留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

波浪运动在底边界层的湍流结构数值研究

张炫 郑金海 张弛

张炫,郑金海,张弛. 波浪运动在底边界层的湍流结构数值研究[J]. 海洋学报,2023,45(12):13–24 doi: 10.12284/hyxb2023161
引用本文: 张炫,郑金海,张弛. 波浪运动在底边界层的湍流结构数值研究[J]. 海洋学报,2023,45(12):13–24 doi: 10.12284/hyxb2023161
Zhang Xuan,Zheng Jinhai,Zhang Chi. Numerical investigation on the turbulent structures in the bottom boundary layers under the effects of waves[J]. Haiyang Xuebao,2023, 45(12):13–24 doi: 10.12284/hyxb2023161
Citation: Zhang Xuan,Zheng Jinhai,Zhang Chi. Numerical investigation on the turbulent structures in the bottom boundary layers under the effects of waves[J]. Haiyang Xuebao,2023, 45(12):13–24 doi: 10.12284/hyxb2023161

波浪运动在底边界层的湍流结构数值研究

doi: 10.12284/hyxb2023161
基金项目: 国家自然科学基金项目(51909074);大连理工大学海岸和近海工程国家重点实验室开放基金项目(LP2105);中国博士后科学基金项目(2019M661713);中央高校自由探索项目(B210202024)。
详细信息
    作者简介:

    张炫(1990—),女,江苏省南京市人,副研究员,主要从事海岸水动力、波流相互作用、湍流边界层理论研究。E-mail:zhangxuan01@hhu.edu.cn

  • 中图分类号: P731.21;P731.22

Numerical investigation on the turbulent structures in the bottom boundary layers under the effects of waves

  • 摘要: 本文基于$ k $-$ \varepsilon $ 模型研究了波流边界层内湍流结构特征。研究结果表明,时均流速分布数值解与实验结果高度吻合。一个波周期内湍流结构特征(如:涡量、湍动能、湍动能耗散率等)呈周期性变化规律,波浪作用引起涡量、湍动能及湍动能耗散率均在减速阶段减小,在波谷处达到最低值,而后在加速阶段增大,并在波峰处达到最大值。近壁面处湍流结构变化幅值较大(湍动能耗散率变化可达53%),远离壁面处变化幅值较平均值较小(仅3%)。波流边界层厚度在减速阶段增加,在加速阶段减小。本文所建立的数值模型克服了现有模型因采用“高雷诺数方法”引起的近壁区精度不高问题,可较好地描述波浪作用下湍流结构演变过程的物理机制,为河口海岸地区泥沙运动、岸滩演变及海洋可再生能源的开发利用提供一些指导意义。
  • 图  1  波流数值模型网格划分

    Fig.  1  Meshing of the numerical wave-current model

    图  2  波浪底摩擦系数与粗糙系数变化关系

    Fig.  2  Friction factors versus the roughness in wave bottom boundary layers

    图  3  波流同向作用下时均流速剖面图,WCA1,时均流速0.185 m/s

    a. 线性坐标;b. 半对数坐标

    Fig.  3  Time-averaged mean velocity profiles in combined wave-current flows, WCA1,mean velocity of 0.185 m/s

    a. Linear axis;b. semi-log scale

    图  4  WCA1工况下底部边界层内波致流速

    数值结果用实线表示;实验结果通过点表示

    Fig.  4  Wave-induced velocity profiles in the bottom boundary layers of WCA1

    Lines for the numerical results; dots for the experimental results

    图  5  WCA1工况下全水深范围内相位平均流速分布(18°时间间隔)

    Fig.  5  Phase-averaged mean velocity profiles in the whole water column (18° time intervals) of WCA1

    图  6  自由液面(a)及底部剪应力时间序列(b),$ {d} $ = 200 mm, $ {T} $ = 1 s, $ {H} $ = 0.02 m, $ {U} $ = 0.185 m/s

    Fig.  6  Free surface elevations (a) and the time series of the bed shear stress (b), $ {d} $ = 200 mm, $ {T} $ = 1 s, $ {H} $ = 0.02 m, $ {U} $ = 0.185 m/s

    图  7  时间、空间分辨率对时均流速剖面计算结果影响,WCA1测试

    a. 网格敏感性测试,时间步长为0.001 s,网格分别为50 000和200 000;b. 时间步长敏感性测试,网格为50 000,时间步长分别为0.005 s和0.001 s

    Fig.  7  Sensitivity tests of the temporal and spatial resolution for the mean velocity profiles, WCA1

    a. Meshing tests, time step of 0.001 s, meshing of 50 000和200 000;b. time step tests,meshing of 50 000,time steps of 0.005 s and 0.001 s

    图  8  WCA1工况下不同相位时期涡度大小分布

    a. 减速阶段全水深范围内涡度分布;b. 减速阶段近壁处涡度分布;c. 加速阶段全水深范围内涡度分布;d. 加速阶段近壁处涡度分布

    Fig.  8  Vorticity distributions at different phases of WCA1

    a. Vorticity distributions during deceleration phases in the whole water column; b. vorticity distributions during deceleration phases near the wall; c. vorticity distributions during acceleration phases in the whole water column; d. vorticity distributions during acceleration phases near the wall

    图  9  WCA1工况下涡度在一个波周期内历时分布

    Fig.  9  Vorticity distributions within one wave cycle of WCA1

    图  10  WCA1工况下湍动能在一个波周期内历时分布

    Fig.  10  TKE distributions within one wave cycle of WCA1

    图  11  WCA1工况下湍动能耗散在一个波周期内历时分布

    Fig.  11  TKE distributions within one wave cycle of WCA1

    表  1  波流边界层参数,WCA1 [34]

    Tab.  1  Experimental conditions of the wave-current boundary layers, WCA1 [34]

    纯流工况CA 波流工况WCA1
    摩阻流速 $ {u}_{*} $ /(mm·s−1 8.66 8.89
    底摩擦力 $ {\tau }_{{\mathrm{b}}} $ /($ {{10}^{-3}} $ Pa) 75.0 79.1
    边界层动量厚度 $ \theta $/mm 11.6 8.1
    外层流速 $ \overline{u}_{{\infty }} $ /(mm·s−1 205 196
    黏度系数${\nu } $ /(mm·s−2 1.16 1.02
    雷诺数$ {Re}_{\theta }=\;\overline{u}_{{\infty }}\theta /{\nu } $ 2 060 1 550
    下载: 导出CSV
  • [1] Lundgren H. Turbulent currents in the presence of waves[C]//13th International Conference on Coastal Engineering. Vancouver: ASCE, 1972: 623−634.
    [2] Grant W D, Madsen O S. Combined wave and current interaction with a rough bottom[J]. Journal of Geophysical Research: Oceans, 1979, 84(C4): 1797−1808. doi: 10.1029/JC084iC04p01797
    [3] Myrhaug D. On a theoretical model of rough turbulent wave boundary layers[J]. Ocean Engineering, 1982, 9(6): 547−565. doi: 10.1016/0029-8018(82)90002-6
    [4] Christoffersen J B, Jonsson I G. Bed friction and dissipation in a combined current and wave motion[J]. Ocean Engineering, 1985, 12(5): 387−423. doi: 10.1016/0029-8018(85)90002-2
    [5] Myrhaug D, Slaattelid O H. Combined wave and current boundary layer model for fixed rough seabeds[J]. Ocean Engineering, 1989, 16(2): 119−142. doi: 10.1016/0029-8018(89)90002-4
    [6] Myrhaug D, Slaattelid O H. A rational approach to wave-current friction coefficients for rough, smooth and transitional turbulent flow[J]. Coastal Engineering, 1990, 14(3): 265−293. doi: 10.1016/0378-3839(90)90027-T
    [7] You Zaijin, Wilkinson D L, Nielsen P. Velocity distributions of waves and currents in the combined flow[J]. Coastal Engineering, 1991, 15(5/6): 525−543.
    [8] You Zaijin, Wilkinson D L, Nielsen P. Velocity distribution in turbulent oscillatory boundary layer[J]. Coastal Engineering, 1992, 18(1/2): 21−38.
    [9] You Zaijin. A simple model for current velocity profiles in combined wave-current flows[J]. Coastal Engineering, 1994, 23(3/4): 289−304.
    [10] You Zaijin. Eddy viscosities and velocities in combined wave-current flows[J]. Ocean Engineering, 1994, 21(1): 81−97. doi: 10.1016/0029-8018(94)90031-0
    [11] Yuan Jing, Madsen O S. Experimental and theoretical study of wave-current turbulent boundary layers[J]. Journal of Fluid Mechanics, 2015, 765: 480−523. doi: 10.1017/jfm.2014.746
    [12] Malarkey J, Davies A G. Modelling wave–current interactions in rough turbulent bottom boundary layers[J]. Ocean Engineering, 1998, 25(2/3): 119−141.
    [13] Umeyama M. Reynolds stresses and velocity distributions in a wave-current coexisting environment[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2005, 131(5): 203−212. doi: 10.1061/(ASCE)0733-950X(2005)131:5(203)
    [14] Fredsøe J. Turbulent boundary layer in wave-current motion[J]. Journal of Hydraulic Engineering, 1984, 110(8): 1103−1120. doi: 10.1061/(ASCE)0733-9429(1984)110:8(1103)
    [15] Soulsby R L, Hamm L, Klopman G, et al. Wave-current interaction within and outside the bottom boundary layer[J]. Coastal Engineering, 1993, 21(1/3): 41−69.
    [16] Holmedal L E, Myrhaug D, Rue H. Seabed shear stresses under irregular waves plus current from Monte Carlo simulations of parameterized models[J]. Coastal Engineering, 2000, 39(2/4): 123−147.
    [17] Davies A G, Soulsby R L, King H L. A numerical model of the combined wave and current bottom boundary layer[J]. Journal of Geophysical Research: Oceans, 1988, 93(C1): 491−508. doi: 10.1029/JC093iC01p00491
    [18] Son H T, André T. A numerical model of the rough turbulent boundary layer in combined wave and current interaction[C]//22nd International Conference on Coastal Engineering. Delft: ASCE, 1991: 853−866.
    [19] 吴永胜, 练继建, 张庆河, 等. 波浪和水流共同作用下水流时均流速分布[J]. 水利学报, 2001(1): 35−41.

    Wu Yongsheng, Lian Jijian, Zhang Qinghe, et al. Distribution of time average velocity in wave-current combined flow[J]. Journal of Hydraulic Engineering, 2001(1): 35−41.
    [20] 孙红, 韩光, 陶建华. 波流相互作用下沿垂向的水流结构及其实验验证[J]. 水利学报, 2001(7): 63−68.

    Sun Hong, Han Guang, Tao Jianhua. The flow structure along the vertical line under the interaction of current and wave[J]. Journal of Hydraulic Engineering, 2001(7): 63−68.
    [21] 张卓, 宋志尧, 孔俊. 波流共同作用下流速垂线分布及其影响因素分析[J]. 水科学进展, 2010, 21(6): 801−807.

    Zhang Zhuo, Song Zhiyao, Kong Jun. Wave-current interaction effects on velocity profiles and influencing factor analysis[J]. Advances in Water Science, 2010, 21(6): 801−807.
    [22] Holmedal L E, Myrhaug D, Rue H. The sea bed boundary layer under random waves plus current[J]. Continental Shelf Research, 2003, 23(7): 717−750. doi: 10.1016/S0278-4343(03)00020-7
    [23] Teles M J, Pires-Silva A A, Benoit M. The influence of the turbulence closure model on wave-current interaction modeling at a local scale at a local scale[C]//Proceedings of 33rd Conference on Coastal Engineering. Santander: ASCE, 2012: 1−12.

    Teles M J, Pires-Silva A A, Benoit M. The influence of the turbulence closure model on wave-current interaction modeling at a local scale at a local scale[C]//Proceedings of 33rd Conference on Coastal Engineering. Santander: ASCE, 2012: 1−12.
    [24] Klopman G. Vertical structure of the flow due to waves and currents: laser-Doppler flow measurements for waves following or opposing a current[R]. Delft: Deltares, 1994: 32.
    [25] Zhang Chi, Zheng Jinhai, Wang Yigang, et al. Comparison of turbulence schemes for prediction of wave-induced near-bed sediment suspension above a plane bed[J]. China Ocean Engineering, 2011, 25(3): 395−412. doi: 10.1007/s13344-011-0033-6
    [26] Zhang Chi, Zheng Jinhai, Wang Yigang, et al. Modeling wave-current bottom boundary layers beneath shoaling and breaking waves[J]. Geo-Marine Letters, 2011, 31(3): 189−201. doi: 10.1007/s00367-010-0224-9
    [27] 陈丹丹, 林鹏智. 波浪作用下紊流边界层数值模拟[C]//第十七届中国海洋(岸)工程学术讨论会论文集(上). 南宁: 中国海洋工程学会, 2015: 498−501.

    Chen Dandan, Lin Pengzhi. Numerical simulation of turbulent wave boundary layers[C]//Proceedings of the 17th China Marine (Coastal) Engineering Academic Symposium. Nanning: Chinese Ocean Engineering Society, 2015: 498−501.
    [28] 郑金海, 范文彰, 张弛, 等. 波流边界层内外流速剖面的数值模拟[J]. 中国科技论文, 2016, 11(7): 746−750.

    Zheng Jinhai, Fan Wenzhang, Zhang Chi, et al. Numerical simulation of velocity profiles inside and outside the wave-current bottom boundary layer[J]. China Sciencepaper, 2016, 11(7): 746−750.
    [29] 张弛, 劳伯村, 郑金海. 加速度不对称波浪作用下的底部边界层动力特性[J]. 河海大学学报(自然科学版), 2016, 44(3): 258−264.

    Zhang Chi, Lao Bocun, Zheng Jinhai. Hydrodynamic characteristics of bottom boundary layer under acceleration-skewed waves[J]. Journal of Hohai University (Natural Sciences), 2016, 44(3): 258−264.
    [30] 伍志元, 蒋昌波, 邓斌, 等. 波流耦合模式及其在理想潮汐通道中的应用[J]. 哈尔滨工程大学学报, 2019, 40(8): 1420−1426.

    Wu Zhiyuan, Jiang Changbo, Deng Bin, et al. SWAN-ROMS coupling model and its application in idealized tidal inlets[J]. Journal of Harbin Engineering University, 2019, 40(8): 1420−1426.
    [31] 李诚, 张弛, 隋倜倜. 浅化波浪层流边界层流速分布特性的数值分析[J]. 海洋学报, 2016, 38(5): 141−149.

    Li Cheng, Zhang Chi, Sui Titi. Numerical investigation on velocity distribution in the shoaling laminar wave bottom boundary layer[J]. Haiyang Xuebao, 2016, 38(5): 141−149.
    [32] 吴丹, 张弛. 随机波浪边界层的数值模拟与分析[J]. 水动力学研究与进展, 2016, 31(3): 303−310.

    Wu Dan, Zhang Chi. Numerical investigation of random wave boundary layer[J]. Chinese Journal of Hydrodynamics, 2016, 31(3): 303−310.
    [33] Grigoriadis D G E, Dimas A A, Balaras E. Large-eddy simulation of wave turbulent boundary layer over rippled bed[J]. Coastal Engineering, 2012, 60: 174−189. doi: 10.1016/j.coastaleng.2011.10.003
    [34] Kemp P H, Simons R R. The interaction between waves and a turbulent current: waves propagating with the current[J]. Journal of Fluid Mechanics, 1982, 116: 227−250. doi: 10.1017/S0022112082000445
    [35] Kemp P H, Simons R R. The interaction of waves and a turbulent current: waves propagating against the current[J]. Journal of Fluid Mechanics, 1983, 130: 73−89. doi: 10.1017/S0022112083000981
    [36] Lodahl C R, Sumer B M, Fredsøe J. Turbulent combined oscillatory flow and current in a pipe[J]. Journal of Fluid Mechanics, 1998, 373: 313−348. doi: 10.1017/S0022112098002559
    [37] Umeyama M. Coupled PIV and PTV measurements of particle velocities and trajectories for surface waves following a steady current[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2011, 137(2): 85−94. doi: 10.1061/(ASCE)WW.1943-5460.0000067
    [38] Singh S K, Debnath K. Combined effects of wave and current in free surface turbulent flow[J]. Ocean Engineering, 2016, 127: 170−189. doi: 10.1016/j.oceaneng.2016.10.014
    [39] Xie Mingxiao, Zhang Chi, Li Jinzhao, et al. Flow structure and bottom friction of the nonlinear turbulent boundary layer under stormy waves[J]. Coastal Engineering, 2021, 164: 103811. doi: 10.1016/j.coastaleng.2020.103811
    [40] Wolfshtein M. The velocity and temperature distribution in one-dimensional flow with turbulence augmentation and pressure gradient[J]. International Journal of Heat and Mass Transfer, 1969, 12(3): 301−318. doi: 10.1016/0017-9310(69)90012-X
    [41] Chen H C, Patel V C. Near-wall turbulence models for complex flows including separation[J]. AIAA Journal, 1988, 26(6): 641−648. doi: 10.2514/3.9948
    [42] Kajiura K. A model of the bottom boundary layer in water waves[J]. Bulletin of the Earthquake Research Institute, 1968, 46: 75−123.
    [43] Swart D H. Offshore sediment transport and equilibrium beach profiles[R]. Delft: W. D. Meinema, 1974: 131.
    [44] Sleath J F A. Sea Bed Mechanics[M]. New York: Wiley, 1984.
    [45] Schlichting H. Boundary Layer Theory[M]. Kestin J, trans. New York: McGraw-Hill, 1960.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  416
  • HTML全文浏览量:  207
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-15
  • 修回日期:  2023-08-03
  • 网络出版日期:  2023-12-29
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回