Comparative analysis on grain size distribution information between single sample and duplicate samples of beach sediment,southern Leizhou Peninsula
-
摘要: 前人已开展了大量的关于沉积物粒度测试、数据分析与信息提取工作,但针对所采集的沉积物样品是否具有代表性的研究仍较为罕见。基于众数、中值粒径、粒级组分含量、沉积物类型和粒度参数等指标,本文对比分析了雷州半岛南部海滩30组沉积物平行样的粒度分布参数的定量和定性结果的异同、相关性和一致性。研究结果表明:(1)平行样的众数、中值粒径和粒级组分含量均表现出一定程度的差异性;(2)平行样的偏态和峰态特征值差异较为明显,P1平均值分别为–2.90~–1.53和11.23~21.59,P2为–2.55~–1.52和11.23~21.59,P3为–2.81~–1.86和13.41~27.69;(3)粒度参数的数值结果有约2/3的组合呈不相关关系(R2 ≤ 0.29);(4)分选系数、偏态和峰态分别有1/3、1/2和4/15的定性结果存在差异。沉积物粒度分布信息的空间异质性和样品采集的随机性是上述差异的主要原因。为了尽可能消除样品采集的随机性和刻画粒度分布信息的时空异质性,建议未来样品采集时同时采集平行样。本文提供了一个以海滩沉积物为研究对象的平行样粒度参数结果对比的典型案例,结果有助于提升对沉积物样品有效采集策略方面的认识。Abstract: Previous research has conducted extensive work on sediment grain size testing, data analysis, and information extraction. However, studies on whether the collected sediment samples are representative are still relatively rare. Based on indicators such as the mode, median grain size, particle size distribution, sediment type, and grain size parameters, this study compared and analyzed the quantitative and qualitative results of the grain size distribution parameters of 30 parallel sediment samples collected from beaches in the southern part of Leizhou Peninsula, China. The study examined the differences, correlations, and consistencies of these parameters. The results showed that: (1) the mode, median grain size, and particle size distribution of parallel samples exhibited a certain degree of variability; (2) the skewness and kurtosis of parallel samples showed significant differences, with average values of P1 ranging from –2.90 to –1.53 and 11.23 to 21.59, P2 ranging from –2.55 to –1.52 and 11.23 to 21.59, and P3 ranging from –2.81 to –1.86 and 13.41 to 27.69; (3) about two-thirds of the combinations of grain size parameters had no correlation (R2 ≤ 0.29); (4) qualitative results of sorting coefficients, skewness, and kurtosis showed differences in 1/3, 1/2, and 4/15 of the cases, respectively. The spatial heterogeneity of sediment grain size distribution information and the randomness of sample collection are the main reasons for these differences. To minimize the randomness of sample collection and characterize the spatiotemporal heterogeneity of grain size distribution information, parallel samples are recommended for future sample collection. This study provides a typical case of comparing the results of parallel sample grain size parameters for beach sediment, which can improve our understanding of effective sediment sample collection strategies.
-
粒度参数 公式 平均粒径($\varPhi $) $ \dfrac{\sum\limits _{i}^{n}{X}_{i}{f}_{i}}{100} $ 分选系数 $ {\left[\dfrac{\sum\limits _{i}^{n}{{f}_{i}({X}_{i}-\overline{X})}^{2}}{100}\right]}^{1/2} $ 偏态 $ \dfrac{\sum\limits _{i}^{n}{({X}_{i}-\overline{X})}^{3}{f}_{i}}{100{\sigma }^{3}} $ 峰态 $ \dfrac{\sum\limits _{i}^{n}{({X}_{i}-\overline{X})}^{4}{f}_{i}}{100{\sigma }^{4}} $ 注: Xi为粒级组的中值($\varPhi $),fi为各粒级范围的百分比含量,$ \sigma $为分选系数的结果。 Tab. 2 Physical descriptive terms and their ranges applied to numerical values for grain size parameters[5, 9]
粒度参数 定性描述术语 数值范围 分选 分选极好 < 0.35 分选好 0.35~0.50 分选较好 0.50~0.70 分选中等 0.70~1.00 分选较差 1.00~2.00 分选差 2.00~4.00 分选极差 > 4.00 偏态 极负偏 < –1.30 负偏 –1.30~–0.43 近对称 –0.43~0.43 正偏 0.43~1.30 极正偏 > 1.30 峰态 很平坦 < 1.70 平坦 1.70~2.55 中等 2.55~3.70 尖锐 3.70~7.40 很尖锐 > 7.40 表 3 粒度参数数值结果特征值统计表
Tab. 3 Characteristic values of grainsize parameters for the numerical values
粒度参数 采样断面编号 平行样 最小值 最大值 平均值 标准偏差 平均粒径($\varPhi $) P1 i 2.54 2.84 2.76 0.08 ii 2.74 2.83 2.79 0.03 iii 2.69 2.89 2.78 0.05 P2 i 2.79 3.01 2.87 0.05 ii 2.79 2.98 2.88 0.05 iii 2.78 3.12 2.88 0.09 P3 i 2.57 2.89 2.75 0.08 ii 2.60 2.97 2.87 0.10 iii 2.83 2.94 2.89 0.03 分选系数 P1 i 0.22 0.34 0.27 0.04 ii 0.20 0.32 0.28 0.04 iii 0.19 0.31 0.25 0.04 P2 i 0.20 0.34 0.25 0.05 ii 0.10 0.33 0.21 0.06 iii 0.17 0.44 0.24 0.07 P3 i 0.18 0.63 0.41 0.12 ii 0.19 0.26 0.22 0.02 iii 0.21 0.30 0.25 0.03 偏态 P1 i –3.77 –1.98 –2.81 0.63 ii –3.97 –1.04 –2.90 0.91 iii –3.21 –0.41 –1.53 0.87 P2 i –4.97 –0.32 –2.55 1.69 ii –4.31 0.35 –1.80 1.38 iii –5.10 0.14 –1.52 1.52 P3 i –3.78 –0.43 –2.65 0.93 ii –3.22 –0.35 –1.86 0.79 iii –4.26 –1.07 –2.81 0.94 峰态 P1 i 14.06 27.21 21.59 4.53 ii 9.95 30.28 21.53 6.54 iii 4.92 27.8 11.23 6.56 P2 i 5.62 56.45 26.39 16.50 ii 5.50 63.58 22.86 15.57 iii 4.41 55.80 17.93 14.28 P3 i 4.49 23.02 13.41 5.75 ii 8.76 33.81 19.89 6.38 iii 13.48 40.53 27.69 10.02 -
[1] Michael N A, Zühlke R. Source-to-sink: regional grain size trends to reconstruct sediment budgets and catchment areas[J]. Basin Research, 2022, 34(1): 393−410. doi: 10.1111/bre.12624 [2] Gao Shu, Collins M. Net sediment transport patterns inferred from grain-size trends, based upon definition of “transport vectors”[J]. Sedimentary Geology, 1992, 81(1/2): 47−60. [3] Chiverrell R C, Sear D A, Warburton J, et al. Using lake sediment archives to improve understanding of flood magnitude and frequency: recent extreme flooding in northwest UK[J]. Earth Surface Processes and Landforms, 2019, 44(12): 2366−2376. doi: 10.1002/esp.4650 [4] Folk R L, Ward W C. Brazos River bar: a study in the significance of grain size parameters[J]. Journal of Sedimentary Research, 1957, 27(1): 3−26. doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D [5] Friedman G M. Comparison of moment measures for sieving and thin-section data in sedimentary petrological studies[J]. Journal of Sedimentary Research, 1962, 32(1): 15−25. [6] Swan D, Clague J J, Luternauer J L. Grain-size statistics I: evaluation of the Folk and Ward graphic measures[J]. Journal of Sedimentary Research, 1978, 48(3): 863−878. [7] Swan D, Clague J J, Luternauer J L. Grain-size statistics II: evaluation of grouped moment measures[J]. Journal of Sedimentary Research, 1979, 49(2): 487−500. [8] McManus J. Grain-size determination and interpretation[M]//Tucker M E. Techniques in Sedimentology. Oxford: Blackwell, 1988: 63−85. [9] Blott S J, Pye K. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments[J]. Earth Surface Processes and Landforms, 2001, 26(11): 1237−1248. doi: 10.1002/esp.261 [10] Wu Li, Krijgsman W, Liu Jian, et al. CFLab: A MATLAB GUI program for decomposing sediment grain size distribution using Weibull functions[J]. Sedimentary Geology, 2020, 398: 105590. doi: 10.1016/j.sedgeo.2020.105590 [11] 贾建军, 高抒, 薛允传. 图解法与矩法沉积物粒度参数的对比[J]. 海洋与湖沼, 2002, 33(6): 577−582.Jia Jianjun, Gao Shu, Xue Yunchuang. Grain-size parameters derived from graphic and moment methods: a comparative study[J]. Oceanologia et Limnologia Sinica, 2002, 33(6): 577−582. [12] 孙有斌, 高抒, 李军. 边缘海陆源物质中环境敏感粒度组分的初步分析[J]. 科学通报, 2003, 48(1): 83−86.Sun Youbing, Gao Shu, Li Jun. Preliminary analysis of grain-size populations with environmentally sensitive terrigenous components in marginal sea setting[J]. Chinese Science Bulletin, 2003, 48(2): 184−187. [13] 张才学, 孙省利, 陈春亮. 湛江港湾表层沉积物重金属的分布特征及潜在生态危害评价[J]. 湛江海洋大学学报, 2006, 26(3): 45−49.Zhang Caixue, Sun Xingli, Chen Chunliang. Distribution features and evaluation on potential ecological risk of heavy metals in submarine surface sediments of Zhanjiang Bay[J]. Journal of Zhanjiang Ocean University, 2006, 26(3): 45−49. [14] 刘志杰, 龙海燕. 南海沉积物图解法和矩值法粒度参数计算及对比[J]. 中国海洋大学学报(自然科学版), 2009, 39(2): 313−316, 336.Liu Zhijie, Long Haiyan. Comparing study on the grain-size parameters estimated from the graphical method and the moment method of the sediments from South China Sea[J]. Periodical of Ocean University of China, 2009, 39(2): 313−316, 336. [15] 刘志杰, 公衍芬, 周松望, 等. 海洋沉积物粒度参数3种计算方法的对比研究[J]. 海洋学报, 2013, 35(3): 179−188.Liu Zhijie, Gong Yanfen, Zhou Songwang, et al. A comparative study on the grain-size parameters of marine sediments derived from three different computing methods[J]. Haiyang Xuebao, 2013, 35(3): 179−188. [16] 蔡国富, 范代读, 尚帅, 等. 图解法与矩值法计算的潮汐沉积粒度参数之差异及其原因解析[J]. 海洋地质与第四纪地质, 2014, 34(1): 195−204.Cai Guofu, Fan Daidu, Shang Shuai, et al. Difference in grain-size parameters of tidal deposits derived form the graphic and its potential causes[J]. Marine Geology & Quaternary Geology, 2014, 34(1): 195−204. [17] 王兆夺, 于东生, 罗福生, 等. 图解法和矩法计算泉州湾表层沉积物粒度参数的对比[J]. 海洋地质前沿, 2016, 32(7): 19−27.Wang Zhaoduo, Yu Dongsheng, Luo Fusheng, et al. Comparison of grain size parameters from graphical and moment methods for surface sediments in Quanzhou Bay[J]. Marine Geology Frontiers, 2016, 32(7): 19−27. [18] 李自超, 蒲晓强, 赵辉, 等. 湖光岩玛珥湖表层沉积物粒度特征及其物源指示意义[J]. 广东海洋大学学报, 2017, 37(3): 93−99.Li Zichao, Pu Xiaoqiang, Zhao Hui, et al. Grain size characteristics of the surface sediments in Huguangyan Maar Lake and its significance to sediment source analysis[J]. Journal of Guangdong Ocean University, 2017, 37(3): 93−99. [19] 黄鑫, 蒲晓强. 热液活动对海底沉积物中有机质的影响[J]. 广东海洋大学学报, 2017, 37(1): 117−124.Huang Xin, Pu Xiaoqiang. The influence of hydrothermal activities on the organic matter in sediment[J]. Journal of Guangdong Ocean University, 2017, 37(1): 117−124. [20] 李高聪, 李志强, 朱士兵, 等. 图解法和矩值法海洋沉积物粒度参数的对比[J]. 广东海洋大学学报, 2020, 40(6): 96−101.Li Gaocong, Li Zhiqiang, Zhu Shibing, et al. Comparative study on grain-size parameters of marine sediment derived from graphic and moment methods[J]. Journal of Guangdong Ocean University, 2020, 40(6): 96−101. [21] 梅西, 李学杰, 密蓓蓓, 等. 中国海域表层沉积物分布规律及沉积分异模式[J]. 中国地质, 2020, 47(5): 1447−1462.Mei Xi, Li Xuejie, Mi Beibei, et al. Distribution regularity and sedimentary differentiation patterns of China seas surface sediments[J]. Geology in China, 2020, 47(5): 1447−1462. [22] 瞿洪宝, 苟鹏飞, 孙龙飞, 等. 海南岛崖州湾表层沉积物空间分布特征及其受控机制[J]. 海洋学报, 2021, 43(12): 70−81.Qu Hongbao, Gou Pengfei, Sun Longfei, et al. Spatial distribution and its controlling mechanism of surface sediments in the Yazhou Bay, Hainan Island[J]. Haiyang Xuebao, 2021, 43(12): 70−81. [23] 谭靖千, 高苑, Abarike G A, 等. 环雷州半岛海底表层沉积物brGDGTs组成分布特征及其环境意义[J]. 广东海洋大学学报, 2021, 41(5): 84−93.Tan Jingqian, Gao Yuan, Abarike G A, et al. Composition and distribution characteristics of brGDGTs and significance of environment in surface sediments of Leizhou Peninsula[J]. Journal of Guangdong Ocean University, 2021, 41(5): 84−93. [24] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 12763.8−2007, 海洋调查规范 第8部分: 海洋地质地球物理调查[S]. 北京: 中国标准出版社, 2018.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People's Republic of China. GB/T 12763.8−2007, Specifications for oceanographic survey-Part 8: marine geology and geophysics survey[S]. Beijing: Standards Press of China, 2018. [25] 包砺彦. 雷州半岛南部青安湾海滩的沉积特征和地形发育[J]. 热带海洋, 1989, 8(2): 75−83.Bao Liyan. Sedimentary characteristics and landform developments of Qingan Bay beach in southern Leizhou Peninsula[J]. Tropic Oceanology, 1989, 8(2): 75−83. [26] 葛同明, 樊利民, 徐行, 等. 雷琼地区湛江组、北海组的古地磁学研究[J]. 海洋地质与第四纪地质, 1994, 14(4): 61−70.Ge Tongming, Fan Limin, Xu Xing, et al. Paleomagnetism of Beihal and Zhanjiang formations in Lei-Qiong region[J]. Marine Geology & Quaternary Geology, 1994, 14(4): 61−70. [27] 朱士兵, 李志强, 张会领, 等. 基于地貌动力学的雷州半岛海滩状态分类研究[J]. 地理研究, 2020, 39(6): 1269−1282.Zhu Shibing, Li Zhiqiang, Zhang Huiling, et al. Morphodynamic classification of beaches on the coast of Leizhou Peninsula[J]. Geographical Research, 2020, 39(6): 1269−1282. [28] 刘胜璟, 高建华, 徐笑梅, 等. 浙闽沿岸泥质区沉积物粒度组分对长江入海输沙量减少的响应[J]. 海洋学报, 2021, 43(3): 105−115.Liu Shengjing, Gao Jianhua, Xu Xiaomei, et al. Response of sediment grain size composition of the Zhe-Min coastal mud to the sediment load reduction of the Changjiang River entering the sea[J]. Haiyang Xuebao, 2021, 43(3): 105−115. [29] Syvitski J P M. Principles, Methods, and Application of Particle Size Analysis[M]. Cambridge: Cambridge University Press, 1991. [30] 孙有斌, 高抒, 鹿化煜. 前处理方法对北黄海沉积物粒度的影响[J]. 海洋与湖沼, 2001, 32(6): 665−671.Sun Youbin, Gao Shu, Lu Huayu. Influence of different pretreatment procedures on the particle-size distribution of surficial sediments in the northern Yellow Sea[J]. Oceanologia et Limnologia Sinica, 2001, 32(6): 665−671. [31] 程鹏, 高抒, 李徐生. 激光粒度仪测试结果及其与沉降法、筛析法的比较[J]. 沉积学报, 2001, 19(3): 449−455.Cheng Peng, Gao Shu, Li Xusheng. Evaluation of a wide range laser particle size analyses and comparison with pipette and sieving methods[J]. Acta Sedimentologica Sinica, 2001, 19(3): 449−455. [32] 陈莹璐, 张玉柱, 谭子辉, 等. MS2000和LS13320激光粒度仪测定沉积物粒度结果的差异[J]. 中山大学学报(自然科学版), 2018, 57(4): 48−55.Chen Yinglu, Zhang Yuzhu, Tan Zihui, et al. Comparison of particle-size results of sediments measured by the MS2000 and LS13320 laser diffraction particle-size analyzers[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2018, 57(4): 48−55. [33] Wang Shanshan, Pan Cunhong, Xie Dongfeng, et al. Grain size characteristics of surface sediment and its response to the dynamic sedimentary environment in Qiantang Estuary, China[J]. International Journal of Sediment Research, 2022, 37(4): 457−468. doi: 10.1016/j.ijsrc.2021.12.002 [34] Yang Yang, Piper D J W, Xu Min, et al. Northwestern Pacific tropical cyclone activity enhanced by increased Asian dust emissions during the Little Ice Age[J]. Nature Communications, 2022, 13(1): 1712. doi: 10.1038/s41467-022-29386-2 [35] van Rijn L C. Unified view of sediment transport by currents and waves. I: initiation of motion, bed roughness, and bed-load transport[J]. Journal of Hydraulic Engineering, 2007, 133(6): 649−667. doi: 10.1061/(ASCE)0733-9429(2007)133:6(649) [36] Cera A, Pierdomenico M, Sodo A, et al. Spatial distribution of microplastics in volcanic lake water and sediments: relationships with depth and sediment grain size[J]. Science of the Total Environment, 2022, 829: 154659. doi: 10.1016/j.scitotenv.2022.154659