D. 1525: implications for future climate change[J]. Climatic Change, 2009, 92(3/4): 343−387.
    [48] Emile-Geay J, Seager R, Cane M A, et al. Volcanoes and ENSO over the past millennium[J]. Journal of Climate, 2008, 21(13): 3134−3148.
    [49] Camargo S J, Polvani L M. Little evidence of reduced global tropical cyclone activity following recent volcanic eruptions[J]. npj Climate and Atmospheric Science, 2019, 2(1): 14. doi: 10.1038/s41612-019-0070-z
    [50] Pausata F S R, Camargo S J. Tropical cyclone activity affected by volcanically induced ITCZ shifts[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(16): 7732−7737.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  5
  • HTML全文浏览量:  3
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 网络出版日期:  2024-11-22

目录

    /

    返回文章
    返回