留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于重、磁数据的珠江口盆地构造格局研究

何泽洋 白志钊 王万银 李林致 张义蜜 陈莹 何涛 马瑞云

何泽洋,白志钊,王万银,等. 基于重、磁数据的珠江口盆地构造格局研究[J]. 海洋学报,2023,45(12):25–43 doi: 10.12284/hyxb2023165
引用本文: 何泽洋,白志钊,王万银,等. 基于重、磁数据的珠江口盆地构造格局研究[J]. 海洋学报,2023,45(12):25–43 doi: 10.12284/hyxb2023165
He Zeyang,Bai Zhizhao,Wang Wanyin, et al. Tectonic framework research in Zhujiang River Mouth Basin based on gravity and magnetic data[J]. Haiyang Xuebao,2023, 45(12):25–43 doi: 10.12284/hyxb2023165
Citation: He Zeyang,Bai Zhizhao,Wang Wanyin, et al. Tectonic framework research in Zhujiang River Mouth Basin based on gravity and magnetic data[J]. Haiyang Xuebao,2023, 45(12):25–43 doi: 10.12284/hyxb2023165

基于重、磁数据的珠江口盆地构造格局研究

doi: 10.12284/hyxb2023165
基金项目: 中海油研究总院有限责任公司科技项目(CCL2021RCPS1067KQN)。
详细信息
    作者简介:

    何泽洋(2000—),男,安徽省六安市人,博士研究生,研究方向为重、磁方法理论及应用。 E-mail:2021026001@chd.edu.cn

    通讯作者:

    王万银(1962—),男,博士,教授,博士生导师,主要从事重、磁位场理论及应用研究和教学工作。E-mail: wwy7902@chd.edu.cn

  • 中图分类号: P736.12

Tectonic framework research in Zhujiang River Mouth Basin based on gravity and magnetic data

  • 摘要: 珠江口盆地位于南海北部大陆边缘,横跨了华南大陆架、大陆坡以及洋陆过渡带地区,其构造演化十分复杂。随着勘探程度的加深,珠江口盆地的边界也一直发生着变化,盆地南部边界存在争议。本文基于卫星重力异常数据和磁力异常数据,重新研究了珠江口盆地的断裂及火成岩分布,并以高精度地震数据为约束反演了研究区新生界深度,根据处理的结果对研究区构造单元进行了调整。研究结果显示,研究区的NEE、NE和NW向断裂较为发育,且在本次研究中新识别出4条断裂;火成岩平面位置整体走向为NEE向,但不同区域走向存在区别:在盆地西部有近EW向火成岩,盆地中部火成岩为NWW向,而盆地东部火成岩部分为近EW向;在构造单元中将阳江凹陷根据重力和新生界特征分成了阳江西凹陷和阳江东凹陷,并删去了文昌D凹陷和文昌E凹陷。NW向的北卫滩断裂与阳江−一统断裂一起将盆地分为西部、中部和东部3个部分,此3个部分的断裂走向、火成岩平面位置和新生界厚度及构造单元都有所不同。本次同时对珠江口盆地断裂、火成岩和构造单元进行研究,旨在对后续盆地研究和油气突破提供地球物理支撑。
  • 图  1  南海北部陆缘断裂系统(图中黑底白线所围区域为珠江口盆地,引自文献[31])

    Fig.  1  The regional tectonic background in the northern South China Sea (The region enclosed by the white line with the black background in the figure is the Zhujiang River Mouth Basin, according to reference [31])

    图  2  珠江口盆地重磁基础及处理

    a. 珠江口盆地地形;b. 珠江口盆地卫星测高重力异常;c. 珠江口盆地布格重力异常;d. 珠江口盆地磁力异常,黑框部分为航磁数据;e. 珠江口盆地化极磁力异常

    Fig.  2  The basic and gravity and magnetic in Zhujiang River Mouth Basin

    a. The topograph of the Zhujiang River Mouth Basin; b. the free-air gravity disturbances of the Zhujiang River Mouth Basin; c. the Bouguer gravity disturbances of the Zhujiang River Mouth Basin; d. the magnetic anomalies of the Zhujiang River Mouth Basin, the black box shows the airborne magnetic data; e. RTP of magnetic anomalies of the Zhujiang River Mouth Basin

    图  3  前人划分断裂与布格重力异常 NVDR-THDR 叠合(a),黑色实线引自文献[3]剖面;布格重力异常 NVDR-THDR 与地质剖面叠合(b)

    Fig.  3  Superposed of previous faults division and NVDR-THDR of Bouguer gravity anomalies (a), the black line is the profile according to reference [3]; superposed of NVDR-THDR of Bouguer gravity anomalies and geological profile (b)

    图  4  珠江口盆地断裂与布格 NVDR-THDR 叠合(a);珠江口盆地剩余布格重力异常与断裂叠合(b)

    Fig.  4  Superposed of faults division and NVDR-THDR of Bouguer gravity anomalies of Zhujiang River Mouth Basin (a); superposed of faults division and residual Bouguer gravity anomalies of Zhujiang River Mouth Basin (b)

    图  5  珠江口盆地断裂统计

    a. 珠江口盆地断裂走向及长度玫瑰花图;b. 珠江口盆地断裂走向与频数玫瑰花图;c. 珠江口盆地断裂长度及频数直方图

    Fig.  5  Statistical of faults in Zhujiang River Mouth Basin

    a. The rose diagram of faults strike and length in Zhujiang River Mouth Basin; b. the rose diagram of faults strike and frequency in Zhujiang River Mouth Basin; c. histogram of fault length and frequency in Zhujiang River Mouth Basin

    图  6  控凹断裂与地质剖面对应关系(据文献[39])

    Fig.  6  The relationship between sag controlled faults and geological profile (according to reference [39])

    图  7  珠江口盆地剩余化极磁力异常(a)和珠江口盆地剩余布格重力异常 VDR 图(b)

    Fig.  7  The map of the residual RTP magnetic anomalies in Zhujiang River Mouth Basin (a) and the map of the VDR of the residual Bouguer anomolies in Zhujiang River Mouth Basin (b)

    图  8  珠江口盆地火成岩岩性及与前人对比(对比文献[26])(a)和珠江口盆地火成岩视深度(b)

    Fig.  8  The horizontal distribution of igneous compare with others in Zhujiang River Mouth Basin (according to reference [26]) (a) and the top depth of igneous rocks in Zhujiang River Mouth Basin (b)

    图  9  珠江口盆地新生界底界面深度(a)和珠江口盆地新生界厚度(b)

    Fig.  9  The depth of the bottom interface of Cenozoic in the Zhujiang River Mouth Basin (a) and the Cenozoic thickness of the Zhujiang River Mouth Basin (b)

    图  10  珠江口盆地新生界深度与地震剖面对比,上图为 AA′剖面,下图为 EE′剖面(据文献[3])

    Fig.  10  Cenozoic depth and seismic profiles comparison of the Zhujiang River Mouth Basin, the above picture is the profile AA′, the below picture is the profile EE′ (according to reference [3])

    图  11  珠江口盆地构造单元划分结果

    Fig.  11  The division results of construction units in the Zhujiang River Mouth Basin

    图  12  珠江口盆地构造单元对比(a)和图a中黑框部分剩余布格重力异常(b)

    橙底白线为原构造单元,紫底白线为本次划分的构造单元

    Fig.  12  The comparison of structural units in Zhujiang River Mouth Basin (a) and the black box with residual Bouguer gravity anomlies in figure a (b)

    The white line with orange background is the former structural units, the white line with magneta background is the structural units of this division

    图  13  珠江口盆地火成岩平面分布与断裂叠合(a)和珠江口盆地新生界厚度与断裂叠合(b)

    Fig.  13  Superposed of horizontal distribution of igneous rocks and faults in Zhujiang River Mouth Basin (a) and superposed of horizontal distribution of igneous rocks and faults in Zhujiang River Mouth Basin (b)

    图  14  珠江口盆地构造格局叠合

    Fig.  14  The overlay of tectonic framework of Zhujiang River Mouth Basin

    表  1  珠江口盆地控盆断裂统计表

    Tab.  1  The statistic of basin-control faults in Zhujiang River Mouth Basin

    断裂编号 断裂走向 断裂性质[7] 断裂属性 与前人识别对比
    F1-1(滨外断裂带) NEE, NE 拉张 地壳断裂 与前人识别位置一致
    F1-2(海南岛东部断裂) NNE 拉张 地壳断裂 与前人识别位置一致
    F1-3(阳江–一统断裂带) NW 走滑 基底断裂 与前人识别位置略有差异
    F1-4(西沙海槽断裂) 近EW, NE 拉张 地壳断裂 与前人识别位置一致
    F1-5 近SN 拉张 地壳断裂 与前人识别位置略有差异
    F1-6(北卫滩断裂带) NW 走滑 基底断裂 与前人识别位置略有差异
    下载: 导出CSV

    表  2  珠江口盆地控凹断裂统计表

    Tab.  2  The statistic of sag-control faults in Zhujiang River Mouth Basin

    断裂编号 断裂走向 断裂性质[7, 34] 断裂属性 与前人识别对比
    F2-1 NEE 拉张 盖层断裂 与前人识别位置相同
    F2-2 NE−NEE 拉张 盖层断裂 与前人识别位置相同
    F2-3(珠三南断裂) NEE 拉张 盖层断裂 与前人识别位置相同
    F2-4 NEE−NE 拉张 盖层断裂 与前人识别位置相同
    F2-5 NEE 拉张 盖层断裂 与前人识别位置相同
    F2-6 NNE 拉张 盖层断裂 穿过珠一坳陷东部,为本次新识别断裂
    F2-7 NNE, NE 拉张 盖层断裂 比前人识别位置更长
    F2-8 NNE 拉张 盖层断裂 与前人识别位置相同
    F2-9 NNE 拉张 盖层断裂 与前人识别位置相同
    F2-10 NNE 拉张 盖层断裂 为本次新识别断裂
    F2-11 NE−NNE 拉张 盖层断裂 与前人识别位置存在差异
    F2-12 NE−NNE 拉张 盖层断裂 与前人识别位置相同
    F2-13 NE 拉张 盖层断裂 与前人识别位置略有差异
    F2-14 NEE 拉张 基底断裂 与前人识别位置略有区别
    F2-15 NE−NEE 拉张 基底断裂 与前人识别位置相同
    F2-16(神狐隆起西断裂) NW 走滑 基底断裂 与前人识别位置存在一定差异
    F2-17 NW 走滑 基底断裂 与前人识别位置具有一定差异
    F2-18 NW 走滑 基底断裂 与前人识别位置相同
    F2-19 NW 走滑 基底断裂 与前人识别位置相同
    F2-20 NWW 走滑 盖层断裂 与前人识别位置相同
    F2-21 NWW 走滑 盖层断裂 与前人识别位置相同
    F2-22 NNW 走滑 基底断裂 与前人识别位置具有一定差异
    F2-23 NNW 走滑 盖层断裂 与前人识别位置相同
    F2-24 NNW, NW 走滑 盖层断裂 为本次新识别断裂
    F2-25 NE 拉张 盖层断裂 为本次新识别断裂
    F2-26 NE 拉张 盖层断裂 与前人识别位置相同
    下载: 导出CSV

    表  3  珠江口盆地火成岩分类及新生界钻井揭示火成岩特征表(据文献[26])

    Tab.  3  Classification of igneous rocks in Zhujiang River Mouth Basin and the features of igneous rocks revealed by Cenozoic drillings (according to reference [26])

    二级构造单元钻井岩石特征识别结果
    恩平凹陷玄武岩夹凝灰岩高密高磁
    西江凹陷玄武岩低密低磁、高密高磁、高密低磁、低密高磁
    惠州凹陷英安斑岩、安山岩低密低磁、低密高磁
    惠陆低凸起凝灰岩、安山岩、安山质凝灰岩、玄武岩高密高磁、低密高磁
    陆丰凹陷粗面岩、流纹质/英安质凝灰岩、火山岩、角砾岩低密低磁、高密高磁、高密低磁、低密高磁
    海丰凹陷角砾岩、凝灰岩高密高磁、高密低磁
    韩江凹陷玄武岩、玄武质凝灰岩高密高磁、低密低磁、低密高磁
    云开低凸起凝灰岩夹玄武岩、火山角砾岩、安山质凝灰熔岩低密高磁、高密高磁、低密低磁
    白云凹陷凝灰岩高密低磁、低密低磁、低密高磁、高密高磁
    阳春凹陷流纹质凝灰熔岩低密高磁、低密低磁
    阳江低凸起玄武岩低密高磁
    文昌A凹陷凝灰岩高密低磁
    文昌B凹陷英安斑流岩、蚀变珍珠岩低密高磁、低密低磁
    番禺低隆起玄武岩高密高磁、低密高磁、高密低磁、低密低磁
    东沙隆起玄武岩、流纹质凝灰岩、凝灰岩、凝灰熔岩、集块岩高密高磁、低密高磁、高密低磁、低密低磁
    下载: 导出CSV
  • [1] 郝天珧, 徐亚, 孙福利, 等. 南海共轭大陆边缘构造属性的综合地球物理研究[J]. 地球物理学报, 2011, 54(12): 3098−3116.

    Hao Tianyao, Xu Ya, Sun Fuli, et al. Integrated geophysical research on the tectonic attribute of conjugate continental margin of South China Sea[J]. Chinese Journal of Geophysics, 2011, 54(12): 3098−3116.
    [2] 李三忠, 索艳慧, 刘鑫, 等. 南海的盆地群与盆地动力学[J]. 海洋地质与第四纪地质, 2012, 32(6): 55−78.

    Li Sanzhong, Suo Yanhui, Liu Xin, et al. Basin dynamics and basin groups of the South China Sea[J]. Marine Geology & Quaternary Geology, 2012, 32(6): 55−78.
    [3] 张远泽, 漆家福, 吴景富. 南海北部新生代盆地断裂系统及构造动力学影响因素[J]. 地球科学, 2019, 44(2): 603−625.

    Zhang Yuanze, Qi Jiafu, Wu Jingfu. Cenozoic faults systems and its geodynamics of the continental margin basins in the northern of South China Sea[J]. Earth Science, 2019, 44(2): 603−625.
    [4] 王嘉, 栾锡武, 何兵寿, 等. 南海北部珠江口盆地西南段断裂特征与成因讨论[J]. 地球科学, 2021, 46(3): 916−928.

    Wang Jia, Luan Xiwu, He Bingshou, et al. Characteristics and genesis of faults in southwestern Pearl River Mouth Basin, northern South China Sea[J]. Earth Science, 2021, 46(3): 916−928.
    [5] 占华旺, 蔡国富, 张志伟, 等. 南海北缘古近纪断裂活动规律及控盆特征: 以阳江东凹为例[J]. 大地构造与成矿学, 2021, 45(1): 20−39.

    Zhan Huawang, Cai Guofu, Zhang Zhiwei, et al. Paleogene fault activity and basin controlling characteristics in the northern South China Sea Margin — a case study of the eastern Yangjiang Sag[J]. Geotectonica et Metallogenia, 2021, 45(1): 20−39.
    [6] 陈汉宗, 吴湘杰, 周蒂, 等. 珠江口盆地中新生代主要断裂特征和动力背景分析[J]. 热带海洋学报, 2005, 24(2): 52−61.

    Chen Hanzong, Wu Xiangjie, Zhou Di, et al. Meso-Cenozoic faults in Zhujiang River Mouth Basin and their geodynamic background[J]. Journal of Tropical Oceanography, 2005, 24(2): 52−61.
    [7] 罗新刚, 王万银, 张功成, 等. 基于重力资料的南海及邻区断裂分布特征研究[J]. 地球物理学报, 2018, 61(10): 4255−4268.

    Luo Xin’gang, Wang Wanyin, Zhang Gongcheng, et al. Study on distribution features of faults based on gravity data in the South China Sea and its adjacent areas[J]. Chinese Journal of Geophysics, 2018, 61(10): 4255−4268.
    [8] 李文勇, 李东旭. 中国南海不同板块边缘沉积盆地构造特征[J]. 现代地质, 2006, 20(1): 19−29.

    Li Wenyong, Li Dongxu. Tectonic characteristics on the sedimentary basins with different plate margins in the South China Sea[J]. Geoscience, 2006, 20(1): 19−29.
    [9] 曹敬贺, 孙金龙, 徐辉龙, 等. 珠江口海域滨海断裂带的地震学特征[J]. 地球物理学报, 2014, 57(2): 498−508.

    Cao Jinghe, Sun Jinlong, Xu Huilong, et al. Seismological features of the littoral fault zone in the Pearl River Estuary[J]. Chinese Journal of Geophysics, 2014, 57(2): 498−508.
    [10] 曹敬贺, 夏少红, 孙金龙, 等. 珠江口盆地北部断裂构造特征对比及其地质学意义[J]. 地球物理学进展, 2014, 29(5): 2364−2369.

    Cao Jinghe, Xia Shaohong, Sun Jinlong, et al. Comparison of fault structure characteristics in the northern Pearl River Mouth Basin and its geological implication[J]. Progress in Geophysics, 2014, 29(5): 2364−2369.
    [11] 胡阳. 珠江口盆地珠一坳陷新生代盆地结构与成因演化[J]. 高校地质学报, 2019, 25(1): 81−92.

    Hu Yang. Basin structure and genetic evolution of the Zhu 1 Depression, during the Cenozoic, Pearl River Mouth Basin, south China[J]. Geological Journal of China Universities, 2019, 25(1): 81−92.
    [12] 张馨予, 曹敬贺, 赵芳, 等. 珠江口海域NW向断裂的地震学特征及意义[J]. 华南地震, 2019, 39(4): 1−9.

    Zhang Xinyu, Cao Jinghe, Zhao Fang, et al. Seismological features and geological implication of the NW faults in the Pearl River Estuary[J]. South China Journal of Seismology, 2019, 39(4): 1−9.
    [13] 鲁宝亮, 王璞珺, 张功成, 等. 南海区域断裂特征及其基底构造格局[J]. 地球物理学进展, 2015, 30(4): 1544−1553.

    Lu Baoliang, Wang Pujun, Zhang Gongcheng, et al. Characteristic of regional fractures in South China Sea and its basement tectonic framework[J]. Progress in Geophysics, 2015, 30(4): 1544−1553.
    [14] 刘以宣. 华南沿海的活动断裂[J]. 海洋地质与第四纪地质, 1985(3): 11−21.

    Liu Yixuan. The active fractures in South China coast[J]. Marine Geology & Quaternary Geology, 1985(3): 11−21.
    [15] 宋海斌, 郝天珧, 江为为, 等. 南海地球物理场特征与基底断裂体系研究[J]. 地球物理学进展, 2002, 17(1): 24−34.

    Song Haibin, Hao Tianyao, Jiang Weiwei, et al. Researches on geophysical field characteristics and basement fault system of South China Sea[J]. Progress in Geophysics, 2002, 17(1): 24−34.
    [16] 刘绍飞. 利用重磁异常研究南海盆地、断裂及岩浆岩分布[D]. 北京: 中国地质大学(北京), 2018.

    Liu Shaofei. Study on the distribution of basins, faults and igneous rocks by gravity and magnetic data in the South China Sea[D]. Beijing: China University of Geosciences (Beijing), 2018.
    [17] 李桐林, 石会彦, 郭志宏, 等. 基于卫星重磁资料的南海深部构造研究[J]. 地球物理学报, 2018, 61(10): 4216−4230.

    Li Tonglin, Shi Huiyan, Guo Zhihong, et al. Research on deep structure of the South China Sea based on satellite gravity and magnetic data[J]. Chinese Journal of Geophysics, 2018, 61(10): 4216−4230.
    [18] 周蒂, 王万银, 庞雄, 等. 地球物理资料所揭示的南海东北部中生代俯冲增生带[J]. 中国科学D辑 地球科学, 2006, 36(3): 209−218.

    Zhou Di, Wang Wanyin, Pang Xiong, et al. Mesozoic subduction-accretion zone in northeastern South China sea inferred from geophysical interpretations[J]. Science in China (Series D), 2006, 36(3): 209−218.
    [19] 蔡国富, 张向涛, 彭光荣, 等. 南海北部阳江−一统暗沙断裂带与新近纪岩浆活动[J]. 大地构造与成矿学, 2021, 45(1): 40−52.

    Cai Guofu, Zhang Xiangtao, Peng Guangrong, et al. Neogene volcanism and tectonics along the Yangjing-Yitong’ansha Fault zone in the northern South China Sea margin[J]. Geotectonica et Metallogenia, 2021, 45(1): 40−52.
    [20] 陈少平, 王华, 刘丽芳, 等. 断裂时空差异性演化及其对生烃凹陷形成的控制——以珠江口盆地珠三坳陷为例[J]. 断块油气田, 2015, 22(1): 1−6.

    Chen Shaoping, Wang Hua, Liu Lifang, et al. Space-time diversity evolution of faults and its control on formation of hydrocarbon generation sag: taking Zhu III Depression in Pearl River Mouth Basin as an example[J]. Fault-Block Oil and Gas Field, 2015, 22(1): 1−6.
    [21] 马晓倩, 刘军, 朱定伟, 等. 多期走滑拉分盆地的沉积响应: 以南海北部珠江口盆地为例[J]. 大地构造与成矿学, 2021, 45(1): 64−78.

    Ma Xiaoqian, Liu Jun, Zhu Dingwei, et al. Sedimentary response of multi-stage pull-apart Basin: insights from the Pearl River Mouth Basin in the northern South China Sea margin[J]. Geotectonica et Metallogenia, 2021, 45(1): 64−78.
    [22] 刘雨晴, 吴智平, 程燕君, 等. 南海北缘古近纪裂陷结构时空差异及控制因素——以珠江口盆地为例[J]. 中国矿业大学学报, 2019, 48(2): 367−376.

    Liu Yuqing, Wu Zhiping, Cheng Yanjun, et al. Spatial and temporal difference of Paleogene rift structure and its controlling factors in the northern South China Sea: a case study of Pearl River Mouth Basin[J]. Journal of China University of Mining & Technology, 2019, 48(2): 367−376.
    [23] 祝嵩, 姚永坚, 李学杰. 南海及邻区岩浆岩时空分布特征及机制[J]. 海洋地质与第四纪地质, 2021, 41(4): 87−115.

    Zhu Song, Yao Yongjian, Li Xuejie. Spatio-temporal distribution pattern of magmatic rocks and mechanism in the South China Sea and adjacent areas[J]. Marine Geology & Quaternary Geology, 2021, 41(4): 87−115.
    [24] Yang Min, Wang Wanyin, Zhang Gongcheng, et al. Relationship between the extent of igneous rocks and deep structures as determined by gravitational and magnetic data in the South China Sea[J]. Acta Geologica Sinica (English Edition), 2021, 95(1): 294−304. doi: 10.1111/1755-6724.14642
    [25] 张斌, 王璞珺, 张功成, 等. 珠−琼盆地新生界火山岩特征及其油气地质意义[J]. 石油勘探与开发, 2013, 40(6): 657−665.

    Zhang Bin, Wang Pujun, Zhang Gongcheng, et al. Cenozoic volcanic rocks in the Pearl River Mouth and Southeast Hainan Basins of South China Sea and their implications for petroleum geology[J]. Petroleum Exploration and Development, 2013, 40(6): 657−665.
    [26] 吴兴. 南海北部盆地火成岩分布的重磁识别研究[D]. 成都: 成都理工大学, 2016.

    Wu Xing. Study igneous rock distribution of northern South China Sea by using gravity and magnetic method[D]. Chengdu: Chengdu University of Technology, 2016.
    [27] 张丙坤, 李三忠, 夏真, 等. 南海北部深水区新生代岩浆岩分布规律及其与海底地质灾害的相关性[J]. 海洋学报, 2014, 36(11): 90−100.

    Zhang Bingkun, Li Sanzhong, Xia Zhen, et al. Distribution of Cenozoic igneous rocks and its relation to submarine geological hazards in the deepwater area of the northern South China Sea[J]. Haiyang Xuebao, 2014, 36(11): 90−100.
    [28] 张峤. 南海北部陆缘新生代岩浆活动及构造意义[D]. 青岛: 中国科学院研究生院(海洋研究所), 2014.

    Zhang Qiao. Cenozoic magmatism in the northern continental margin of the South China Sea and its implication for the tectonic evolution of the rifted margin[D]. Qingdao: University of Chinese Academy of Sciences (Institute of Oceanology, Chinese Academy of Sciences), 2014.
    [29] 冯旭亮, 张功成, 王万银, 等. 基于重磁震资料的南海新生代盆地分布综合研究[J]. 地球物理学报, 2018, 61(10): 4242−4254.

    Feng Xuliang, Zhang Gongcheng, Wang Wanyin, et al. An integrated study on distribution of Cenozoic basins in the South China Sea based on gravity, magnetic and seismic data[J]. Chinese Journal of Geophysics, 2018, 61(10): 4242−4254.
    [30] 杨东升, 赵志刚, 杨海长, 等. 南海北部超深水区兴宁−靖海凹陷中−新生代构造演化及其油气勘探意义[J]. 中国石油勘探, 2018, 23(5): 28−36.

    Yang Dongsheng, Zhao Zhigang, Yang Haichang, et al. Mesozoic-Cenozoic tectonic evolution and its oil and gas exploration significance in Xingning-Jinghai Sag in ultra-deep water area, northern South China Sea[J]. China Petroleum Exploration, 2018, 23(5): 28−36.
    [31] 惠格格, 李志刚, 王伟涛, 等. 南海北部陆架断裂系统特征及其对南海打开的启示意义[J]. 大地构造与成矿学, 2022, 46(3): 501−516.

    Hui Gege, Li Zhigang, Wang Weitao, et al. The fault assembly characteristics on the northern South China Sea continental margin and its implications on the South China Sea spreading[J]. Geotectonica et Metallogenia, 2022, 46(3): 501−516.
    [32] 王树祥. 地壳伸展与珠江口盆地的形成[J]. 中国海上油气, 1993(2): 21−25.

    Wang Shuxiang. Crustal extention and the formation of Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 1993(2): 21−25.
    [33] 何家雄, 陈胜红, 马文宏, 等. 南海东北部珠江口盆地成生演化与油气运聚成藏规律[J]. 中国地质, 2012, 39(1): 106−118.

    He Jiaxiong, Chen Shenghong, Ma Wenhong, et al. The evolution, migration and accumulation regularity of oil and gas in Zhujiangkou Basin, northeastern South China Sea[J]. Geology in China, 2012, 39(1): 106−118.
    [34] 王鹏程, 李三忠, 郭玲莉, 等. 南海打开模式: 右行走滑拉分与古南海俯冲拖曳[J]. 地学前缘, 2017, 24(4): 294−319.

    Wang Pengcheng, Li Sanzhong, Guo Lingli, et al. Opening of the South China Sea (SCS): a joint effect of dextral strike-slip pull-apart and proto-SCS slab pull[J]. Earth Science Frontiers, 2017, 24(4): 294−319.
    [35] 张文昭, 张厚和, 李春荣, 等. 珠江口盆地油气勘探历程与启示[J]. 新疆石油地质, 2021, 42(3): 346−352, 363.

    Zhang Wenzhao, Zhang Houhe, Li Chunrong et al. Petroleum exploration history and enlightenment in Pearl River Mouth Basin[J]. Xinjiang Petroleum Geology, 2021, 42(3): 346−352, 363.
    [36] 米立军, 周守为, 谢玉洪, 等. 南海北部深水区油气勘探进展与未来展望[J]. 中国工程科学, 2022, 24(3): 58−65. doi: 10.15302/J-SSCAE-2022.03.007

    Mi Lijun, Zhou Shouwei, Xie Yuhong, et al. Deep-water oil and gas exploration in northern South China Sea: progress and outlook[J]. Strategic Study of CAE, 2022, 24(3): 58−65. doi: 10.15302/J-SSCAE-2022.03.007
    [37] 郭彬. 珠江口盆地新生代地层及其含油气性[J]. 石油与天然气地质, 1984(1): 11−19.

    Guo Bin. On the Cenozoic strata and their petroleum potential of Zhujiangkou Basin[J]. Oil & Gas Geology, 1984(1): 11−19.
    [38] 丁原章. 珠江口盆地及其邻近地区的活动断裂与地震活动[J]. 中国地震, 1994, 10(4): 307−319.

    Ding Yuanzhang. The active faults and the seismic activity in the Pearl River Mouth Basin and its vicinity areas[J]. Earthquake Research in China, 1994, 10(4): 307−319.
    [39] 王雪, 吕宝凤, 梁捷尉, 等. 南海北部珠江口盆地新生代伸展过程及其区域差异性定量研究[J]. 海洋通报, 2016, 35(5): 507−515, 544.

    Wang Xue, Lü Baofeng, Liang Jiewei, et al. A quantitative study on the Cenozoic extension process and its regional differences in the Pearl River Mouth Basin of northern South China Sea based on balanced section restoration[J]. Marine Science Bulletin, 2016, 35(5): 507−515, 544.
    [40] 索艳慧, 李三忠, 曹现志, 等. 中国东部中新生代反转构造及其记录的大洋板块俯冲过程[J]. 地学前缘, 2017, 24(4): 249−267.

    Suo Yanhui, Li Sanzhong, Cao Xianzhi, et al. Mesozoic-Cenozoic inversion tectonics of East China and its implications for the subduction process of the oceanic plate[J]. Earth Science Frontiers, 2017, 24(4): 249−267.
    [41] 王家林, 张新兵, 吴健生, 等. 珠江口盆地基底结构的综合地球物理研究[J]. 热带海洋学报, 2002, 21(2): 13−22.

    Wang Jialin, Zhang Xinbing, Wu Jiansheng, et al. Integrated geophysical researches on base texture of Zhujiang River Mouth Basin[J]. Journal of Tropical Oceanography, 2002, 21(2): 13−22.
    [42] 陈冰. 南海东北部新生代沉积盆地基底的地球物理特征及其地质解释[D]. 上海: 同济大学, 2004.

    Chen Bing. Geophysical features and geological interpretation of Cenozoic sedimentary basin basement in the northeast area of South China Sea[D]. Shanghai: Tongji University, 2004.
    [43] Sandwell D T, Smith W H F. Global marine gravity from retracked Geosat and ERS-1 altimetry: ridge segmentation versus spreading rate[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B1): B01411.
    [44] Sandwell D, Garcia E, Soofi K, et al. Toward 1-mGal accuracy in global marine gravity from CryoSat-2, Envisat, and Jason-1[J]. The Leading Edge, 2013, 32(8): 892−899. doi: 10.1190/tle32080892.1
    [45] Sandwell D T, Müller R D, Smith W H F, et al. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure[J]. Science, 2014, 346(6205): 65−67. doi: 10.1126/science.1258213
    [46] 张功成, 贾庆军, 王万银, 等. 南海构造格局及其演化[J]. 地球物理学报, 2018, 61(10): 4194−4215.

    Zhang Gongcheng, Jia Qingjun, Wang Wanyin, et al. On tectonic framework and evolution of the South China Sea[J]. Chinese Journal of Geophysics, 2018, 61(10): 4194−4215.
    [47] 雷受旻. 重力广义地形改正值和均衡改正值的一种计算方法[J]. 海洋地质与第四纪地质, 1984(1): 101−111.

    Lei Shoumin. Calculation of generalized topographic and isostatic gravity corrections[J]. Marine Geology & Quaternary Geology, 1984(1): 101−111.
    [48] 秦静欣, 郝天珧, 徐亚, 等. 南海及邻区莫霍面深度分布特征及其与各构造单元的关系[J]. 地球物理学报, 2011, 54(12): 3171−3183.

    Qin Jingxin, Hao Tianyao, Xu Ya, et al. The distribution characteristics and the relationship between the tectonic units of the Moho depth in South China Sea and adjacent areas[J]. Chinese Journal of Geophysics, 2011, 54(12): 3171−3183.
    [49] 刘福香, 王万银, 纪晓琳, 等. “多维”多尺度重磁位场数据融合方法[J]. 地球物理学报, 2021, 64(4): 1453−1470.

    Liu Fuxiang, Wang Wanyin, Ji Xiaolin, et al. The fusion with gravity and magnetic potential field data at multi-dimension and multi-scale[J]. Chinese Journal of Geophysics, 2021, 64(4): 1453−1470.
    [50] He Tao, Xiong Shengqing, Wang Wanyin. Three-dimensional transformation of magnetization direction and magnetic field component at low latitudes based on vertical relationship[J]. Applied Geophysics, 2022, 19(1): 91−106. doi: 10.1007/s11770-022-0928-4
    [51] Wang Wanyin, Pan Yu, Qiu Zhiyun. A new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative for potential field data[J]. Applied Geophysics, 2009, 6(3): 226−233. doi: 10.1007/s11770-009-0026-x
    [52] Zhu Yingjie, Wang Wanyin, Farquharson C G, et al. Normalized vertical derivatives in the edge enhancement of maximum-edge-recognition methods in potential fields[J]. Geophysics, 2021, 86(4): G23−G34. doi: 10.1190/geo2020-0165.1
    [53] 王丁丁, 王万银, 朱莹洁, 等. 位场边缘识别特征点提取方法及应用[J]. 地球物理学报, 2021, 64(4): 1401−1411.

    Wang Dingding, Wang Wanyin, Zhu Yingjie, et al. Extraction methods and application of feature points of edge recognition for potential field[J]. Chinese Journal of Geophysics, 2021, 64(4): 1401−1411.
    [54] 鲁宝亮, 马涛, 熊盛青, 等. 基于重磁异常相关分析的场源位置及属性识别方法[J]. 地球物理学报, 2020, 63(4): 1663−1674.

    Lu Baoliang, Ma Tao, Xiong Shengqing, et al. A new recognition method for source locations and attributes based on correlation analysis of gravity and magnetic anomalies[J]. Chinese Journal of Geophysics, 2020, 63(4): 1663−1674.
    [55] 纪晓琳, 王万银, 邱之云. 最小曲率位场分离方法研究[J]. 地球物理学报, 2015, 58(3): 1042−1058.

    Ji Xiaolin, Wang Wanyin, Qiu Zhiyun. The research to the minimum curvature technique for potential field data separation[J]. Chinese Journal of Geophysics, 2015, 58(3): 1042−1058.
    [56] 王万银, 潘作枢. 双界面模型重力场快速正反演问题[J]. 石油物探, 1993, 32(2): 81−87, 123.

    Wang Wanyin, Pan Zuoshu. Fast solution of forward and inverse problems for gravity field in a dual interface model[J]. Geophysical Prospecting for Petroleum, 1993, 32(2): 81−87, 123.
    [57] 张莉, 张光学, 王嘹亮, 等. 南海北部中生界分布及油气资源前景[M]. 北京: 地质出版社, 2014.

    Zhang Li, Zhang Guangxue, Wang Liaoliang, et al. Mesozoic Distribution and Prospect of Oil and Gas Resources in the Northern South China Sea[M]. Beijing: Geological Publishing House, 2014.
    [58] 王万银, 罗新刚. 重磁场二度体边缘深度反演研究进展[J]. 物探与化探, 2023, 47(3): 547−562.

    Wang Wanyin, Luo Xin’gang. Research on edge depth inversion of 2D geological body based on gravity and magnetic field[J]. Geophysical and Geochemical Exploration, 2023, 47(3): 547−562.
    [59] 王步清, 黄智斌, 马培领, 等. 塔里木盆地构造单元划分标准、依据和原则的建立[J]. 大地构造与成矿学, 2009, 33(1): 86−93.

    Wang Buqing, Huang Zhibin, Ma Peiling, et al. Establishment of division standard, evidence and principle of structural units in Tarim Basin[J]. Geotectonica et Metallogenia, 2009, 33(1): 86−93.
    [60] 张吉光, 王英武. 沉积盆地构造单元划分与命名规范化讨论[J]. 石油实验地质, 2010, 32(4): 309−313, 318.

    Zhang Jiguang, Wang Yingwu. Discussion on standard of classification and nomenclature of structural elements in sedimentary basins[J]. Petroleum Geology and Experiment, 2010, 32(4): 309−313, 318.
    [61] 姚伯初. 南海海盆新生代的构造演化史[J]. 海洋地质与第四纪地质, 1996, 16(2): 1−13.

    Yao Bochu. Tectonic evolution of the South China Sea in Cenozoic[J]. Marine Geology & Quaternary Geology, 1996, 16(2): 1−13.
    [62] 张智武, 吴世敏, 樊开意, 等. 南沙海区沉积盆地油气资源评价及重点勘探地区[J]. 大地构造与成矿学, 2005, 29(3): 418−424.

    Zhang Zhiwu, Wu Shimin, Fan Kaiyi, et al. Evaluation of hydrocarbon resources and key exploration areas in Nansha Block, southern South China Sea[J]. Geotectonica et Metallogenia, 2005, 29(3): 418−424.
    [63] 朱明, 张向涛, 黄玉平, 等. 珠江口盆地烃源岩特征及资源潜力[J]. 石油学报, 2019, 40(S1): 53−68.

    Zhu Ming, Zhang Xiangtao, Huang Yuping, et al. Source rock characteristics and resource potential in Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 2019, 40(S1): 53−68.
    [64] 李平鲁. 珠江口盆地新生代构造运动[J]. 中国海上油气, 1993, 7(6): 11−17.

    Li Pinglu. Cenozoic tectonic movement in the Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 1993, 7(6): 11−17.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  40
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-04
  • 修回日期:  2023-09-28
  • 网络出版日期:  2024-01-09
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回