留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于解析四维集合变分的全球正压谱模式初始场优化研究

郑超旭 李威 韩桂军 曹力戈 梁康壮 王天傲 周凌峰

郑超旭,李威,韩桂军,等. 基于解析四维集合变分的全球正压谱模式初始场优化研究[J]. 海洋学报,2023,45(11):153–163 doi: 10.12284/hyxb2023168
引用本文: 郑超旭,李威,韩桂军,等. 基于解析四维集合变分的全球正压谱模式初始场优化研究[J]. 海洋学报,2023,45(11):153–163 doi: 10.12284/hyxb2023168
Zheng Chaoxu,Li Wei,Han Guijun, et al. Initial field optimization of Global Barotropic Model based on Analytical Four Dimensional Ensemble Variational[J]. Haiyang Xuebao,2023, 45(11):153–163 doi: 10.12284/hyxb2023168
Citation: Zheng Chaoxu,Li Wei,Han Guijun, et al. Initial field optimization of Global Barotropic Model based on Analytical Four Dimensional Ensemble Variational[J]. Haiyang Xuebao,2023, 45(11):153–163 doi: 10.12284/hyxb2023168

基于解析四维集合变分的全球正压谱模式初始场优化研究

doi: 10.12284/hyxb2023168
基金项目: 国家自然科学基金面上项目(42376190);国家重点研发计划项目(2022YFC3104800,2021YFC3101500)。
详细信息
    作者简介:

    郑超旭(1998—),男,河南省周口市人,主要从事海洋数据同化等方向研究。E-mail:2022227010@tju.edu.cn

    通讯作者:

    李威,男,教授,主要从事海洋数值预报、海洋数值模拟等方向研究。E-mail:liwei1978@tju.edu.cn

    韩桂军,女,教授,主要从事海洋分析与预报研究。E-mail:guijun_han@tju.edu.cn

  • 中图分类号: P731.23

Initial field optimization of Global Barotropic Model based on Analytical Four Dimensional Ensemble Variational

  • 摘要: 解析四维集合变分数据同化方法是一种无需伴随的、完全继承四维变分非线性处理能力的、“流依赖”的非顺序数据同化方法。本研究基于解析四维集合变分,开展全球正压谱模式初始场优化研究,验证解析四维集合变分的同化能力,并构建了高效的扰动集合成员生成方案,将解析四维集合变分降维到了样本空间,最后检验了解析四维集合变分对同化积分窗口长度和观测采样间隔的敏感性。试验结果表明,解析四维集合变分能优化全球正压谱模式的初始场,降维到样本空间后,只需要80个集合成员就可以取得很好的同化效果,在较长的同化积分窗口和观测采样间隔的条件下也可以达到理想的同化效果。
  • 图  1  A-4DEnVar流程图

    Fig.  1  Flow chart of A-4DEnVar

    图  2  真实场(a)和背景场(b)的大气流函数空间分布

    Fig.  2  Spatial contributions of the stream function of the true field (a) and the background field (b)

    图  3  正态分布的随机扰动集合成员

    本文构造了3 456个这样的集合成员,a,b仅是其中两个

    Fig.  3  Ensemble members of normally distributed random perturbations

    This paper constructs 3 456 such ensemble members, of which a, b are just two

    图  4  积分30 d后的背景场误差

    a对应图3a,b对应图3b

    Fig.  4  Background field error after 30 days of integration

    a corresponds to Fig. 3a, and b corresponds to Fig. 3b

    图  5  A-4DEnVar目标函数(a)和初始场相对真实场的均方根误差(b)的迭代过程

    Fig.  5  Iterative process of A-4DEnVar cost function (a) and RMSE of the initial field relative to the true field (b)

    图  6  集合成员数量敏感性试验

    Fig.  6  Sensitivity experiments with the number of ensemble members

    图  7  初始场相对真实场的大气流函数的误差分布

    a. 背景场误差;b. 分析场误差

    Fig.  7  Distribution of errors in atmospheric stream function relative to the true initial field

    a. Background field error; b. analysis field error

    图  8  改变同化积分窗口长度和观测采样间隔之后均方根误差变化

    Fig.  8  RMSE changes after changing integral time window length and observation sampling interval

    图  9  不同的同化积分窗口和观测采样间隔组合下收敛后的均方根误差

    Fig.  9  Convergent RMSE under the combination of different integral time window length and observation sampling interval

    表  1  经验正交函数分解的累计方差占比

    Tab.  1  Cumulative percentage of variance for EOF

    模态数量累计方差占比/%
    2076.2
    4083.9
    6088.0
    8090.7
    10092.6
    下载: 导出CSV

    表  2  A-4EnVar全球正压谱模式初始场优化试验设计

    Tab.  2  Experiments design of Global Barotropic Model initial field optimization based on A-4EnVar

    试验 变量替换方式 同化积分窗口长度/h 观测采样间隔/h 集合成员数量 是否降维
    A $ {{\boldsymbol{B}}_{00}} $变换、$ {{\tilde{\boldsymbol x}}_0} $变换 24 6 3 456
    B $ {{\tilde{\boldsymbol x}}_0} $变换 24 6 20、40、60、80、100
    C $ {{\tilde{\boldsymbol x}}_0} $变换 24、48、72、96 4、6、8、12 80
    下载: 导出CSV

    表  3  收敛后A-4DEnVar目标函数和均方根误差减小的百分比(%)

    Tab.  3  The reduction percentage of the cost function of A-4DEnVar and RMSE (%)

    变量替换方式目标函数均方根误差
    $ {{\boldsymbol{B}}_{00}} $变换84.062.2
    $ {{\tilde{\boldsymbol x}}_0} $变换98.888.8
    下载: 导出CSV

    表  4  优化后目标函数和均方根误差减小的百分比(%)

    Tab.  4  The reduction percentage (%) of the cost function and RMSE after optimization

    集合成员数量是否降维目标函数均方根误差
    345698.888.8
    10094.878.3
    8094.277.1
    6092.975.2
    4088.868.6
    2085.364.7
    下载: 导出CSV
  • [1] 吴新荣, 王喜冬, 李威, 等. 海洋数据同化与数据融合技术应用综述[J]. 海洋技术学报, 2015, 34(3): 97−103.

    Wu Xinrong, Wang Xidong, Li Wei, et al. Review of the application of ocean data assimilation and data fusion techniques[J]. Journal of Ocean Technology, 2015, 34(3): 97−103.
    [2] Hooghiemstra P B, Krol M C, Meirink J F, et al. Optimizing global CO emission estimates using a four-dimensional variational data assimilation system and surface network observations[J]. Atmospheric Chemistry and Physics, 2011, 11(10): 4705−4723. doi: 10.5194/acp-11-4705-2011
    [3] Sugiura N, Awaji T, Masuda S, et al. Development of a four-dimensional variational coupled data assimilation system for enhanced analysis and prediction of seasonal to interannual climate variations[J]. Journal of Geophysical Research: Oceans, 2008, 113(C10): C10017.
    [4] Park S K, Županski D. Four-dimensional variational data assimilation for mesoscale and storm-scale applications[J]. Meteorology and Atmospheric Physics, 2003, 82(1/4): 173−208.
    [5] Hu Yiwen, Zang Zengliang, Ma Xiaoyan, et al. Four-dimensional variational assimilation for SO2 emission and its application around the COVID-19 lockdown in the spring 2020 over China[J]. Atmospheric Chemistry and Physics, 2022, 22(19): 13183−13200. doi: 10.5194/acp-22-13183-2022
    [6] Elbern H, Schmidt H. Ozone episode analysis by four-dimensional variational chemistry data assimilation[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D4): 3569−3590. doi: 10.1029/2000JD900448
    [7] Rihan F A, Collier C G, Roulstone I. Four-dimensional variational data assimilation for Doppler radar wind data[J]. Journal of Computational and Applied Mathematics, 2005, 176(1): 15−34. doi: 10.1016/j.cam.2004.07.003
    [8] Wu C C, Chou K H, Wang Yuqing, et al. Tropical cyclone initialization and prediction based on four-dimensional variational data assimilation[J]. Journal of the Atmospheric Sciences, 2006, 63(9): 2383−2395. doi: 10.1175/JAS3743.1
    [9] Gao Chuan, Wu Xinrong, Zhang Ronghua. Testing a four-dimensional variational data assimilation method using an improved intermediate coupled model for ENSO analysis and prediction[J]. Advances in Atmospheric Sciences, 2016, 33(7): 875−888. doi: 10.1007/s00376-016-5249-1
    [10] Rawlins F, Ballard S P, Bovis K J, et al. The Met Office global four-dimensional variational data assimilation scheme[J]. Quarterly Journal of the Royal Meteorological Society, 2007, 133(623): 347−362. doi: 10.1002/qj.32
    [11] Huang Xiangyu, Xiao Qingnong, Barker D M, et al. Four-dimensional variational data assimilation for WRF: formulation and preliminary results[J]. Monthly Weather Review, 2009, 137(1): 299−314. doi: 10.1175/2008MWR2577.1
    [12] Peng S Q, Xie L. Effect of determining initial conditions by four-dimensional variational data assimilation on storm surge forecasting[J]. Ocean Modelling, 2006, 14(1/2): 1−18.
    [13] Meirink J F, Bergamaschi P, Krol M C. Four-dimensional variational data assimilation for inverse modelling of atmospheric methane emissions: method and comparison with synthesis inversion[J]. Atmospheric Chemistry and Physics, 2008, 8(21): 6341−6353. doi: 10.5194/acp-8-6341-2008
    [14] Liu Chengsi, Xiao Qingnong, Wang Bin. An ensemble-based four-dimensional variational data assimilation scheme. Part I: technical formulation and preliminary test[J]. Monthly Weather Review, 2008, 136(9): 3363−3373. doi: 10.1175/2008MWR2312.1
    [15] Liu Chengsi, Xiao Qingnong, Wang Bin. An ensemble-based four-dimensional variational data assimilation scheme. Part II: observing system simulation experiments with Advanced Research WRF (ARW)[J]. Monthly Weather Review, 2009, 137(5): 1687−1704. doi: 10.1175/2008MWR2699.1
    [16] Liu Chengsi, Xiao Qingnong. An ensemble-based four-dimensional variational data assimilation scheme. Part III: Antarctic applications with Advanced Research WRF using real data[J]. Monthly Weather Review, 2013, 141(8): 2721−2739. doi: 10.1175/MWR-D-12-00130.1
    [17] Desroziers G, Camino J T, Berre L. 4DEnVar: link with 4D state formulation of variational assimilation and different possible implementations[J]. Quarterly Journal of the Royal Meteorological Society, 2014, 140(684): 2097−2110. doi: 10.1002/qj.2325
    [18] Kleist D T, Ide K. An OSSE-based evaluation of hybrid variational-ensemble data assimilation for the NCEP GFS. Part II: 4DEnVar and hybrid variants[J]. Monthly Weather Review, 2015, 143(2): 452−470. doi: 10.1175/MWR-D-13-00350.1
    [19] Arbogast É, Desroziers G, Berre L. A parallel implementation of a 4DEnVar ensemble[J]. Quarterly Journal of the Royal Meteorological Society, 2017, 143(706): 2073−2083. doi: 10.1002/qj.3061
    [20] Lu Xu, Wang Xuguang. Improving the four-dimensional incremental analysis update (4DIAU) with the HWRF 4DEnVar data assimilation system for rapidly evolving hurricane prediction[J]. Monthly Weather Review, 2021, 149(12): 4027−4043. doi: 10.1175/MWR-D-21-0068.1
    [21] Song H J, Kang J H. Effects of the wind-mass balance constraint on ensemble forecasts in the hybrid-4DEnVar[J]. Quarterly Journal of the Royal Meteorological Society, 2019, 145(719): 434−449. doi: 10.1002/qj.3440
    [22] Song H J, Shin S, Ha J H, et al. The advantages of hybrid 4DEnVar in the context of the forecast sensitivity to initial conditions[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(22): 12226−12244.
    [23] Buehner M, Morneau J, Charette C. Four-dimensional ensemble-variational data assimilation for global deterministic weather prediction[J]. Nonlinear Processes in Geophysics, 2013, 20(5): 669−682. doi: 10.5194/npg-20-669-2013
    [24] 杨雨轩, 张立凤, 张斌, 等. 四维集合变分同化方法在华南冬季暴雨模拟中的应用[J]. 热带气象学报, 2018, 34(2): 217−227, doi: 10.16032/j.issn.1004-4965.2018.02.008

    Yang Yuxuan, Zhang Lifeng, Zhang Bing, et al. Numerical simulation analysis of a heavy rainfall in South China with four-dimensional ensemble variational assimilation[J]. Journal of Tropical Meteorology, 2018, 34(2): 217−227, doi: 10.16032/j.issn.1004-4965.2018.02.008
    [25] Lorenc A C, Bowler N E, Clayton A M, et al. Comparison of hybrid-4DEnVar and hybrid-4DVar data assimilation methods for global NWP[J]. Monthly Weather Review, 2015, 143(1): 212−229. doi: 10.1175/MWR-D-14-00195.1
    [26] Yang Yin, Mémin E. High-resolution data assimilation through stochastic subgrid tensor and parameter estimation from 4DEnVar[J]. Tellus A: Dynamic Meteorology and Oceanography, 2017, 69(1): 1308772. doi: 10.1080/16000870.2017.1308772
    [27] Liang Kangzhuang, Li Wei, Han Guijun, et al. An analytical four-dimensional ensemble-variational data assimilation scheme[J]. Journal of Advances in Modeling Earth Systems, 2021, 13(1): e2020MS002314. doi: 10.1029/2020MS002314
    [28] 贾彬鹤, 李威, 梁康壮. 解析四维集合变分参数优化方法研究[J]. 海洋学报, 2021, 43(10): 61−69.

    Jia Binhe, Li Wei, Liang Kangzhuang. Research on the optimization method of analytical four dimensional ensemble variational data assimilation[J]. Haiyang Xuebao, 2021, 43(10): 61−69.
    [29] Liang Kangzhuang, Li Wei, Han Guijun, et al. Analytical four-dimensional ensemble variational data assimilation for joint state and parameter estimation[J]. Atmosphere, 2022, 13(6): 993. doi: 10.3390/atmos13060993
    [30] Lorenc A C. Development of an operational variational assimilation scheme[J]. Journal of the Meteorological Society of Japan, 1997, 75(1B): 339−346.
    [31] Haynes P H, McIntyre M E. On the conservation and impermeability theorems for potential vorticity[J]. Journal of the Atmospheric Sciences, 1990, 47(16): 2021−2031. doi: 10.1175/1520-0469(1990)047<2021:OTCAIT>2.0.CO;2
    [32] Maurya P K, Rajpoot M K, Yadav V S. Higher-order optimized hybrid Robert-Asselin type time filters[J]. Journal of Computational Physics, 2019, 399: 108941. doi: 10.1016/j.jcp.2019.108941
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  213
  • HTML全文浏览量:  104
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-16
  • 修回日期:  2023-08-14
  • 网络出版日期:  2023-10-27
  • 刊出日期:  2023-11-30

目录

    /

    返回文章
    返回