留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于海底回波增强的机载LiDAR测深水体旅行时提取算法

张一衡 于孝林 亓超 宿殿鹏 王志良 任国贞

张一衡,于孝林,亓超,等. 基于海底回波增强的机载LiDAR测深水体旅行时提取算法[J]. 海洋学报,2023,45(12):145–155 doi: 10.12284/hyxb2023167
引用本文: 张一衡,于孝林,亓超,等. 基于海底回波增强的机载LiDAR测深水体旅行时提取算法[J]. 海洋学报,2023,45(12):145–155 doi: 10.12284/hyxb2023167
Zhang Yiheng,Yu Xiaolin,Qi Chao, et al. An algorithm for extracting airborne LiDAR bathymetric travel time in water column based on seabed echo enhancement[J]. Haiyang Xuebao,2023, 45(12):145–155 doi: 10.12284/hyxb2023167
Citation: Zhang Yiheng,Yu Xiaolin,Qi Chao, et al. An algorithm for extracting airborne LiDAR bathymetric travel time in water column based on seabed echo enhancement[J]. Haiyang Xuebao,2023, 45(12):145–155 doi: 10.12284/hyxb2023167

基于海底回波增强的机载LiDAR测深水体旅行时提取算法

doi: 10.12284/hyxb2023167
基金项目: 自然资源部海洋环境探测技术与应用重点实验室开放基金项目(MESTA-2020-B004);青岛市关键技术攻关及产业化示范类项目(23-1-3-hygg-1-hy);国家自然科学基金项目(41930535,52001189,42304051); 山东省高等学校青创科技支持计划项目(2023KJ088);自然资源部渤海生态预警与保护修复重点实验室开放基金项目(2023107);中国博士后科学基金项目(2021M700155);山东科技大学科研创新团队支持计划项目(2019TDJH103)。
详细信息
    作者简介:

    张一衡(2000—),男,山东省临沂市人,主要从事机载LiDAR测深数据处理与应用方面研究。E-mail:zhangyiheng@sdust.edu.cn

    通讯作者:

    宿殿鹏(1988—),男,山东省莱州市人,副教授,主要从事机载LiDAR测深数据处理与应用方面研究。E-mail: sudianpeng@sdust.edu.cn

  • 中图分类号: P714+.6

An algorithm for extracting airborne LiDAR bathymetric travel time in water column based on seabed echo enhancement

  • 摘要: 机载LiDAR测深(Airborne LiDAR Bathymetry, ALB)技术具有高精度、高效率、强机动性、水陆两用等优势,特别适合海岸带、海岛礁等浅水海域复杂地形的快速探测。激光穿透水体时能量将迅速衰减,导致部分海底回波难以有效提取,海底真实位置判别困难。为此,本文提出一种基于回波增强的机载LiDAR测深水体旅行时提取算法。通过Gold去卷积算法来恢复目标横截面形状,确定海底初始回波范围;随后采用双指数函数拟合水体后向散射有效范围,进而求取波形漫衰减系数Kd值;最后结合海底激光雷达方程,利用Kd值对海底初始回波范围内波形进行增强,并利用高斯函数分解增强后回波,确定海底位置参数,从而实现ALB波形的水体旅行时提取。利用青岛胶州湾RIEGL VQ-840-G ALB实验数据对本文算法的可行性进行验证,将本文算法与理查德森-露西(Richardson-Lucy,RL)去卷积模型、峰值探测模型进行了比对,结果表明本文算法与单波束同名点之间高程误差的均方根误差(Root Mean Square Error, RMSE)为18.5 cm,较上述两种算法分别降低了29.9%、41.4%。因此,本文算法具有可行性,能够满足ALB波形的水体旅行时高精度提取,可为机载LiDAR测深数据精细化处理提供一定技术支撑。
  • 图  1  目标横截面恢复过程示意图

    Fig.  1  Schematic diagram of the restoration process of target cross section

    图  2  海底初始回波范围选择

    Fig.  2  Selection of initial seabed echo range

    图  3  水体后向散射波形求解Kd

    Fig.  3  Kd value is solved by backscattered waveforms of water bodies

    图  4  高斯分解增强波形

    Fig.  4  Gaussian decomposition enhanced waveform

    图  5  本文算法流程图

    Fig.  5  Flowchart of the algorithm in this paper

    图  6  无人机载LiDAR测深实验概况

    Fig.  6  General situation of UAV-borne LiDAR bathymetry experiment

    图  7  3类典型波形的目标横截面恢复结果

    a1–a3为极浅水波形、常规波形、微弱波形;b1–b3为Gold去卷积所恢复对应目标横截面;c1–c3为RL去卷积所恢复对应目标横截面

    Fig.  7  Target cross section restoration results of three types of typical waveforms

    a1–a3. Extremely shallow water waveform, conventional waveform, weak waveform; b1–b3. Gold deconvolution recovered corresponding target cross section; c1–c3. RL deconvolution restores corresponding target cross sections

    图  8  横截面结果所解水下斜距范围

    Fig.  8  Range of underwater oblique distance solved by cross section results

    图  9  典型波形目标横截面恢复结果

    Fig.  9  Restoration results of cross-section of typical waveform targets

    图  10  3种算法处理单条带效果

    Fig.  10  Renderings of single strip processed by three algorithms

    图  11  3种算法局部展示点云图

    Fig.  11  Three algorithms partially display point cloud images

    图  12  3种算法与单波束同名点的误差值

    Fig.  12  Error values of the three algorithms with the same name as single beam points

    表  1  RIEGL VQ-840-G无人机载LiDAR测深系统主要技术参数指标

    Tab.  1  Main technical parameters of RIEGL VQ-840-G UAV-borne LiDAR bathymetry system

    参数 指标
    扫描频率 200 kHz(可调节)
    最大穿透深度 2.5 Secchi @ 50 kHz
    视场角 40°
    测点密度 > 100 pts/m2
    光斑 10 cm @ 100 m航高
    重量 12 kg
    下载: 导出CSV

    表  2  3种算法所生成点云的点密度统计

    Tab.  2  Point density statistics of point clouds generated by the three algorithms

    算法 平均密度/(point·m−2
    本文算法 271
    RL去卷积 192
    峰值探测 185
    下载: 导出CSV
  • [1] 刘焱雄, 郭锴, 何秀凤, 等. 机载激光测深技术及其研究进展[J]. 武汉大学学报(信息科学版), 2017, 42(9): 1185−1194.

    Liu Yanxiong, Guo Kai, He Xiufeng, et al. Research progress of airborne laser bathymetry technology[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1185−1194.
    [2] 王越. 机载激光浅海测深技术的现状和发展[J]. 测绘地理信息, 2014, 39(3): 38−42.

    Wang Yue. Current status and development of airborne laser bathymetry technology[J]. Journal of Geomatics, 2014, 39(3): 38−42.
    [3] 刘永明, 邓孺孺, 秦雁, 等. 机载激光雷达测深数据处理与应用[J]. 遥感学报, 2017, 21(6): 982−995.

    Liu Yongming, Deng Ruru, Qin Yan, et al. Data processing methods and applications of airborne LiDAR bathymetry[J]. Journal of Remote Sensing, 2017, 21(6): 982−995.
    [4] 宿殿鹏, 阳凡林, 陈亮, 等. 无人机载LiDAR测深系统进行海岸带测绘的可行性分析[J]. 山东科技大学学报(自然科学版), 2022, 41(5): 11−20.

    Su Dianpeng, Yang Fanlin, Chen Liang, et al. Feasibility analysis of UAV-airborne LiDAR bathymetry system for coastal zone mapping[J]. Journal of Shandong University of Science and Technology (Natural Science), 2022, 41(5): 11−20.
    [5] Wang Chisheng, Li Qingquan, Liu Yanxiong, et al. A comparison of waveform processing algorithms for single-wavelength LiDAR bathymetry[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 101: 22−35. doi: 10.1016/j.isprsjprs.2014.11.005
    [6] Song Yue, Li Houpu, Zhai Guojun, et al. Comparison of multichannel signal deconvolution algorithms in airborne LiDAR bathymetry based on wavelet transform[J]. Scientific Reports, 2021, 11(1): 16988. doi: 10.1038/s41598-021-96551-w
    [7] 黄田程, 陶邦一, 贺岩, 等. 国产机载激光雷达测深系统的波形处理方法[J]. 激光与光电子学进展, 2018, 55(8): 082808.

    Huang Tiancheng, Tao Bangyi, He Yan, et al. Waveform processing methods in domestic airborne lidar bathymetry system[J]. Laser & Optoelectronics Progress, 2018, 55(8): 082808.
    [8] 贺岩, 胡善江, 陈卫标, 等. 国产机载双频激光雷达探测技术研究进展[J]. 激光与光电子学进展, 2018, 55(8): 082801.

    He Yan, Hu Shanjiang, Chen Weibiao, et al. Research progress of domestic airborne dual-frequency LiDAR detection technology[J]. Laser & Optoelectronics Progress, 2018, 55(8): 082801.
    [9] 王丹菂, 徐青, 邢帅, 等. 一种由粗到精的机载激光测深信号检测方法[J]. 测绘学报, 2018, 47(8): 1148−1159.

    Wang Dandi, Xu Qing, Xing Shuai, et al. A coarse-to-fine signal detection method for airborne LiDAR bathymetry[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(8): 1148−1159.
    [10] Qi Chao, Ma Yue, Su Dianpeng, et al. A method to decompose airborne LiDAR bathymetric waveform in very shallow waters combining deconvolution with curve fitting[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 7004905.
    [11] Ding Kai, Li Qingquan, Zhu Jiasong, et al. An improved quadrilateral fitting algorithm for the water column contribution in airborne bathymetric LiDAR waveforms[J]. Sensors, 2018, 18(2): 552. doi: 10.3390/s18020552
    [12] Wagner W, Ullrich A, Ducic V, et al. Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 60(2): 100−112. doi: 10.1016/j.isprsjprs.2005.12.001
    [13] Chauve A, Mallet C, Bretar F, et al. Processing full-waveform LiDAR data: modelling raw signals[C]//ISPRS Workshop Laser Scanning and SilviLaser (LS SL). Espoo: HAL, 2007: 102−107.
    [14] Hofton M A, Minster J B, Blair J B. Decomposition of laser altimeter waveforms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(4): 1989−1996. doi: 10.1109/36.851780
    [15] 亓超, 周丰年, 吴敬文, 等. 基于机载LiDAR测深水体波形的漫衰减系数提取方法[J]. 海洋学报, 2021, 43(1): 147−154.

    Qi Chao, Zhou Fengnian, Wu Jingwen, et al. Extraction method for diffuse attenuation coefficient based on airborne LiDAR bathymetric water column waveform[J]. Haiyang Xuebao, 2021, 43(1): 147−154.
    [16] 王丹菂, 徐青, 邢帅, 等. 机载激光测深去卷积信号提取方法的比较[J]. 测绘学报, 2018, 47(2): 161−169. doi: 10.11947/j.AGCS.2018.20170501

    Wang Dandi, Xu Qing, Xing Shuai, et al. Comparison of signal extraction method for airborne LiDAR bathymetry based on deconvolution[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(2): 161−169. doi: 10.11947/j.AGCS.2018.20170501
    [17] Richardson W H. Bayesian-based iterative method of image restoration[J]. Journal of the Optical Society of America, 1972, 62(1): 55−59. doi: 10.1364/JOSA.62.000055
    [18] Lucy L B. An iterative technique for the rectification of observed distributions[J]. The Astronomical Journal, 1974, 79: 745. doi: 10.1086/111605
    [19] Morháč M, Kliman J, Matoušek V, et al. Efficient one- and two-dimensional gold deconvolution and its application to γ-ray spectra decomposition[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 401(2/3): 385−408.
    [20] Wu Jiaying, Van Aardt J A N, McGlinchy J, et al. A robust signal preprocessing chain for small-footprint waveform LiDAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(8): 3242−3255. doi: 10.1109/TGRS.2011.2178420
    [21] Zhou Tan, Popescu S C, Krause K, et al. Gold–A novel deconvolution algorithm with optimization for waveform LiDAR processing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 129: 131−150. doi: 10.1016/j.isprsjprs.2017.04.021
    [22] Zhou Guoqing, Long Shuhua, Xu Jiasheng, et al. Comparison analysis of five waveform decomposition algorithms for the airborne LiDAR echo signal[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 7869−7880. doi: 10.1109/JSTARS.2021.3096197
    [23] Schwarz R, Mandlburger G, Pfennigbauer M, et al. Design and evaluation of a full-wave surface and bottom-detection algorithm for LiDAR bathymetry of very shallow waters[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150: 1−10. doi: 10.1016/j.isprsjprs.2019.02.002
    [24] Mader D, Richter K, Westfeld P, et al. Potential of a non-linear full-waveform stacking technique in airborne LiDAR bathymetry[J]. PFG-Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2021, 89(2): 139−158. doi: 10.1007/s41064-021-00147-y
    [25] Richter K, Maas H G, Westfeld P, et al. An approach to determining turbidity and correcting for signal attenuation in airborne LiDAR bathymetry[J]. PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2017, 85(1): 31−40. doi: 10.1007/s41064-016-0001-0
    [26] 宋越, 李厚朴, 翟国君. 机载激光测深波形去噪算法对比分析[J]. 测绘学报, 2021, 50(2): 270−278.

    Song Yue, Li Houpu, Zhai Guojun. Comparative analysis of airborne laser bathymetric waveforms denoising algorithms[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(2): 270−278.
    [27] 江虹, 苏阳. 一种改进的小波阈值函数去噪方法[J]. 激光与红外, 2016, 46(1): 119−122. doi: 10.3969/j.issn.1001-5078.2016.01.023

    Jiang Hong, Su Yang. Denoising method based on improved wavelet threshold function[J]. Laser & Infrared, 2016, 46(1): 119−122. doi: 10.3969/j.issn.1001-5078.2016.01.023
    [28] Morháč M, Matoušek V, Kliman J. Efficient algorithm of multidimensional deconvolution and its application to nuclear data processing[J]. Digital Signal Processing, 2003, 13(1): 144−171. doi: 10.1016/S1051-2004(02)00011-8
    [29] Ding Kai, Wang Chisheng, Tao Ming, et al. A new algorithm for retrieving diffuse attenuation coefficient based on big LiDAR bathymetry data[C]//11th International Symposium on Cyberspace Safety and Security. Guangzhou: Springer, 2019: 133−142.
    [30] Guenther G C, LaRocque P E, Lillycrop W J. Multiple surface channels in scanning hydrographic operational airborne LiDAR Survey (SHOALS) airborne LiDAR[C]//Proceedings of SPIE 2258, Ocean Optics XII. Bergen: SPIE, 1994: 422−430.
    [31] Eren F, Pe’eri S, Rzhanov Y, et al. Bottom characterization by using airborne LiDAR bathymetry (ALB) waveform features obtained from bottom return residual analysis[J]. Remote Sensing of Environment, 2018, 206: 260−274. doi: 10.1016/j.rse.2017.12.035
    [32] 郭锴, 刘焱雄, 徐文学, 等. 机载激光测深波形分解中LM与EM参数优化方法比较[J]. 测绘学报, 2020, 49(1): 117−131.

    Guo Kai, Liu Yanxiong, Xu Wenxue, et al. Comparison of LM and EM parameter optimization methods for airborne laser bathymetric full-waveform decomposition[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(1): 117−131.
    [33] 申二华, 张永生, 李凯. 圆扫描式机载激光测深系统定位模型与仿真分析[J]. 中国激光, 2016, 43(2): 0214001. doi: 10.3788/CJL201643.0214001

    Shen Erhua, Zhang Yongsheng, Li Kai. Positioning model and simulation of conical scanning airborne laser bathymetry system[J]. Chinese Journal of Lasers, 2016, 43(2): 0214001. doi: 10.3788/CJL201643.0214001
    [34] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 17501−2017, 海洋工程地形测量规范[S]. 北京: 中国标准出版社, 2017.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. GB/T 17501−2017, Specification for marine engineering topographic surveying[S]. Beijing: Standards Press of China, 2017.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  246
  • HTML全文浏览量:  149
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-17
  • 修回日期:  2023-10-07
  • 网络出版日期:  2023-12-29
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回