留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

岬湾海滩灾后恢复过程与主控影响因子研究

冯曦 毛雅诗 周嬴涛

冯曦,毛雅诗,周嬴涛. 岬湾海滩灾后恢复过程与主控影响因子研究−以澳洲Narrabeen海滩为例[J]. 海洋学报,2023,45(12):80–91 doi: 10.12284/hyxb2023159
引用本文: 冯曦,毛雅诗,周嬴涛. 岬湾海滩灾后恢复过程与主控影响因子研究−以澳洲Narrabeen海滩为例[J]. 海洋学报,2023,45(12):80–91 doi: 10.12284/hyxb2023159
Feng Xi,Mao Yashi,Zhou Yingtao. Study on the recovery process and the main controlling factors for post-storm beach profiles of a headland bay: Taking the Narrabeen Beach in Australia as an example[J]. Haiyang Xuebao,2023, 45(12):80–91 doi: 10.12284/hyxb2023159
Citation: Feng Xi,Mao Yashi,Zhou Yingtao. Study on the recovery process and the main controlling factors for post-storm beach profiles of a headland bay: Taking the Narrabeen Beach in Australia as an example[J]. Haiyang Xuebao,2023, 45(12):80–91 doi: 10.12284/hyxb2023159

岬湾海滩灾后恢复过程与主控影响因子研究以澳洲Narrabeen海滩为例

doi: 10.12284/hyxb2023159
基金项目: 海南省海洋地质资源与环境重点实验室开放基金项目(23-HNHYDZZYHJKFO37,22-HNHYDZZYHJKF028);自然资源部海洋生态保护与修复重点实验室/福建省海洋生态保护与修复重点实验室开放基金课题项目(EPR2023009);中长周期波浪条件下港口工程建造关键技术研究项目(ZJ2015-1);装备预研教育部联合基金项目( 8091B022123)。
详细信息
    作者简介:

    冯曦(1987—),女,江苏省南京市人,博士,教授,主要从事河口海岸水动力研究。E-mail:xifeng@hhu.edu.cn

  • 中图分类号: P737.13

Study on the recovery process and the main controlling factors for post-storm beach profiles of a headland bay: Taking the Narrabeen Beach in Australia as an example

  • 摘要: 位于澳洲悉尼附近的Narrabeen海滩经历着较频繁的风暴浪侵袭,在鲜有人工干预下,该海滩具有从风暴期间的沙坝剖面到常浪期稳定的滩肩剖面交替演变的自适应特征。为探明Narrabeen海滩在经历风暴浪后的自恢复动力,本文通过该海滩多年连续实测资料,分析典型风暴浪过后海滩剖面在常浪作用下的演变规律以及在恢复过程中的主要水动力要素。研究结果表明:Narrabeen海滩的恢复速率存在沿岸差异,沙滩中部恢复速率最快;在常年SE浪向主导下,小波高长周期波浪对北部以及中部剖面的恢复起促进作用,而潮动力对南部剖面在恢复期内的动态响应调控作用更强。本文据此提出考虑潮差的累积波能概念,发现其与南部海滩恢复能力间有良好的相关性。经调查,地形造成的浪向变化以及各剖面的地质地貌特征是造成该岬湾海滩恢复效率和恢复动力空间差异性的主要原因。此外,从年际时间尺度看,风暴剖面的恢复能力还受控于南方涛动因子。本文的研究方法和结论可为在极端海洋动力下岬湾海滩的防灾减灾和灾后修复提供有益借鉴。
  • 图  1  研究区域及其波浪状况

    Fig.  1  Study area and wave conditions

    图  2  海滩剖面示意图(a)和PF4海滩剖面变化示意图(b)

    Fig.  2  Diagram of the beach profile (a) and diagram of beach profile changes of PF4 (b)

    图  3  典型风暴事件过后在恢复期的后滨滨面逐月泥沙量时间过程线(a);不同恢复期内,各剖面岸线月均向海前进量与沙丘趾月均抬升量的相对变化对比(b)

    Fig.  3  Time series of the monthly-mean sediment volume on the backshore during the recovery period after each typical storm event (a); comparison of the ratios of the monthly-averaged seaward displacement of the shoreline’s position over the monthly-averaged elevated displacement of the dune toe for each profile during different recovery periods (b)

    图  4  风暴期(a1、a2)、快速恢复期(b1、b2)、稳定恢复期(c1、c2)岬湾砂质海滩演变情况(照片来源ARGUS拍摄)

    Fig.  4  Beach evolution of the headland bay during storm period (a1, a2), rapid recovery period (b1, b2), and stable recovery period (c1, c2) (photos credit: ARGUS)

    图  5  风暴后剖面变化

    Fig.  5  Changes of post-storm profiles

    图  6  PF4剖面2000年恢复期间后滨泥沙变化量与水动力参数时间过程

    左轴代表有效波高、波长、波陡、潮位的波动范围,右轴代表后滨单宽泥沙变化量、有效波周期和累积波能

    Fig.  6  Chart of coastal sediment change and dynamic parameters during the recovery period of 2000 of PF4 profile

    The left axis represents the fluctuation range of significant wave height, wavelength, wave steepness and tide level, and the right axis represents sediment change of backshore, the significant wave period and the cumulative wave energy

    图  7  后滨泥沙变化量与各动力参数相关性

    Fig.  7  Correlation between the sediment change of backshore and the dynamic parameters

    图  8  Narrabeen沙滩各剖面地形卫星照片

    Fig.  8  Satellite photograph of the profile terrain of Narrabeen Beach

    图  9  潮下带地质与地貌

    Fig.  9  Geologic and morphologic pattern of the subtidal portions of different profiles

    图  10  后滨滨面泥沙变化量及部分动力参数和SOI指数的关系

    Fig.  10  The relationship between sediment change of backshore, some dynamic parameters and SOI

    表  1  各阶段剖面的主要恢复力

    Tab.  1  The main restoring power of the profiles at each stage

    一月期 二月期 三月期 整个恢复期
    PF1 有效波高($ {H}_{\mathrm{s}} $) 平均低潮位(LWL) 平均低潮位(LWL) 近岸波长($ {L}_{\mathrm{s}} $)
    PF4 平均低潮位(LWL) 平均低潮位(LWL) 近岸波长($ {L}_{\mathrm{s}} $) 近岸波长($ {L}_{\mathrm{s}} $)
    PF8 近岸波长($ {L}_{\mathrm{s}} $) 近岸波长($ {L}_{\mathrm{s}} $) 累积波能($ {P}_{\mathrm{r}} $) 累积波能($ {P}_{\mathrm{r}} $)
    下载: 导出CSV

    表  2  海滩剖面分类[16]

    Tab.  2  Beach profile classification[16]

    泥沙参数 Ω < 1 1 ≤ Ω ≤ 6 Ω > 6
    海滩状态 耗散 中间
    LBT/RBB/TBR/LTT
    反射
    下载: 导出CSV
  • [1] Zhou Yingtao, Feng Xi, Liu Maoyuan, et al. Influence of beach erosion during wave action in designed artificial sandy beach using XBeach model: profiles and shoreline[J]. Journal of Marine Science and Engineering, 2023, 11(5): 984. doi: 10.3390/jmse11050984
    [2] 战超. 莱州湾东岸岬间海湾海岸地貌演变过程与影响机制[D]. 烟台: 中国科学院烟台海岸带研究所, 2017.

    Zhan Chao. Evolution of coastal geomorphology and influence mechanism of headland bay along eastern Laizhou Bay[D]. Yantai: Yantai Institution of Coastal Zone Research Chinese Academy of Sciences, 2017.
    [3] 冯曦, 易风, 曹海锦, 等. 南黄海辐射沙洲近岸海域波浪特性研究[J]. 海洋工程, 2018, 36(1): 62−73.

    Feng Xi, Yi Feng, Cao Haijin, et al. An observational study on wave characteristics at the Jiangsu Radial Sand Ridges in the South Yellow Sea of China[J]. The Ocean Engineering, 2018, 36(1): 62−73.
    [4] 周嬴涛, 冯曦, 管卫兵, 等. 波浪作用下岬湾海滩蚀积特点: 以澳大利亚Narrabeen海滩为例[J]. 科学通报, 2019, 64(2): 223−233. doi: 10.1360/N972018-00376

    Zhou Yingtao, Feng Xi, Guan Weibing, et al. Characteristics of beach erosion in headland bays due to wave action: taking the Narrabeen Beach in Australia as an example[J]. Chinese Science Bulletin, 2019, 64(2): 223−233. doi: 10.1360/N972018-00376
    [5] Phillips M S, Harley M D, Turner I L, et al. Shoreline recovery on wave-dominated sandy coastlines: the role of sandbar morphodynamics and nearshore wave parameters[J]. Marine Geology, 2017, 385: 146−159. doi: 10.1016/j.margeo.2017.01.005
    [6] Turner I L, Harley M D, Short A D, et al. A multi-decade dataset of monthly beach profile surveys and inshore wave forcing at Narrabeen, Australia[J]. Scientific Data, 2016, 3(1): 160024. doi: 10.1038/sdata.2016.24
    [7] Bennett W G, Karunarathna H, Reeve D E, et al. Computational modelling of morphodynamic response of a macro-tidal beach to future climate variabilities[J]. Marine Geology, 2019, 415: 105960. doi: 10.1016/j.margeo.2019.105960
    [8] Lord D, Kulmar M. The 1974 storms revisited: 25 years experience in ocean wave measurement along the South-East Australian coast[C]//Proceedings of the 27th International Conference on Coastal Engineering. Sydney: ASCE, 2001.
    [9] Harley M, D Turner I L, Short A D, et al. An empirical model of beach response to storms-SE Australia[C]//Proceedings of the 19th Australasian Conference on Coastal and Ocean Engineering. Wellington: Engineers Australia, 2009.
    [10] Short A D, Trenaman N L. Wave climate of the Sydney region, an energetic and highly variable ocean wave regime[J]. Australian Journal of Marine and Freshwater Research, 1992, 43(4): 765−791. doi: 10.1071/MF9920765
    [11] Davidson M A, Turner I L, Splinter K D, et al. Annual prediction of shoreline erosion and subsequent recovery[J]. Coastal Engineering, 2017, 130: 14−25. doi: 10.1016/j.coastaleng.2017.09.008
    [12] Phillips M S, Turner I L, Cox R J, et al. Will the sand come back? Observations and characteristics of beach recovery[C]//Proceedings of the Australasian Coasts & Ports Conference 2015. Auckland: Engineers Australia and IPENZ, 2015.
    [13] Dolan R, Davies R E. Coastal storm hazards[J]. Journal of Coastal Research, 1994: 103−114.
    [14] Davis R A, Fox W T, Hayes M O, et al. Comparison of ridge and runnel systems in tidal and non-tidal environments[J]. Journal of Sedimentary Petrology, 1972, 42(2): 413−421.
    [15] 冯曦, 江沅书, 周嬴涛, 等. 常浪期沙质海滩风暴剖面自然恢复过程研究[J]. 泥沙研究, 2023, 48(1): 57−64.

    Feng Xi, Jiang Yuanshu, Zhou Yingtao, et al. Study on the natural restoration processes of beach storm-profile[J]. Journal of Sediment Research, 2013, 48(1): 57−64.
    [16] Wright L D, Short A D. Morphodynamic variability of surf zones and beaches: a synthesis[J]. Marine Geology, 1984, 56(1/4): 92−118.
    [17] Ferguson R I, Church M. A simple universal equation for grain settling velocity[J]. Journal of Sedimentary Research, 2004, 74(6): 933−937. doi: 10.1306/051204740933
    [18] Woodroffe C D. Coast, Form, Process and Evolution[M]. Cambridge: Cambridge University Press, 2002.
    [19] Aagaard T, Greenwood B, Hughes M. Sediment transport on dissipative, intermediate and reflective beaches[J]. Earth-Science Reviews, 2013, 124: 32−50. doi: 10.1016/j.earscirev.2013.05.002
    [20] Hine A C. Mechanisms of berm development and resulting beach growth along a barrier spit complex[J]. Sedimentology, 1979, 26(3): 333−351. doi: 10.1111/j.1365-3091.1979.tb00913.x
    [21] 戚洪帅, 蔡锋, 雷刚, 等. 华南海滩风暴响应特征研究[J]. 自然科学进展, 2009, 19(9): 975−985.

    Qi Hongshuai, Cai Feng, Lei Gang, et al. The response characteristics of beaches to tropical storms in South China[J]. Progress in Natural Science, 2009, 19(9): 975−985.
    [22] Andrews E D, Antweiler R C, Neiman P J, et al. Influence of ENSO on flood frequency along the California coast[J]. Journal of Climate, 2004, 17(2): 337−348. doi: 10.1175/1520-0442(2004)017<0337:IOEOFF>2.0.CO;2
    [23] Short A D, Trembanis A C, Turner I L. Beach oscillation, rotation and the southern oscillation, Narrabeen Beach, Australia[C]//Proceedings of the 27th International Conference on Coastal Engineering. Sydney: ASCE, 2001: 2439−2452.
    [24] Ranasinghe R, McLoughlin R, Short A, et al. The Southern Oscillation Index, wave climate, and Beach rotation[J]. Marine Geology, 2004, 204(3/4): 273−287.
    [25] Short A D, Bracs M A, Turner I L. Beach oscillation and rotation: local and regional response at three beaches in Southeast Australia[J]. Journal of Coastal Research, 2014, 70(10070): 712−717.
    [26] Suanez S, Yates M L, Floc’h F, et al. Using 17 years of beach/dune profile monitoring to characterize morphological dynamics related to significant extreme water level events in North Brittany (France)[J]. Geomorphology, 2023, 433: 108709. doi: 10.1016/j.geomorph.2023.108709
    [27] Karunarathna H, Pender D, Ranasinghe R, et al. The effects of storm clustering on beach profile variability[J]. Marine Geology, 2014, 348: 103−112. doi: 10.1016/j.margeo.2013.12.007
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  259
  • HTML全文浏览量:  147
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-25
  • 修回日期:  2023-08-03
  • 网络出版日期:  2023-12-29
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回