留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

辽东湾海冰分布面积历史数据重构及其影响因素分析

魏彬航 李宝辉 刘煜 王安良

魏彬航,李宝辉,刘煜,等. 辽东湾海冰分布面积历史数据重构及其影响因素分析[J]. 海洋学报,2023,45(11):20–33 doi: 10.12284/hyxb2023170
引用本文: 魏彬航,李宝辉,刘煜,等. 辽东湾海冰分布面积历史数据重构及其影响因素分析[J]. 海洋学报,2023,45(11):20–33 doi: 10.12284/hyxb2023170
Wei Binhang,Li Baohui,Liu Yu, et al. Reconstruction of sea ice extent in the Liaodong Bay and analysis of its impact factors[J]. Haiyang Xuebao,2023, 45(11):20–33 doi: 10.12284/hyxb2023170
Citation: Wei Binhang,Li Baohui,Liu Yu, et al. Reconstruction of sea ice extent in the Liaodong Bay and analysis of its impact factors[J]. Haiyang Xuebao,2023, 45(11):20–33 doi: 10.12284/hyxb2023170

辽东湾海冰分布面积历史数据重构及其影响因素分析

doi: 10.12284/hyxb2023170
基金项目: 国家自然科学基金面上项目(42176208)。
详细信息
    作者简介:

    魏彬航(1999—),女,天津市人,研究方向为渤海海冰数值预报。E-mail:wbh12419957@163.com

    通讯作者:

    王安良(1982—),高级工程师 ,研究方向为工程海冰预报。E-mail: wangal@nmefc.cn

  • 中图分类号: P731.15

Reconstruction of sea ice extent in the Liaodong Bay and analysis of its impact factors

  • 摘要: 辽东湾是我国冬季冰情最严重的海区,大面积海冰覆盖会对海上经济活动产生严重影响。本文以辽东湾海冰为研究对象,基于MODIS卫星影像资料重构了辽东湾2001−2021年海冰分布面积时间序列。同时,确定了辽东湾浮冰范围与海冰分布面积的非线性关系式,并利用此关系式将辽东湾历史海冰最大分布面积延拓至1953年。通过对其年际变化趋势进行研究,获得工程设计重现期辽东湾海冰分布面积。进一步分析了辽东湾海冰最大分布面积的影响因子,结果表明海冰最大分布面积与冻冰度日及北风分量的相关系数达0.96。此外,分析了秋季北极部分海区海冰密集度与辽东湾冬季海冰覆盖程度的相关性。本文成果可为辽东湾海冰长期趋势研究和海冰灾害的预报预警工作提供基本数据支撑。
  • 图  1  辽东湾(白色区域)及测量基线(红色线)

    Fig.  1  Liaodong Bay (white area) and the base line (red line)

    图  2  2016年2月1日MODIS卫星影像与海冰边缘分析

    Fig.  2  Analysis of MODIS satellite images and sea ice edge on February 1st, 2016

    图  3  2001–2021年12月1日至翌年1月22日(a)和1月23日至3月15日(b)的MODIS卫星影像海冰监测质量情况分布

    Fig.  3  The quality of sea ice images from MODIS for December 1st to January 23rd of the following year(a) and January 23rd to March 15th (b) from 2001 to 2021

    图  4  2001−2021年间不同质量海冰数据的占比分布

    Fig.  4  The percentage of sea ice data for different qualities from 2001 to 2021

    图  5  浮冰范围与海冰分布面积的幂函数、Langmuir函数拟合结果

    Fig.  5  Power law and Langmuir function fitting results for the relationship between the distance of floating ice and sea ice extent

    图  6  2012−2021年通过拟合计算和《中国海洋灾害公报》(2012−2021)[31] 获得海冰最大分布面积结果对比

    Fig.  6  Comparison of maximum sea ice extent from fitting calculation and China’s Ocean Disaster Report (2012−2021)[31] from 2012 to 2021

    图  7  辽东湾典型年份逐日海冰分布面积对比

    Fig.  7  The comparison of daily sea ice extent in Liaodong Bay for typical years

    图  8  1953−2021年辽东湾浮冰外缘线离岸最大距离数据和海冰最大分布面积的年际变化

    Fig.  8  Interannual variations of the maximum offshore distance of the marginal ice zone and the maximum ice extent in the Liaodong Bay from 1953 to 2021

    图  9  辽东湾浮冰外缘线离岸最大距离Pearson-III型分布拟合曲线和经验点分布

    Fig.  9  The Pearson-III distribution fitting curve and the empirical point distribution of the maximum offshore distance of the marginal ice zone in the Liaodong Bay

    图  10  海冰最大分布面积与累积冻冰度日(a)、海冰最大分布面积与4级以上北风分量频次(b)的关系和2001−2021年辽东湾海冰最大分布面积(c)

    Fig.  10  The relationship between maximum sea ice extent with cumulative freezing degree (a), maximum sea ice extentdays with the frequency of wind speeds above level 4 (b), and the maximum annual sea ice extent in Liaodong Bay from 2001 to 2021 (c)

    图  11  辽东湾海冰最大分布面积与9月(a)、10月(b)、11月(c)和12月(d)北极海冰密集度相关系数分布

    Fig.  11  Correlation coefficient distribution between maximum sea ice extent in Liaodong Bay and Arctic sea ice concentration on September (a), October (b), November(c), and December (d)

    图  12  巴伦支海−喀拉海与加拿大北极群岛附近海域10月海冰密集度预判1979−2008年辽东湾海冰最大分布面积结果(a)和2009−2021年的拟合结果验证(b)

    Fig.  12  Maximum sea ice extent prediction in the Liaodong Bay in 1979−2008 (a) and validation of the fitted results for 2009−2021 (b) based on October sea ice concentration of the Barents Sea-Kara Sea and the Arctic archipelago

  • [1] 白珊, 吴辉碇. 渤海的海冰数值预报[J]. 气象学报, 1998, 56(2): 139−153.

    Bai Shan, Wu Huiding. Numerical sea ice forecast for the Bohai Sea[J]. Acta Meteorologica Sinica, 1998, 56(2): 139−153.
    [2] 徐欢, 任沂斌. 基于混合损失U-Net的SAR图像渤海海冰检测研究[J]. 海洋学报, 2021, 43(6): 157−170.

    Xu Huan, Ren Yibin. Detecting sea ice of Bohai Sea using SAR images based on a hybrid loss U-Net model[J]. Haiyang Xuebao, 2021, 43(6): 157−170.
    [3] 赵倩, 刘煜, 唐茂宁, 等. 2012−2013年冬季渤海海冰数值预报[J]. 海洋预报, 2014, 31(2): 73−79.

    Zhao Qian, Liu Yu, Tang Maoning, et al. Numerical sea ice forecast for the Bohai Sea in the winter of 2012−2013[J]. Marine Forecasts, 2014, 31(2): 73−79.
    [4] 郭可彩, 商杰, 黎舸, 等. 2009~2010年冬季渤海及黄海北部冰情分析[J]. 海洋预报, 2011, 28(2): 35−40. doi: 10.3969/j.issn.1003-0239.2011.02.006

    Guo Kecai, Shang Jie, Li Ge, et al. The analysis of the sea ice status on the Bohai Sea and northern Yellow Sea in the winter of 2009/2010[J]. Marine Forecasts, 2011, 28(2): 35−40. doi: 10.3969/j.issn.1003-0239.2011.02.006
    [5] 刘煜, 唐茂宁. 2009−2010年冬季渤黄海海冰监测与预警报[C]//国家综合防灾减灾与可持续发展论坛论文集. 北京: 国家减灾委员会, 2010: 641−645.

    Liu Yu, Tang Maoning. Sea ice observations and forecasts of the Bohai and the Yellow Sea in the winter of 2009/10[C]//National Forum on Comprehensive Disaster Risk Reduction and Sustainable Development. Beijing: National Disaster Reduction Commission, 2010: 641−645.
    [6] 国家海洋局. 中国海洋灾害公报(2010)[M]. 北京: 海洋出版社, 2010.

    State Oceanic Administration. China’s Ocean Disaster Report (2010)[M]. Beijing: China Ocean Press, 2010.
    [7] 国家海洋局. 中国海洋灾害公报(2022)[M]. 北京: 海洋出版社, 2022.

    State Oceanic Administration. China’s Ocean Disaster Report (2022)[M]. Beijing: China Ocean Press, 2022.
    [8] 马玉贤, 谭红建, 于福祥, 等. 基于海冰热力学原理的营口海域冰厚演变规律及工程应用[J]. 海洋环境科学, 2022, 41(6): 930−936.

    Ma Yuxian, Tan Hongjian, Yu Fuxiang, et al. The evolution law and engineering application of ice thickness in Yingkou sea area based on the thermodynamic of sea ice[J]. Marine Environmental Science, 2022, 41(6): 930−936.
    [9] 隋俊鹏, 李子牛, 王兆宇, 等. 2018/2019年冬季渤黄海冰情分析[J]. 海洋预报, 2019, 36(3): 49−55.

    Sui Junpeng, Li Ziniu, Wang Zhaoyu, et al. Ice condition analysis for the Bohai Sea and Yellow Sea in the winter of 2018/2019[J]. Marine Forecasts, 2019, 36(3): 49−55.
    [10] 刘建强, 叶小敏, 宋庆君, 等. HY-1C/D海洋水色卫星产品体系及其典型应用[J]. 遥感学报, 2023, 27(1): 1−13. doi: 10.11834/jrs.20235002

    Liu Jianqiang, Ye Xiaomin, Song Qingjun, et al. Products of HY-1C/D ocean color satellites and their typical applications[J]. National Remote Sensing Bulletin, 2023, 27(1): 1−13. doi: 10.11834/jrs.20235002
    [11] 林明森, 张有广, 袁欣哲. 海洋遥感卫星发展历程与趋势展望[J]. 海洋学报, 2015, 37(1): 1−10.

    Lin Mingsen, Zhang Youguang, Yuan Xinzhe. The development course and trend of ocean remote sensing satellite[J]. Haiyang Xuebao, 2015, 37(1): 1−10.
    [12] 王萌, 武胜利, 郑伟, 等. 长时间序列卫星遥感渤海海冰时空分布特征及与气温关系分析[J]. 气象, 2016, 42(10): 1237−1244.

    Wang Meng, Wu Shengli, Zheng Wei, et al. Temporal-spatial distribution of Bohai Sea sea-ice in long-time series and its correlation with air temperature[J]. Meteorological Monthly, 2016, 42(10): 1237−1244.
    [13] 李宁, 雷飏, 顾卫, 等. 环辽东湾地区冬季平均气温对渤海海冰面积的影响[J]. 资源科学, 2008, 30(12): 1818−1824.

    Li Ning, Lei Yang, Gu Wei, et al. Impact of average winter temperatures around Liaodong Gulf region on the sea ice area of Bohai Sea[J]. Resources Science, 2008, 30(12): 1818−1824.
    [14] 王相玉, 张惠滋, 严素, 等. 渤、黄海北部海冰年代时空变化特征分析[J]. 海洋预报, 2007, 24(2): 26−32.

    Wang Xiangyu, Zhang Huizi, Yan Su, et al. The characteristic of the spatio-temporal transformation of the sea-ice in northern part of the BO-HAI sea and the Yellow Sea[J]. Marine Forecasts, 2007, 24(2): 26−32.
    [15] 顾卫, 史培军, 刘杨, 等. 渤海和黄海北部地区负积温资源的时空分布特征[J]. 自然资源学报, 2002, 17(2): 168−173.

    Gu Wei, Shi Peijun, Liu Yang, et al. The characteristics of temporal and spatial distribution of negative accumulated temperature in Bohai Sea and north Yellow Sea[J]. Journal of Natural Resources, 2002, 17(2): 168−173.
    [16] 左涛, 郭玉娣, 刘彬贤, 等. 基于MODIS数据的辽东湾海冰面积特征分析及与气温关系的探讨[J]. 海洋预报, 2021, 38(5): 47−52.

    Zuo Tao, Guo Yudi, Liu Binxian, et al. Characteristics analysis of the sea ice area based on MODIS satellite data in Liaodong Bay and its correlation with air temperature[J]. Marine Forecasts, 2021, 38(5): 47−52.
    [17] Su Hua, Wang Yunpeng, Yang Jingxue. Monitoring the spatiotemporal evolution of sea ice in the Bohai Sea in the 2009–2010 winter combining MODIS and meteorological data[J]. Estuaries and Coasts, 2012, 35(1): 281−291. doi: 10.1007/s12237-011-9425-3
    [18] Zhang Na, Zhang Qinghe. Evolution of sea ice area in the Liaodong Bay during the winter of 2009−2010[C]//Proceedings of the 2nd International Conference on Remote Sensing, Environment and Transportation Engineering. Nanjing: IEEE, 2012: 1196−1199.
    [19] 朱星源, 苏洁, 宋梅, 等. 基于MODIS数据的渤海海冰厚度反演算法优化[J]. 海洋学报, 2022, 44(12): 70−83.

    Zhu Xingyuan, Su Jie, Song Mei, et al. Optimization of the Bohai Sea ice thickness retrieval algorithm based on MODIS data[J]. Haiyang Xuebao, 2022, 44(12): 70−83.
    [20] 王遵娅, 丁一汇. 近53年中国寒潮的变化特征及其可能原因[J]. 大气科学, 2006, 30(6): 1068−1076.

    Wang Zunya, Ding Yihui. Climate change of the cold wave frequency of China in the last 53 years and the possible reasons[J]. Chinese Journal of Atmospheric Sciences, 2006, 30(6): 1068−1076.
    [21] 王月, 李辑, 焦敏, 等. 中国大范围极端低温事件的特征分析[J]. 气象与环境学报, 2020, 36(6): 74−81.

    Wang Yue, Li Ji, Jiao Min, et al. Analysis of characteristics of large-scale extreme cold events in China[J]. Journal of Meteorology and Environment, 2020, 36(6): 74−81.
    [22] Petoukhov V, Semenov V A. A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents[J]. Journal of Geophysical Research, 2010, 115(D21): D21111. doi: 10.1029/2009JD013568
    [23] Årthun M, Eldevik T, Smedsrud L H. The role of Atlantic heat transport in future Arctic winter sea ice loss[J]. Journal of Climate, 2019, 32(11): 3327−3341. doi: 10.1175/JCLI-D-18-0750.1
    [24] Li Hui, Fedorov A, Liu Wei. AMOC stability and diverging response to Arctic sea ice decline in two climate models[J]. Journal of Climate, 2021, 34(13): 5443−5460.
    [25] Li J L F, Lee W L, Xu Kuanman, et al. The role of falling ice radiative effects on climate projections over Arctic under global warming[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2020, 31(6): 633−648. doi: 10.3319/TAO.2020.04.29.01
    [26] Deser C, Tomas R A, Peng Shiling. The transient atmospheric circulation response to north Atlantic SST and sea ice anomalies[J]. Journal of Climate, 2007, 20(18): 4751−4767. doi: 10.1175/JCLI4278.1
    [27] 武炳义, 苏京志, 张人禾. 秋−冬季节北极海冰对冬季西伯利亚高压的影响[J]. 科学通报, 2011, 56(27): 2335−2343.

    Wu Bingyi, Su Jingzhi, Zhang Renhe. Effects of autumn-winter Arctic sea ice on winter Siberian high[J]. Chinese Science Bulletin, 2011, 56(30): 3220−3228.
    [28] 唐茂宁, 洪洁莉, 刘煜, 等. 气候因子对渤海冰情影响的统计分析[J]. 海洋通报, 2015, 34(2): 152−157. doi: 10.11840/j.issn.1001-6392.2015.02.005

    Tang Maoning, Hong Jieli, Liu Yu, et al. Statistical analysis of climatic factors impacting on the Bohai sea ice[J]. Marine Science Bulletin, 2015, 34(2): 152−157. doi: 10.11840/j.issn.1001-6392.2015.02.005
    [29] 国家卫星海洋应用中心. 海冰遥感监测通报[R]. 北京: 国家卫星海洋应用中心, 2010.

    National Satellite Ocean Application Service. Sea ice remote sensing monitoring bulletin[R]. Beijing: National Satellite Ocean Application Service, 2013.
    [30] 国家市场监督管理总局, 国家标准化管理委员会. GB/T 42254−2022, 渤海和黄海北部冰情等级[S]. 北京: 中国标准出版社, 2022.

    State Administration of Market Supervision and Administration of the People’s Republic of China, Standardization Administration of the People’s Republic of China. GB/T 42254−2022, Sea ice grade of Bohai Sea and northern Yellow Sea[S]. Beijing: Standards Press of China, 2022.
    [31] 国家海洋局. 中国海洋灾害公报(2012−2021)[M]. 北京: 海洋出版社, 2022.

    State Oceanic Administration. China’s Ocean Disaster Report (2012−2021)[M]. Beijing: China Ocean Press, 2022.
    [32] 黄冬梅, 李明慧, 宋巍, 等. 卷积神经网络和深度置信网络在SAR影像冰水分类的性能评估[J]. 中国图象图形学报, 2018, 23(11): 1720−1732.

    Huang Dongmei, Li Minghui, Song Wei, et al. Performance of convolutional neural network and deep belief network in sea ice-water classification using SAR imagery[J]. Journal of Image and Graphics, 2018, 23(11): 1720−1732.
    [33] Mäkynen M, Karvonen J. MODIS sea ice thickness and open water-sea ice charts over the Barents and Kara seas for development and validation of sea ice products from Microwave Sensor Data[J]. Remote Sensing, 2017, 9(12): 1324. doi: 10.3390/rs9121324
    [34] 李彦青, 苏洁, 汪洋, 等. 渤海海冰外缘线候平均离岸距离的变化及其关键影响因子[J]. 中国海洋大学学报(自然科学版), 2013, 43(7): 7−16.

    Li Yanqing, Su Jie, Wang Yang, et al. Variability of the pentadly average distance between the sea ice edge and the coast in the Bohai Sea and its key impact factors[J]. Periodical of Ocean University of China, 2013, 43(7): 7−16.
    [35] 张文奇, 张胜茂, 樊伟, 等. 南极磷虾探捕区独立海冰提取[J]. 遥感信息, 2017, 32(3): 54−59.

    Zhang Wenqi, Zhang Shengmao, Fan Wei, et al. Extraction of independent ice in Antarctic krill fishing area[J]. Remote Sensing Information, 2017, 32(3): 54−59.
    [36] 吴龙涛, 吴辉碇, 孙兰涛, 等. MODIS渤海海冰遥感资料反演[J]. 中国海洋大学学报(自然科学版), 2006, 36(2): 173−179.

    Wu Longtao, Wu Huiding, Sun Lantao, et al. Retrieval of sea ice in the Bohai Sea from MODIS data[J]. Periodical of Ocean University of China, 2006, 36(2): 173−179.
    [37] 李海, 白珊, 张占海, 等. 渤海潮汐对冰作用的数值模拟[J]. 海洋预报, 1999, 16(3): 39−47.

    Li Hai, Bai Shan, Zhang Zhanhai, et al. Numerical simulation of tidal effects on ice for the Bohai Sea[J]. Marine Forecasts, 1999, 16(3): 39−47.
    [38] 刘煜, 吴辉碇. 第1讲 渤、黄海的海冰[J]. 海洋预报, 2017, 34(3): 94−101.

    Liu Yu, Wu Huiding. Sea ice in the Bohai Sea and the northern Yellow Sea[J]. Marine Forecasts, 2017, 34(3): 94−101.
    [39] Langmuir I. The constitution and fundamental properties of solids and liquids. Part I. Solids[J]. Journal of the American Chemical Society, 1916, 38(11): 2221−2295. doi: 10.1021/ja02268a002
    [40] 张云吉, 金秉福, 冯雪. 近半个多世纪以来渤海冰情对全球气候变化的响应[J]. 海洋通报, 2007, 26(6): 96−101.

    Zhang Yunji, Jin Bingfu, Feng Xue. Response of the sea ice conditions in the Bohai Sea to global climate change in the last over half century[J]. Marine Science Bulletin, 2007, 26(6): 96−101.
    [41] 刘煜, 李宝辉, 李春花, 等. 2006~2007年冬季渤海天气与冰情分析[J]. 海洋预报, 2009, 26(1): 1−6.

    Liu Yu, Li Baohui, Li Chunhua, et al. Analysis of weather and ice conditions for the Bohai Sea in the winter of 2006−2007[J]. Marine Forecasts, 2009, 26(1): 1−6.
    [42] Galbraith P S, Larouche P. Sea-surface temperature in Hudson Bay and Hudson Strait in relation to air temperature and ice cover breakup, 1985–2009[J]. Journal of Marine Systems, 2011, 87(1): 66−78. doi: 10.1016/j.jmarsys.2011.03.002
    [43] 黄彬, 杨超, 朱男男, 等. 渤海冷空气大风过程中3次风速波动的原因分析[J]. 气象科技, 2017, 45(3): 499−507.

    Huang Bin, Yang Chao, Zhu Nannan, et al. Cause analysis of three wind speed fluctuation events during a cold air gale process over Bohai Sea[J]. Meteorological Science and Technology, 2017, 45(3): 499−507.
    [44] 李志军, 严德成. 关于现场海冰导热系数测试的讨论[J]. 海洋环境科学, 1989, 8(1): 90−94.

    Li Zhijun, Yan Decheng. Discussion on field testing of thermal conductivity of sea ice[J]. Marine Environmental Science, 1989, 8(1): 90−94.
    [45] 梁军, 陈长胜, 秦玉琳, 等. 1981−2011年中国近海海冰变化特征及其与东亚冬季风的关系[J]. 气象灾害防御, 2016, 23(3): 1−5, 13.

    Liang Jun, Chen Changsheng, Qin Yulin, et al. Characteristics of China’s nearshore sea ice changes and the relationship with the East Asian winter monsoon from 1981 to 2011[J]. Meteorological Disaster Prevention, 2016, 23(3): 1−5, 13.
    [46] 董昭顷, 路晓庆, 石立坚, 等. 不同MSS模型及其北极海冰干舷的多时空差异分析[J]. 海洋学报, 2021, 43(7): 183−193.

    Dong Zhaoqing, Lu Xiaoqing, Shi Lijian, et al. Multi temporal and spatial difference analysis of various MSS models and Arctic sea ice freeboard[J]. Haiyang Xuebao, 2021, 43(7): 183−193.
    [47] 张培宣, 陈晓东, 孔帅, 等. 基于Hough变换原理的海冰厚度识别方法[J]. 海洋学报, 2022, 44(7): 161−169.

    Zhang Peixuan, Chen Xiaodong, Kong Shuai, et al. Research on sea ice thickness identification method based on Hough transform principle[J]. Haiyang Xuebao, 2022, 44(7): 161−169.
    [48] 魏凤英. 现代气候统计诊断与预测技术[M]. 2版. 北京: 气象出版社, 2007.

    Wei Fengying. Modern Climatic Statistical Diagnosis and Prediction Technology[M]. 2nd ed. Beijing: China Meteorological Press, 2007.
    [49] Wu Bingyi, Wang Jia. Possible impacts of winter Arctic Oscillation on Siberian high, the East Asian winter monsoon and sea-ice extent[J]. Advances in Atmospheric Sciences, 2002, 19(2): 297−320. doi: 10.1007/s00376-002-0024-x
    [50] Liu Zhongfang, Risi C, Codron F, et al. Acceleration of western Arctic sea ice loss linked to the Pacific North American pattern[J]. Nature Communications, 2021, 12(1): 1519. doi: 10.1038/s41467-021-21830-z
    [51] 武炳义. 北极海冰融化影响东亚冬季天气和气候的研究进展以及学术争论焦点问题[J]. 大气科学, 2018, 42(4): 786−805.

    Wu Bingyi. Progresses in the impact study of Arctic sea ice loss on wintertime weather and climate variability over East Asia and key academic disputes[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(4): 786−805.
    [52] Honda M, Inoue J, Yamane S, et al. Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters[J]. Geophysical Research Letters, 2009, 36(8): L08707.
    [53] Perlwitz J, Hoerling M, Dole R. Arctic tropospheric warming: causes and linkages to lower latitudes[J]. Journal of Climate, 2015, 28(6): 2154−2167. doi: 10.1175/JCLI-D-14-00095.1
    [54] Wu Qigang, Zhang Xiangdong. Observed forcing-feedback processes between northern hemisphere atmospheric circulation and Arctic sea ice coverage[J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D14): D14119. doi: 10.1029/2009JD013574
    [55] Francis J A, Chan Weihan, Leathers D J, et al. Winter northern hemisphere weather patterns remember summer Arctic sea-ice extent[J]. Geophysical Research Letters, 2009, 36(7): L07503.
    [56] Wu Bingyi, Huang Ronghui, Gao Dengyi. Effects of variation of winter sea-ice area in kara and barents seas on East Asia winter monsoon[J]. Journal of Meteorological Research, 1999, 13(2): 141−153.
    [57] 张江涛, 李勇. 强冷空气影响我国大部全国降水分布不均匀[J]. 气象, 2010, 36(3): 136−139.

    Zhang Jiangtao, Li Yong. Strong cold air affects most parts of China, causing uneven distribution of precipitation across the country[J]. Meteorological Monthly, 2010, 36(3): 136−139.
    [58] 梁苏洁, 赵南, 丁一汇. 北极涛动主模态下北极冷空气的优势路径和影响地区的研究[J]. 地球物理学报, 2019, 62(1): 19−31.

    Liang Sujie, Zhao Nan, Ding Yihui. Dominant trajectories and influenced regions of the near-surface cold air in the Arctic during positive and negative AO/NAM events[J]. Chinese Journal of Geophysics, 2019, 62(1): 19−31.
    [59] Yue Haibo, Ji Yonggang, Zhang Xi. Analysis of effect of environment factors on spatio-temporal distribution of ice in Liaodong Bay with Envisat Asar and Modis imagery[C]//Proceedings of the SeaSAR 2008. Frascati, Italy: ESA ESRIN, 2008.
    [60] 沈柏竹, 封国林, 廉毅. 1月北极涛动异常程度特征及其对北半球同期温度的影响[J]. 地理科学, 2015, 35(10): 1299−1305.

    Shen Baizhu, Feng Guolin, Lian Yi. Abnormal characteristics and its influence on the northern hemisphere temperature of Arctic Oscillation in January[J]. Scientia Geographica Sinica, 2015, 35(10): 1299−1305.
  • 加载中
图(12)
计量
  • 文章访问数:  618
  • HTML全文浏览量:  222
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-23
  • 修回日期:  2023-09-04
  • 网络出版日期:  2023-11-02
  • 刊出日期:  2023-11-30

目录

    /

    返回文章
    返回