留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机载多普勒散射计海风海流联合反演研究

赵文成 林文明 何宜军 鲍青柳

赵文成,林文明,何宜军,等. 机载多普勒散射计海风海流联合反演研究[J]. 海洋学报,2023,45(12):112–120 doi: 10.12284/hyxb2023169
引用本文: 赵文成,林文明,何宜军,等. 机载多普勒散射计海风海流联合反演研究[J]. 海洋学报,2023,45(12):112–120 doi: 10.12284/hyxb2023169
Zhao Wencheng,Lin Wenming,He Yijun, et al. Joint retrieval of wind and current using airborne Doppler scatterometer[J]. Haiyang Xuebao,2023, 45(12):112–120 doi: 10.12284/hyxb2023169
Citation: Zhao Wencheng,Lin Wenming,He Yijun, et al. Joint retrieval of wind and current using airborne Doppler scatterometer[J]. Haiyang Xuebao,2023, 45(12):112–120 doi: 10.12284/hyxb2023169

机载多普勒散射计海风海流联合反演研究

doi: 10.12284/hyxb2023169
基金项目: 国家自然科学基金重大科研仪器研制项目(42027805)。
详细信息
    作者简介:

    赵文成(1999—),男,河南省周口市人,研究方向为雷达信号处理和海洋微波遥感。E-mal:1094058435@qq.com

    通讯作者:

    林文明(1984—),男,福建省仙游县人,教授,研究方向为海洋微波遥感、先进数据处理方法、雷达定标技术以及海面风场遥感及应用。E-mail:wenminglin@nuist.edu.cn

  • 中图分类号: P715.7

Joint retrieval of wind and current using airborne Doppler scatterometer

  • 摘要: 多普勒散射计能够获取海面后向散射系数和多普勒频移,从而实现海面风场和海表流场的同步观测。本文基于机载多普勒散射计的观测数据,对多普勒散射计海面风场和海表流场联合反演模型进行研究,并与风场流场独立反演结果进行对比。结果表明,联合反演的流场精度显著优于独立反演结果;然而以欧洲中期天气预报中心的海面风场为参考时,联合反演风场的精度略低于独立反演结果。这说明多普勒频移信息对海面风场反演的贡献不太显著,但雷达后向散射系数信息(即风场)对流场反演有积极的作用,通过联合反演算法能够更有效地消除海面风场对流场反演的影响。研究结果有助于进一步理解海面风场和海表流场反演时的相互影响,并为星载多普勒散射计的数据处理提供了参考。
  • 图  1  观测几何

    Fig.  1  Observation geometry

    图  2  机载多普勒散射计脉冲时序

    Fig.  2  Airborne Doppler scatterometer pulse timing

    图  3  Ka波段机载多普勒散射计干涉相位差示意图

    Fig.  3  Illustration of the interference phase difference of Ka-band Doppler scatterometer

    图  4  Ka波段海面多普勒频移谱模型

    Fig.  4  Ka-band sea surface Doppler shift spectrum model

    图  5  独立反演结果

    Fig.  5  Independent inversion results

    图  6  联合反演结果

    Fig.  6  Joint inversion results

    图  7  海面风场反演精度评估

    Fig.  7  Evaluation of the retrieved sea surface wind

    表  1  各架次飞行情况

    Tab.  1  Flight situation of each sortie

    架次飞行日期飞行时间海流计数据数据大小/GB
    18月6日14:30–17:30166
    28月11日14:30–17:10387
    38月15日14:00–18:00283
    下载: 导出CSV

    表  2  机载多普勒散射计技术指标

    Tab.  2  Technical specifications of airborne Dopplerscatterometer

    项目 技术指标
    中心频率 35.9 GHz
    脉冲带宽 5 MHz
    脉冲时宽 4 μs
    脉冲间隔 4 μs
    采样频率 56 MHz
    极化方式 VV
    入射角 50°
    飞行高度 3~3.5 km
    飞行速度 180~200 km/h
    发射峰值功率 20 W
    脉冲重复周期 100 μs
    下载: 导出CSV

    表  3  不同反演算法下反演结果与海流计数据对比

    Tab.  3  Comparison of the inversion results of different retrieval algorithms with respect to the ocean current meter data

    纬度 经度 海流计
    流速/(m·s−1
    海流计
    流向/(°)
    独立反演
    流速/(m·s−1
    独立反演
    流向/(°)
    联合反演
    流速/(m·s−1
    联合反演
    流向/(°)
    21.770 3°N 112.093 7°E 0.057 4 219.85 0.086 8 178.86 0.098 4 209.83
    21.706 7°N 112.094 2°E 0.246 1 176.95 0.352 5 169.55 0.313 3 194.62
    21.647 1°N 112.098 7°E 0.189 4 83.06 0.356 3 98.13 0.306 3 85.64
    21.515 1°N 112.106 2°E 0.057 9 162.67 0.125 2 178.68 0.092 3 175.32
    下载: 导出CSV

    表  4  不同反演算法下海表流场反演精度

    Tab.  4  Retrieval accuracy of sea surface current field under different retrieval algorithms

    反演精度评估 Bias SD RMSE
    独立反演流速/(m·s–1 0.09 0.05 0.11
    独立反演流向/(°) –4.23 22.95 23.33
    联合反演流速/(m·s–1 0.06 0.03 0.07
    联合反演流向/(°) 5.81 10.58 12.07
    下载: 导出CSV
  • [1] Omand M M, D’Asaro E A, Lee C M, et al. Eddy-driven subduction exports particulate organic carbon from the spring bloom[J]. Science, 2015, 348(6231): 222−225. doi: 10.1126/science.1260062
    [2] Renault L, Molemaker M J, Gula J, et al. Control and stabilization of the gulf stream by oceanic current interaction with the atmosphere[J]. Journal of Physical Oceanography, 2016, 46(11): 3439−3453. doi: 10.1175/JPO-D-16-0115.1
    [3] Chen Ru, Flierl G R, Wunsch C. A description of local and nonlocal eddy-mean flow interaction in a global eddy-permitting state estimate[J]. Journal of Physical Oceanography, 2014, 44(9): 2336−2352. doi: 10.1175/JPO-D-14-0009.1
    [4] Stoffelen A, Kumar R, Zou Juhong, et al. Ocean surface vector wind observations[M]//Barale V, Gade M. Remote Sensing of the Asian Seas. Cham: Springer, 2019: 429−447.
    [5] Guo Qiaoying, Xu Xiazhen, Zhang Kangyu, et al. Assessing global ocean wind energy resources using multiple satellite data[J]. Remote Sensing, 2018, 10(1): 100.
    [6] Lang Shuyan, Lin Wenming, Zhang Yi, et al. On the quality control of HY-2 scatterometer high winds[J]. Remote Sensing, 2022, 14(21): 5565. doi: 10.3390/rs14215565
    [7] Liang Guozhou, Yang Jungang, Wang Jichao. Accuracy evaluation of CFOSAT SWIM L2 products based on NDBC buoy and Jason-3 altimeter data[J]. Remote Sensing, 2021, 13(5): 887. doi: 10.3390/rs13050887
    [8] Fois F. Enhanced ocean scatterometry[D]. Delft: Delft University of Technology, 2015.
    [9] Fois F, Hoogeboom P, Le Chevalier F, et al. DOPSCAT: a mission concept for a Doppler wind-scatterometer[C]//2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Milan: IEEE, 2015: 2572−2575.
    [10] Fois F, Hoogeboom P, Le Chevalier F, et al. An analytical model for the description of the full-polarimetric sea surface Doppler signature[J]. Journal of Geophysical Research: Oceans, 2015, 120(2): 988−1015. doi: 10.1002/2014JC010589
    [11] Bao Qingliu, Dong Xiaolong, Zhu Di. Ocean surface current measurement using pencil-beam rotating scatterometer[C]//2014 IEEE Geoscience and Remote Sensing Symposium. Quebec City: IEEE, 2014: 684−687.
    [12] Bao Qingliu, Lin Mingsen, Zhang Youguang, et al. The ocean surface current inversion mehtod of Doppler scatterometer[C]//2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Fort Worth, TX: IEEE, 2017: 1962−1965.
    [13] Rodríguez E, Wineteer A, Perkovic-Martin D, et al. Estimating ocean vector winds and currents using a Ka-band pencil-beam Doppler scatterometer[J]. Remote Sensing, 2018, 10(4): 576. doi: 10.3390/rs10040576
    [14] Spencer M W, Wu C, Long D G. Improved resolution backscatter measurements with the SeaWinds pencil-beam scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(1): 89−104. doi: 10.1109/36.823904
    [15] Miao Yuanjing, Dong Xiaolong, Bao Qingliu, et al. Perspective of a Ku-Ka dual-frequency scatterometer for simultaneous wide-swath ocean surface wind and current measurement[J]. Remote Sensing, 2018, 10(7): 1042. doi: 10.3390/rs10071042
    [16] Zhang Jingyu, Dong Xiaolong, Zhu Di, et al. Airborne validation experiments for spaceborne Doppler scatterometers and the joint observation of wind and currents[C]//2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. Brussels: IEEE, 2021: 3209−3212.
    [17] Chelton D B, Schlax M G, Samelson R M, et al. Prospects for future satellite estimation of small-scale variability of ocean surface velocity and vorticity[J]. Progress in Oceanography, 2019, 173: 256−350. doi: 10.1016/j.pocean.2018.10.012
    [18] Ardhuin F, Brandt P, Gaultier L, et al. SKIM, a candidate satellite mission exploring global ocean currents and waves[J]. Frontiers in Marine Science, 2019, 6: 209. doi: 10.3389/fmars.2019.00209
    [19] Du Yan, Dong Xiaolong, Jiang Xingwei, et al. Ocean surface current multiscale observation mission (OSCOM): simultaneous measurement of ocean surface current, vector wind, and temperature[J]. Progress in Oceanography, 2021, 193: 102531. doi: 10.1016/j.pocean.2021.102531
    [20] 杜岩, 董晓龙, 蒋兴伟, 等. 全球海表流场多尺度结构观测卫星计划[J]. 空间科学学报, 2022, 42(5): 849−861. doi: 10.11728/cjss2022.05.2022-0047

    Du Yan, Dong Xiaolong, Jiang Xingwei, et al. Ocean surface current multiscale observation mission[J]. Chinese Journal of Space Science, 2022, 42(5): 849−861. doi: 10.11728/cjss2022.05.2022-0047
    [21] Lin Wenming, Dong Xiaolong, Portabella M, et al. A perspective on the performance of the CFOSAT rotating fan-beam scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 627−639. doi: 10.1109/TGRS.2018.2858852
    [22] Yurovsky Y Y, Kudryavtsev V N, Grodsky S A, et al. Ka-band dual copolarized empirical model for the sea surface radar cross section[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(3): 1629−1647. doi: 10.1109/TGRS.2016.2628640
    [23] Rodriguez E, Perkovic-Martin D, Baldi C, et al. Ka-band doppler scatterometer for measurements of ocean surface vector winds and currents[C]//Proceedings of Earth Science Technology Forum ESTF, Leesburg,Virginia: [s.n.], 2014.
    [24] Romeiser R, Thompson D R. Numerical study on the along-track interferometric radar imaging mechanism of oceanic surface currents[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(1): 446−458. doi: 10.1109/36.823940
    [25] Freilich M H. SeaWinds: algorithm theoretical basis document[R]. Washington: NASA, 2000.
    [26] Bao Qingliu, Lin Mingsen, Zhang Youguang, et al. Ocean surface current inversion method for a Doppler scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11): 6505−6516. doi: 10.1109/TGRS.2017.2728824
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  209
  • HTML全文浏览量:  111
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-21
  • 修回日期:  2023-10-29
  • 网络出版日期:  2023-12-29
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回