留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海底AUV关键技术综述

周晶 司玉林 林渊 魏艳 安新宇 王杭州 黄豪彩 陈鹰

周晶,司玉林,林渊,等. 海底AUV关键技术综述[J]. 海洋学报,2023,45(10):1–12 doi: 10.12284/hyxb2023153
引用本文: 周晶,司玉林,林渊,等. 海底AUV关键技术综述[J]. 海洋学报,2023,45(10):1–12 doi: 10.12284/hyxb2023153
Zhou Jing,Si Yulin,Lin Yuan, et al. A review of subsea AUV technology[J]. Haiyang Xuebao,2023, 45(10):1–12 doi: 10.12284/hyxb2023153
Citation: Zhou Jing,Si Yulin,Lin Yuan, et al. A review of subsea AUV technology[J]. Haiyang Xuebao,2023, 45(10):1–12 doi: 10.12284/hyxb2023153

海底AUV关键技术综述

doi: 10.12284/hyxb2023153
基金项目: 国家重点研发计划项目(2017YFC0306100);国家自然科学基金面上项目(52271352);江苏省重点研发计划项目(BE2022062)。
详细信息
    作者简介:

    周晶(1989—),女,山东省东营市人,教授,主要从事水下机器人及其机敏运动控制研究。E-mail:jingzhou@zju.edu.cn

    通讯作者:

    陈鹰,男,教授,主要从事海洋技术研究。E-mail: ychen@zju.edu.cn

  • 中图分类号: P715.5

A review of subsea AUV technology

  • 摘要: 海底海洋的观测探测,亟需大范围、长时间的观测平台。海底AUV有三大要点:适应海底机动性的结构、适应海底复杂环境的机敏运动性能、适应海底的水声通信定位技术。本文分析了海底AUV的发展与演变历程,凝练出海底AUV的关键技术难题,并相应地给出海底AUV水动力外形优化技术、海底AUV机敏运动控制技术、海底水声通信与定位导航技术、海底接驳与充电技术的解决思路。最后以碟形结构的水下直升机为例,给出了海底AUV的实践探索一例。本文将为海底AUV及其观测探测技术的发展提供指导意义。
  • 图  1  水体中各种潜水器作业范围

    Fig.  1  Operation range of various underwater vehicles in water body

    图  2  AUV的多种结构形式

    Fig.  2  Multiple formations of AUV

    图  3  海底AUV的本体结构

    Fig.  3  Body structures of subsea AUV

    图  4  潜水器的机动性

    Fig.  4  Mobility of underwater vehicle

    图  5  推进器布局与控制机敏性

    Fig.  5  Propellers layout and control mobility

    图  6  海底信道环境时变对水声通信定位影响示意图

    Fig.  6  Schematic diagram of the impact of time-varying underwater channel environment on underwater acoustic communication positioning

    图  7  水下无线充电系统框图

    Fig.  7  Schematic diagram of underwater wireless charging system

    图  8  水下电磁耦合式能量传输系统应用实例

    上: Odyssey II电磁感应式充电装置,下: Tohuku大学与NEC公司开发的非接触式能量传输装置

    Fig.  8  Application of underwater inductive energy transfer system

    Top: Odyssey II inductive charging device. Bottom: Contactless energy transfer system developed by Tohuku University and NEC company

    图  9  深海移动平台与海底观测网非接触接驳系统

    Fig.  9  Deep sea mobile platforms and contactless docking system of seabed observation network

    图  10  AUH与停机坪

    Fig.  10  AUH and helipad

    图  11  AUH系列样机的发展与演变

    Fig.  11  Development of evolution of AUH series prototyes

  • [1] 陈鹰, 杨灿军, 陶春辉, 等. 海底观测系统[M]. 北京: 海洋出版社, 2006.

    Chen Ying, Yang Canjun, Tao Chunhui, et al. Deep Sea Observatory System[M]. Beijing: China Ocean Press, 2006.
    [2] Doya C, Chatzievangelou D, Bahamon N, et al. Seasonal monitoring of deep-sea megabenthos in Barkley Canyon cold seep by internet operated vehicle (IOV)[J]. PLoS One, 2017, 12(5): e0176917. doi: 10.1371/journal.pone.0176917
    [3] Laschi C, Mazzolai B, Cianchetti M. Soft robotics: technologies and systems pushing the boundaries of robot abilities[J]. Science Robotics, 2016, 1(1): eaah3690. doi: 10.1126/scirobotics.aah3690
    [4] Yoshida H, Aoki T, Osawa H, et al. A deepest depth ROV for sediment sampling and its sea trial result[C]//Proceedings of 2007 Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies. Tokyo: IEEE, 2007: 28−33.
    [5] Katzschmann R K, Marchese A D, Rus D. Hydraulic autonomous soft robotic fish for 3D swimming[M]//Hsieh M A, Khatib O, Kumar V. Experimental Robotics: The 14th International Symposium on Experimental Robotics. Cham: Springer, 2016: 405−420.
    [6] Marchese A D, Onal C D, Rus D. Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators[J]. Soft Robotics, 2014, 1(1): 75−87. doi: 10.1089/soro.2013.0009
    [7] Marras S, Porfiri M. Fish and robots swimming together: attraction towards the robot demands biomimetic locomotion[J]. Journal of the Royal Society Interface, 2012, 9(73): 1856−1868. doi: 10.1098/rsif.2012.0084
    [8] Cloitre A, Arensen B, Patrikalakis N M, et al. Propulsive performance of an underwater soft biomimetic batoid robot[C]//Proceedings of the Twenty-fourth International Ocean and Polar Engineering Conference. Busan: ISOPE, 2014: 1712−1717.
    [9] Li Tiefeng, Li Guorui, Liang Yiming, et al. Fast-moving soft electronic fish[J]. Science Advances, 2017, 3(4): e1602045. doi: 10.1126/sciadv.1602045
    [10] Suzumori K, Endo S, Kanda T, et al. A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot[C]//Proceedings 2007 IEEE International Conference on Robotics and Automation. Rome: IEEE, 2007: 4975−4980.
    [11] Calisti M, Giorelli M, Levy G, et al. An octopus-bioinspired solution to movement and manipulation for soft robots[J]. Bioinspiration & Biomimetics, 2011, 6(3): 036002.
    [12] Purser A, Thomsen L, Barnes C, et al. Temporal and spatial benthic data collection via an internet operated Deep Sea Crawler[J]. Methods in Oceanography, 2013, 5: 1−18. doi: 10.1016/j.mio.2013.07.001
    [13] Picardi G, Chellapurath M, Iacoponi S, et al. Bioinspired underwater legged robot for seabed exploration with low environmental disturbance[J]. Science Robotics, 2020, 5(42): eaaz1012. doi: 10.1126/scirobotics.aaz1012
    [14] Song Zhuoyuan, Marburg A, Manalang D. Resident subsea robotic systems: a review[J]. Marine Technology Society Journal, 2020, 54(5): 21−31 doi: 10.4031/MTSJ.54.5.4
    [15] Singh H, Can Ali, Eustice R, et al. Seabed AUV offers new platform for high-resolution imaging[J]. Eos, Transactions American Geophysical Union, 2004, 85(31): 289−296.
    [16] Albiez J, Joyeux S, Gaudig C, et al. FlatFish—a compact subsea-resident inspection AUV[C]//Proceedings of the OCEANS 2015-MTS/IEEE Washington. Washington: IEEE, 2015.
    [17] Bettle M C, Gerber A G, Watt G D. Unsteady analysis of the six DOF motion of a buoyantly rising submarine[J]. Computers & Fluids, 2009, 38(9): 1833−1849.
    [18] Borlaug I L G, Pettersen K Y, Gravdahl J T. Combined kinematic and dynamic control of vehicle-manipulator systems[J]. Mechatronics, 2020, 69: 102380. doi: 10.1016/j.mechatronics.2020.102380
    [19] Phillips A, Furlong M, Turnock S R. The use of computational fluid dynamics to assess the hull resistance of concept autonomous underwater vehicles[C]//Proceedings of the OCEANS 2007-Europe. Aberdeen: IEEE, 2007: 1−6.
    [20] Phillips A B, Turnock S R, Furlong M. The use of computational fluid dynamics to aid cost-effective hydrodynamic design of autonomous underwater vehicles[C]//Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2010, 224(4): 239−254.
    [21] Li Yongcheng, Hu Jianxin, Zhao Qiuzhuo, et al. Hydrodynamic performance of autonomous underwater gliders with active twin undulatory wings of different aspect ratios[J]. Journal of Marine Science and Engineering, 2020, 8(7): 476. doi: 10.3390/jmse8070476
    [22] Li Yongcheng, Pan Dingyi, Zhao Qiaosheng, et al. Hydrodynamic performance of an autonomous underwater glider with a pair of bioinspired hydro wings—A numerical investigation[J]. Ocean Engineering, 2018, 163: 51−57. doi: 10.1016/j.oceaneng.2018.05.052
    [23] Sun Tongshuai, Chen Guangyao, Yang Shaoqiong, et al. Design and optimization of a bio-inspired hull shape for AUV by surrogate model technology[J]. Engineering Applications of Computational Fluid Mechanics, 2021, 15(1): 1057−1074. doi: 10.1080/19942060.2021.1940287
    [24] Honaryar A, Ghiasi M. Design of a bio-inspired hull shape for an AUV from hydrodynamic stability point of view through experiment and numerical analysis[J]. Journal of Bionic Engineering, 2018, 15(6): 950−959. doi: 10.1007/s42235-018-0083-z
    [25] Alvarez A, Bertram V, Gualdesi L. Hull hydrodynamic optimization of autonomous underwater vehicles operating at snorkeling depth[J]. Ocean Engineering, 2009, 36(1): 105−112. doi: 10.1016/j.oceaneng.2008.08.006
    [26] Divsalar K. Improving the hydrodynamic performance of the SUBOFF bare hull model: a CFD approach[J]. Acta Mechanica Sinica, 2020, 36(1): 44−56. doi: 10.1007/s10409-019-00913-7
    [27] Du Xiaoxu, Wang Huan, Hao Chengzhi, et al. Analysis of hydrodynamic characteristics of unmanned underwater vehicle moving close to the sea bottom[J]. Defence Technology, 2014, 10(1): 76−81. doi: 10.1016/j.dt.2014.01.007
    [28] Salari M, Rava A. Numerical investigation of hydrodynamic flow over an AUV moving in the water-surface vicinity considering the laminar-turbulent transition[J]. Journal of Marine Science and Application, 2017, 16(3): 298−304. doi: 10.1007/s11804-017-1422-x
    [29] Wu Lihong, Li Yiping, Su Shaojuan, et al. Hydrodynamic analysis of AUV underwater docking with a cone-shaped dock under ocean currents[J]. Ocean Engineering, 2014, 85: 110−126. doi: 10.1016/j.oceaneng.2014.04.022
    [30] Wang Xihui, Shi Yao, Pan Guang, et al. Numerical research on the high-speed water entry trajectories of AUVs with asymmetric nose shapes[J]. Ocean Engineering, 2021, 234: 109274. doi: 10.1016/j.oceaneng.2021.109274
    [31] da Silva Costa G, Ruiz A, Reis M A, et al. Numerical analysis of stability and manoeuvrability of Autonomous Underwater Vehicles (AUV) with fishtail shape[J]. Ocean Engineering, 2017, 144: 320−326. doi: 10.1016/j.oceaneng.2017.08.030
    [32] 朝黎明. 仿蝠鲼自主变形翼水动力性能研究[D]. 西安: 西北工业大学, 2019.

    Zhao Liming. Hydrodynamic performance of actively mata-inspired deformed foil[D]. Xi’an: Northwestern Polytechnical University, 2019.
    [33] Lin Yuan, Huang Yue, Zhu Hai, et al. Simulation study on the hydrodynamic resistance and stability of a disk-shaped autonomous underwater helicopter[J]. Ocean Engineering, 2021, 219: 108385. doi: 10.1016/j.oceaneng.2020.108385
    [34] An Xinyu, Chen Ying, Huang Haocai. Parametric design and optimization of the profile of autonomous underwater helicopter based on NURBS[J]. Journal of Marine Science and Engineering, 2021, 9(6): 668. doi: 10.3390/jmse9060668
    [35] Chen Chenwei, Chen Ying, Cai Qianwen. Hydrodynamic-interaction analysis of an autonomous underwater hovering vehicle and ship with wave effects[J]. Symmetry, 2019, 11(10): 1213. doi: 10.3390/sym11101213
    [36] Chen Chenwei, Jiang Yong, Huang Haocai, et al. Computational fluid dynamics study of the motion stability of an autonomous underwater helicopter[J]. Ocean Engineering, 2017, 143: 227−239. doi: 10.1016/j.oceaneng.2017.07.020
    [37] 吴玉崭, 张平. 推力矢量对飞机敏捷性影响的研究[C]//第13届中国系统仿真技术及其应用学术年会论文集. 大理: 美国科研出版社, 2011.

    Wu Yuzhan, Zhang Ping. Research on the influence of thrust vectoring on aircraft agility[C]//Proceedings of the 13th China Annual Conference on System Simulation Technology and Its Applications. Dali: Scientific Research Publishing, 2011.
    [38] 王博. 基于飞行品质、敏捷性要求的控制律设计方法研究[D]. 南京: 南京航空航天大学, 2008.

    Wang Bo. Research on a control law design method considering flying qualities and agility[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008.
    [39] Kumar V S, Rajagopal P. Optimising the turning performance of serial split-hull underwater vehicles[J]. Ocean Engineering, 2022, 261: 112099. doi: 10.1016/j.oceaneng.2022.112099
    [40] Gao Dongqi, Wang Tong, Qin Fenghua, et al. Design, fabrication, and testing of a maneuverable underwater vehicle with a hybrid propulsor[J]. Biomimetic Intelligence and Robotics, 2022, 2(4): 100072. doi: 10.1016/j.birob.2022.100072
    [41] Low K H, Willy A. Biomimetic motion planning of an undulating robotic fish fin[J]. Journal of Vibration and Control, 2006, 12(12): 1337−1359. doi: 10.1177/1077546306070597
    [42] Hu Tianjiang, Wang Guangming, Shen Lincheng, et al. A novel conceptual fish-like robot inspired by rhinecanthus aculeatus[C]//Proceedings of the 9th International Conference on Control, Automation, Robotics and Vision. Singapore: IEEE, 2006: 1−5.
    [43] 段斐. 微小型水下机器人运动仿真研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.

    Duan Fei. Research on motion simulation for mini autonomous underwater vehicle[D]. Harbin: Harbin Engineering University, 2012.
    [44] Lekkas A M, Fossen T I. Minimization of cross-track and along-track errors for path tracking of marine underactuated vehicles[C]//Proceedings of the 2014 European Control Conference. Strasbourg: IEEE, 2014: 3004−3010.
    [45] Fredriksen E, Pettersen K Y. Global κ-exponential way-point maneuvering of ships: theory and experiments[J]. Automatica, 2006, 42(4): 677−687. doi: 10.1016/j.automatica.2005.12.020
    [46] Fossen T I, Breivik M, Skjetne R. Line-of-sight path following of underactuated marine craft[J]. IFAC Proceedings Volumes, 2003, 36(21): 244−249.
    [47] Lekkas A M, Fossen T I. A time-varying lookahead distance guidance law for path following[J]. IFAC Proceedings Volumes, 2012, 45(27): 398−403. doi: 10.3182/20120919-3-IT-2046.00068
    [48] Liao Yulei, Wan Lei, Zhuang Jiayuan. Backstepping dynamical sliding mode control method for the path following of the underactuated surface vessel[J]. Procedia Engineering, 2011, 15: 256−263. doi: 10.1016/j.proeng.2011.08.051
    [49] Güneş A, Güllü V A Ï. Performance comparison of target tracking filters in underwater multipath environments[C]//Proceedings of the 29th Signal Processing and Communications Applications Conference. Istanbul: IEEE, 2021: 1−4.
    [50] Song Haiyan, Yang Changyi. Anti-multipath near-field localization in multi-path underwater acoustic channel[C]//Proceedings of 2021 IEEE International Conference on Consumer Electronics-Taiwan. Penghu, China: IEEE, 2021: 1−2.
    [51] Lohrasbipeydeh H, Mosayyebpour S, Gulliver T A. Single hydrophone passive acoustic sperm whale range and depth estimation[C]//Proceedings of 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver: IEEE, 2013: 754−757.
    [52] 孙华, 陈韶华, 龙小民. 基于多径时延估计的单水听器被动定位[J]. 水雷战与舰船防护, 2016, 24(1): 11−13, 23.

    Sun Hua, Chen Shaohua, Long Xiaomin. Passive localization with single hydrophone based on multipath time delay estimation[J]. Mine Warfare & Self-Defence, 2016, 24(1): 11−13, 23.
    [53] Dos Santos M M, De Giacomo G G, Drews P L J, et al. Matching color aerial images and underwater sonar images using deep learning for underwater localization[J]. IEEE Robotics and Automation Letters, 2020, 5(4): 6365−6370. doi: 10.1109/LRA.2020.3013852
    [54] Zhang Jing, Cao Yu, Han Guangyao, et al. Deep neural network-based underwater OFDM receiver[J]. IET Communications, 2019, 13(13): 1998−2002. doi: 10.1049/iet-com.2019.0243
    [55] Lee-Leon A, Yuen C, Herremans D. Underwater acoustic communication receiver using deep belief network[J]. IEEE Transactions on Communications, 2021, 69(6): 3698−3708. doi: 10.1109/TCOMM.2021.3063353
    [56] Rauchenstein L T, Vishnu A, Li Xinya, et al. Improving underwater localization accuracy with machine learning[J]. Review of Scientific Instruments, 2018, 89(7): 074902. doi: 10.1063/1.5012687
    [57] Yan Jing, Meng Yuan, Yang Xian, et al. Privacy-preserving localization for underwater sensor networks via deep reinforcement learning[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 1880−1895. doi: 10.1109/TIFS.2020.3045320
    [58] Kawasaki T, Fukasawa T, Noguchi T, et al. Development of AUV “marine bird” with underwater docking and recharging system[C]//Proceedings of 2003 International Conference Physics and Control. Proceedings. Tokyo: IEEE, 2003: 166−170.
    [59] Oiler J, Anderson G, Bana V, et al. Thermal and biofouling effects on underwater wireless power transfer[C]//Proceedings of 2015 IEEE Wireless Power Transfer Conference. Boulder: IEEE, 2015: 1−4.
    [60] Gish L A. Design of an AUV recharging system[D]. Cambridge: Massachusetts Institute of Technology, 2004.
    [61] Miller B D. Design of an AUV recharging system[D]. Cambridge: Massachusetts Institute of Technology, 2005.
    [62] Kawasaki T, Noguchi T, Fukasawa T, et al. “Marine Bird”, a new experimental AUV-results of docking and electric power supply tests in sea trials[C]//Proceedings of the Oceans '04 MTS/IEEE Techno-Ocean '04. Kobe: IEEE, 2004: 1738–1744.
    [63] Kojiya T, Sato F, Matsuki H, et al. Automatic power supply system to underwater vehicles utilizing non-contacting technology[C]//Proceedings of the Oceans '04 MTS/IEEE Techno-Ocean '04. Kobe: IEEE, 2014: 2341−2345.
    [64] Kojiya T, Sato F, Matsuki H, et al. Construction of non-contacting power feeding system to underwater vehicle utilizing electro magnetic induction[C]//Proceedings of the Europe Oceans 2005. Brest: IEEE, 2005: 709−712.
    [65] Allen B, Austin T, Forrester N, et al. Autonomous docking demonstrations with enhanced REMUS technology[C]//Proceedings of the OCEANS 2006. Boston: IEEE, 2006: 1−6.
    [66] 张强, 王玉峰. 海洋浮标的非接触式电能与数据传输[J]. 仪器仪表学报, 2010, 31(11): 2615−2621. doi: 10.19650/j.cnki.cjsi.2010.11.034

    Zhang Qiang, Wang Yufeng. Noncontact power and data delivery for ocean observation mooring buoy[J]. Chinese Journal of Scientific Instrument, 2010, 31(11): 2615−2621. doi: 10.19650/j.cnki.cjsi.2010.11.034
    [67] Cai Chengye, Rong Zhenwei, Chen Zheng, et al. A resident subsea docking system with a real-time communication buoy moored by an electro-optical-mechanical cable[J]. Ocean Engineering, 2023, 271: 113729. doi: 10.1016/j.oceaneng.2023.113729
    [68] Chen Chenwei, Lu Yifan. Computational fluid dynamics study of water entry impact forces of an airborne-launched, axisymmetric, disk-type Autonomous underwater hovering vehicle[J]. Symmetry, 2019, 11(9): 1100. doi: 10.3390/sym11091100
    [69] Guo Jin, Lin Yuan, Lin Peiwen, et al. Study on hydrodynamic characteristics of the disk-shaped autonomous underwater helicopter over sea-beds[J]. Ocean Engineering, 2022, 266: 113132. doi: 10.1016/j.oceaneng.2022.113132
    [70] Lin Yuan, Guo Jin, Li Haonan, et al. Improvement of hydrodynamic performance of the disk-shaped autonomous underwater helicopter by local shape modification[J]. Ocean Engineering, 2022, 260: 112056. doi: 10.1016/j.oceaneng.2022.112056
    [71] 石凯, 王晓辉, 徐会希, 等. 水下直升机无模型参数自适应滑模控制[J]. 舰船科学技术, 2022, 44(10): 73−79.

    Shi Kai, Wang Xiaohui, Xu Huixi, et al. Model-free parameter adaptive sliding mode control for autonomous underwater helicopters[J]. Ship Science and Technology, 2022, 44(10): 73−79.
  • 加载中
图(11)
计量
  • 文章访问数:  522
  • HTML全文浏览量:  265
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-27
  • 修回日期:  2023-05-23
  • 网络出版日期:  2023-11-14
  • 刊出日期:  2023-10-30

目录

    /

    返回文章
    返回