留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HY-1C/D CZI多光谱影像云覆盖与耀斑区域绿潮自动提取方法研究

吴克 王常颖 黄睿 李华伟

吴克,王常颖,黄睿,等. HY-1C/D CZI多光谱影像云覆盖与耀斑区域绿潮自动提取方法研究[J]. 海洋学报,2023,45(10):168–182 doi: 10.12284/hyxb2023151
引用本文: 吴克,王常颖,黄睿,等. HY-1C/D CZI多光谱影像云覆盖与耀斑区域绿潮自动提取方法研究[J]. 海洋学报,2023,45(10):168–182 doi: 10.12284/hyxb2023151
Wu Ke,Wang Changying,Huang Rui, et al. Automatic extraction of green tide in areas with clouds or solar flares in HY-1C/D CZI multispectral images[J]. Haiyang Xuebao,2023, 45(10):168–182 doi: 10.12284/hyxb2023151
Citation: Wu Ke,Wang Changying,Huang Rui, et al. Automatic extraction of green tide in areas with clouds or solar flares in HY-1C/D CZI multispectral images[J]. Haiyang Xuebao,2023, 45(10):168–182 doi: 10.12284/hyxb2023151

HY-1C/D CZI多光谱影像云覆盖与耀斑区域绿潮自动提取方法研究

doi: 10.12284/hyxb2023151
基金项目: 国家自然科学基金项目(62172247);山东省重点研发计划重大科技创新工程项目(2019JZZY020101)。
详细信息
    作者简介:

    吴克(1999—),男,河南省濮阳市人,研究方向为遥感大数据。E-mail:1962612978@qq.com

    通讯作者:

    王常颖(1980—),副教授,主要从事海洋复杂性与数据挖掘研究。E-mail:wcing@qdu.edu.cn

  • 中图分类号: P714+.5

Automatic extraction of green tide in areas with clouds or solar flares in HY-1C/D CZI multispectral images

  • 摘要: 针对多光谱影像受云、雾、太阳耀斑等因素的影响,难以实现高精度的绿潮自动提取的问题,本文以我国的HY-1C/D卫星CZI载荷多光谱影像为数据源,采用数据挖掘技术,通过探索绿潮区域与非绿潮区域的光谱分布差异,提出一种适用于HY-1C/D CZI影像的高精度、全自动绿潮提取方法。首先,分析有云区域和无云区域样本的光谱差异,给出厚云去除规则;其次,选取绿潮和非绿潮区域的样本,采用决策树算法生成绿潮提取规则;然后,针对薄云和厚云边界区域常常会出现误检绿潮的问题,设计了5种错误类别修正策略。为验证方法的有效性,收集2021年黄海区域绿潮暴发周期内的25景HY-1C/D CZI影像,开展绿潮自动检测实验。结果表明,与传统的NDVI方法、VB-FAH方法等指数方法以及ResNet50、U-Net等深度学习方法相比,本文方法在准确度、Kappa系数、F1-Score和MIoU等指标上均优于其他方法,而且能够实现在厚云、薄云、无云、云斑和耀斑区域复杂情况下的绿潮的高精度自动提取。
  • 图  1  绿潮、海水、厚云band 3波段的数据分布

    数据随机取样自2021年5月25日、6月21日、6月30日HY-1C/D卫星CZI传感器影像;绿潮和海水样本点数量约为10 000个;厚云样本点band 3数据分布过于集中,为便于展示,其数量约为5 000个

    Fig.  1  Data distribution of band 3 of green tide, sea water and thick cloud

    Data is randomly sampled from the HY-1C/D satellite CZI sensor images on May 25, June 21, and June 30, 2001. The number of green tides and seawater samples is about 10 000. The band 3 data distribution of thick cloud sample points is too centralized to be easily displayed. The number of band 3 is about 5 000

    图  2  规则B提取结果(绿色部分)

    Fig.  2  Rule B extraction results (green)

    图  5  规则E提取结果(橙色部分)

    该区域不存在正确检测的绿潮像元,故未给出人工解译标签

    Fig.  5  Rule E extraction results (orange)

    There are no properly detected green tide cells in this area, so no artificial interpretation labels are given

    图  3  规则C提取结果(红色部分)

    Fig.  3  Rule C extraction results (red)

    图  4  规则D提取结果(蓝色部分)

    Fig.  4  Rule D extraction results (blue)

    图  6  错误类别修正流程

    Fig.  6  Error category correction process

    图  7  分类结果对比

    a. HY-1C/D卫星CZI传感器RGB合成影像(R:825 nm,G:650 nm,B:560 nm);b. 基于规则集的分类结果;c. 修正错误类别后的分类结果

    Fig.  7  Comparison of classification results

    a. HY-1C/D satellite CZI sensor RGB synthetic images (R: 825 nm, G: 650 nm, B: 560 nm); b. classification results based on rule sets;c. classification results after correcting error categories

    图  8  HY-1C/D CZI影像绿潮全自动提取方法

    Fig.  8  Full-automatic extraction method of green tide from HY-1C/D CZI images

    图  9  NDVI和VB-FAH数据散点图

    绿潮与非绿潮数据均为随机取样,数量为1 000个

    Fig.  9  Scatter plot of NDVI and VB-FAH data

    Both green tide and non green tide data are randomly sampled, with a quantity of 1 000

    图  10  精度评估区域

    a、b、c. HY-1C/D卫星CZI传感器RGB合成影像(R:825 nm,G:650 nm,B:560 nm);区域1至区域20尺寸为400像素 × 400像素;由于耀斑区域中绿潮斑块较零碎,故将区域21至区域25尺寸设定为100像素 × 100像素;每个像素尺寸为50 m × 50 m

    Fig.  10  Accuracy evaluation area

    a, b, c. HY-1C/D satellite CZI sensor RGB synthetic image (R: 825 nm, G: 650 nm, B: 560 nm); area 1–20 with dimensions of 400 pixels × 400 pixels; due to the fragmented green tide patches in the flare area, the size of the area 21–25 is set to 100 pixels × 100 pixels; each pixel size is 50 m × 50 m

    图  11  厚云区域绿潮提取效果对比

    a. HY-1C/D卫星CZI传感器RGB合成影像(R:825 nm,G:650 nm,B:560 nm);b、c、d、e、f、g分别为人工解译、NDVI、VB-FAH、ResNet50、U-Net、本文方法的绿潮提取结果

    Fig.  11  Comparison of green tide extraction effects in thick cloud region

    a. RGB composite image (R: 825 nm, G: 650 nm, B: 560 nm) of HY-1C/D satellite CZI sensor; b, c, d, e, f, g show the green tide extraction results of manual interpretation, NDVI, VB-FAH, ResNet50, U-Net, and the method proposed in this paper, respectively

    图  12  薄云区域绿潮提取效果对比

    a. HY-1C/D卫星CZI传感器RGB合成影像(R:825 nm,G:650 nm,B:560 nm);b、c、d、e、f、g分别为人工解译、NDVI、VB-FAH、ResNet50、U-Net、本文方法的绿潮提取结果

    Fig.  12  Comparison of green tide extraction effects in thin cloud region

    a. RGB composite image (R: 825 nm, G: 650 nm, B: 560 nm) of HY-1C/D satellite CZI sensor; b, c, d, e, f, g show the green tide extraction results of manual interpretation, NDVI, VB-FAH, ResNet50, U-Net, and the method proposed in this paper, respectively

    图  13  无云区域绿潮提取效果对比

    a. HY-1C/D卫星CZI传感器RGB合成影像(R:825 nm,G:650 nm,B:560 nm);b、c、d、e、f、g分别为人工解译、NDVI、VB-FAH、ResNet50、U-Net、本文方法的绿潮提取结果

    Fig.  13  Comparison of green tide extraction effects in cloud-free region

    a. RGB composite image (R: 825 nm, G: 650 nm, B: 560 nm) of HY-1C/D satellite CZI sensor; b, c, d, e, f, g show the green tide extraction results of manual interpretation, NDVI, VB-FAH, ResNet50, U-Net, and the method proposed in this paper, respectively

    图  14  云斑区域绿潮提取效果对比

    a. HY-1C/D卫星CZI传感器RGB合成影像(R:825 nm,G:650 nm,B:560 nm);b、c、d、e、f、g分别为人工解译、NDVI、VB-FAH、ResNet50、U-Net、本文方法的绿潮提取结果

    Fig.  14  Comparison of green tide extraction effects in cloud spot region

    a. RGB composite image (R: 825 nm, G: 650 nm, B: 560 nm) of HY-1C/D satellite CZI sensor; b, c, d, e, f, g show the green tide extraction results of manual interpretation, NDVI, VB-FAH, ResNet50, U-Net, and the method proposed in this paper, respectively

    图  15  耀斑区域绿潮提取效果对比

    a. HY-1C/D卫星CZI传感器RGB合成影像(R:825 nm,G:650 nm,B:560 nm);b、c、d、e、f、g分别为人工解译、NDVI、VB-FAH、ResNet50、U-Net、本文方法的绿潮提取结果

    Fig.  15  Comparison of green tide extraction effect in flare region

    a. RGB composite image (R: 825 nm, G: 650 nm, B: 560 nm) of HY-1C/D satellite CZI sensor; b, c, d, e, f, g show the green tide extraction results of manual interpretation, NDVI, VB-FAH, ResNet50, U-Net, and the method proposed in this paper, respectively

    表  1  HY-1C/D 卫星 CZI 传感器的波段信息

    Tab.  1  Band information of HY-1C/D satellite CZI sensor

    波段波宽/nm空间分辨率/m
    band 1420~50050
    band 2520~60050
    band 3610~69050
    band 4760~89050
    下载: 导出CSV

    表  2  绿潮提取规则集

    Tab.  2  Green tide extraction rule set

    编号 决策规则 颜色
    A b3 – b4 ≤ –389.5且b3 – b4 ≤ –328.5且b1 ≤ 448.5 若不满足A,则颜色为黑色
    b3 – b4 > –389.5且b2 – b3 > –84.5且b3 – b4 >863
    b3 – b4 > –389.5且b2 – b3 > –84.5且b3 – b4 > –523.5
    b3 – b4 > –389.5且b2 – b3 > –84.5且b3 – b4 ≤ –523.5且b3 ≤ –484.5
    B A且b2 – b3 ≤ –140.5 且 b1 ≤ 1558且b2 – b3 > –4.5 绿色
    A且b2 – b3 ≤ –140.5且b2 – b3 > –321.5
    A 且b2 – b3 ≤ –140.5且b1 ≤ 1558且b2 – b3 ≤ –4.5且b3 – b4 ≤ –681.5且
    b2 – b3 > –42.5
    C A 且 b2 – b3 ≤ –140.5且b1 > 1558 红色
    D A且b2 – b3 ≤ –140.5且b1 ≤ 1558且b2 – b3 ≤ –4.5且b3 – b4 ≤ –681.5且
    b2 – b3 ≤ –42.5
    蓝色
    A且b2 – b3 ≤ –140.5且b1 ≤ 1558且b2 – b3 ≤ –4.5且b3 – b4 > –681.5
    E A且b2 – b3 ≤ –140.5且b2 – b3 ≤ –321.5 橙色
    下载: 导出CSV

    表  3  ACC和Kappa精度评估结果

    Tab.  3  Accuracy evaluation results of ACC and Kappa

    区域/类型 ACC Kappa
    NDVI VB-FAH ResNet50 U-Net 本文方法 NDVI VB-FAH ResNet50 U-Net 本文方法
    1/厚云 0.959 2 0.912 7 0.930 1 0.959 5 0.992 3 0.814 8 0.508 0 0.614 4 0.791 9 0.964 5
    2/厚云 0.803 7 0.791 4 0.980 7 0.988 2 0.994 1 0.156 9 0.065 4 0.589 8 0.761 0 0.891 6
    3/厚云 0.901 2 0.875 1 0.962 4 0.976 1 0.993 2 0.400 5 0.096 5 0.550 3 0.748 2 0.935 2
    4/厚云 0.927 4 0.929 4 0.984 3 0.990 2 0.992 5 0.462 0 0.381 0 0.766 3 0.600 3 0.894 1
    5/厚云 0.872 2 0.869 0 0.976 1 0.982 6 0.990 1 0.389 9 0.334 3 0.771 9 0.643 4 0.842 4
    6/薄云 0.969 4 0.947 2 0.957 9 0.970 0 0.970 9 0.824 5 0.583 2 0.710 7 0.694 5 0.849 2
    7/薄云 0.966 7 0.968 3 0.976 1 0.982 0 0.989 4 0.719 1 0.558 4 0.744 2 0.698 0 0.885 4
    8/薄云 0.977 5 0.973 7 0.976 4 0.983 9 0.985 5 0.815 2 0.691 1 0.767 7 0.837 8 0.859 6
    9/薄云 0.965 1 0.984 6 0.984 8 0.970 1 0.987 1 0.775 5 0.864 3 0.879 0 0.922 5 0.982 5
    10/薄云 0.948 7 0.927 1 0.924 6 0.945 2 0.994 5 0.774 7 0.523 5 0.587 6 0.691 3 0.973 1
    11/无云 0.904 9 0.980 9 0.978 5 0.969 1 0.990 4 0.576 8 0.853 6 0.852 6 0.825 0 0.921 3
    12/无云 0.949 2 0.971 5 0.966 7 0.967 2 0.979 6 0.673 1 0.688 7 0.707 2 0.783 3 0.828 2
    13/无云 0.923 4 0.957 4 0.963 1 0.968 5 0.970 4 0.682 4 0.726 9 0.801 0 0.678 2 0.847 3
    14/无云 0.975 0 0.975 5 0.973 5 0.985 7 0.998 2 0.769 7 0.621 3 0.683 5 0.820 6 0.978 5
    15/无云 0.985 0 0.977 4 0.980 8 0.986 9 0.989 0 0.830 7 0.627 0 0.732 6 0.815 9 0.850 1
    16/云斑 0.905 6 0.955 6 0.940 4 0.971 8 0.982 3 0.606 8 0.660 4 0.612 7 0.832 9 0.896 5
    17/云斑 0.914 1 0.969 8 0.962 2 0.974 2 0.994 1 0.470 0 0.483 8 0.500 9 0.676 1 0.927 7
    18/云斑 0.868 0 0.957 5 0.944 9 0.955 7 0.985 1 0.454 3 0.549 8 0.572 5 0.698 5 0.887 9
    19/云斑 0.924 0 0.981 1 0.976 1 0.977 7 0.984 0 0.478 8 0.682 7 0.683 8 0.856 7 0.906 0
    20/云斑 0.904 2 0.955 4 0.944 7 0.967 8 0.984 1 0.603 1 0.661 5 0.682 5 0.817 4 0.907 8
    21/耀斑 0.907 5 0.978 1 0.977 5 0.976 4 0.995 6 0.334 6 0.294 5 0.252 3 0.187 7 0.919 1
    22/耀斑 0.896 6 0.987 5 0.988 6 0.988 6 0.995 1 0.188 5 0.147 9 0.275 7 0.275 7 0.819 0
    23/耀斑 0.903 9 0.987 6 0.987 3 0.987 3 0.996 7 0.219 4 0.664 6 0.279 4 0.279 4 0.890 9
    24/耀斑 0.959 3 0.993 1 0.994 6 0.994 6 0.997 2 0.254 6 0.125 6 0.423 7 0.423 7 0.816 0
    25/耀斑 0.711 9 0.966 1 0.981 5 0.981 5 0.987 1 0.167 8 0.353 7 0.730 7 0.730 7 0.860 4
    下载: 导出CSV

    表  4  F1-Score和MIoU精度评估结果

    Tab.  4  Accuracy evaluation results of F1-Score and MIoU

    区域/类型 F1-Score MIoU
    NDVI VB-FAH ResNet50 U-Net 本文方法 NDVI VB-FAH ResNet50 U-Net 本文方法
    1/厚云 0.967 0 0.945 5 0.958 2 0.977 0 0.993 7 0.837 9 0.644 6 0.703 7 0.821 0 0.965 5
    2/厚云 0.803 4 0.796 6 0.988 3 0.993 4 0.996 4 0.455 3 0.424 6 0.704 0 0.802 4 0.901 6
    3/厚云 0.907 4 0.885 7 0.978 3 0.985 7 0.995 6 0.592 6 0.476 1 0.679 0 0.794 4 0.938 7
    4/厚云 0.926 5 0.933 8 0.988 5 0.990 1 0.993 7 0.625 0 0.593 6 0.807 8 0.908 7 0.963 6
    5/厚云 0.874 0 0.875 4 0.975 6 0.968 6 0.982 2 0.576 0 0.554 1 0.810 1 0.862 4 0.961 3
    6/薄云 0.974 7 0.972 9 0.975 3 0.964 6 0.983 2 0.846 5 0.690 3 0.766 7 0.824 5 0.935 3
    7/薄云 0.969 0 0.983 8 0.983 6 0.969 5 0.987 5 0.773 9 0.684 0 0.791 9 0.829 1 0.920 1
    8/薄云 0.978 8 0.986 6 0.984 1 0.970 6 0.990 3 0.840 6 0.757 8 0.807 4 0.858 3 0.875 2
    9/薄云 0.964 0.931 9 0.928 2 0.961 6 0.988 0.810 3 0.878 7 0.890 5 0.927 4 0.950 1
    10/薄云 0.952 6 0.962 1 0.949 9 0.968 2 0.997 1 0.807 4 0.653 8 0.688 7 0.751 9 0.973 7
    11/无云 0.901 1 0.970 1 0.973 4 0.951 5 0.980 7 0.674 5 0.869 9 0.869 0 0.929 5 0.944 0
    12/无云 0.949 2 0.975 4 0.975 1 0.961 9 0.983 5 0.741 5 0.755 8 0.766 9 0.894 2 0.950 6
    13/无云 0.921 8 0.978 1 0.972 5 0.967 5 0.985 2 0.741 1 0.776 4 0.828 4 0.889 2 0.963 9
    14/无云 0.974 8 0.987 6 0.980 7 0.971 1 0.999 0 0.808 2 0.718 6 0.754 0 0.845 8 0.978 9
    15/无云 0.986 6 0.988 6 0.988 0 0.992 8 0.994 0 0.853 2 0.722 2 0.785 3 0.842 6 0.868 3
    16/云斑 0.901 8 0.976 9 0.957 3 0.976 9 0.984 4 0.691 4 0.735 4 0.706 5 0.853 1 0.904 6
    17/云斑 0.912 6 0.984 7 0.974 1 0.982 1 0.996 5 0.624 1 0.649 3 0.656 4 0.749 8 0.932 2
    18/云斑 0.863 6 0.978 1 0.957 9 0.960 8 0.987 6 0.600 6 0.676 5 0.686 6 0.759 1 0.897 8
    19/云斑 0.922 6 0.950 2 0.982 0 0.968 0 0.986 1 0.631 4 0.754 6 0.754 7 0.773 1 0.895 1
    20/云斑 0.900 4 0.976 5 0.954 4 0.971 8 0.985 7 0.689 0 0.736 0 0.747 3 0.840 9 0.914 3
    21/耀斑 0.906 2 0.988 8 0.988 6 0.988 1 0.996 3 0.563 5 0.577 3 0.562 6 0.541 2 0.924 8
    22/耀斑 0.895 9 0.993 7 0.994 3 0.994 3 0.997 5 0.505 7 0.534 2 0.575 2 0.575 2 0.818 1
    23/耀斑 0.903 2 0.993 8 0.993 6 0.993 6 0.997 6 0.519 5 0.745 7 0.575 9 0.575 9 0.901 3
    24/耀斑 0.959 2 0.996 5 0.997 2 0.997 2 0.998 4 0.555 5 0.530 3 0.632 4 0.632 4 0.823 3
    25/耀斑 0.705 3 0.982 8 0.974 4 0.957 8 0.987 6 0.415 0 0.594 1 0.784 0 0.784 0 0.876 0
    下载: 导出CSV
  • [1] Hiraoka M, Ohno M, Kawaguchi S, et al. Crossing test among floating Ulva thalli forming ‘green tide’ in Japan[J]. Hydrobiologia, 2004, 512(1): 239−245.
    [2] 衣立, 张苏平, 殷玉齐. 2009年黄海绿潮浒苔爆发与漂移的水文气象环境[J]. 中国海洋大学学报, 2010, 40(10): 15−23.

    Yi Li, Zhang Suping, Yin Yuqi. Influnce of environmental hydro-meteorological conditions to Enteromorpha prolifera blooms in Yellow Sea, 2009[J]. Periodical of Ocean University of China, 2010, 40(10): 15−23.
    [3] Liu Dongyan, Keesing J K, He Peimin, et al. The world’s largest macroalgal bloom in the Yellow Sea, China: formation and implications[J]. Estuarine, Coastal and Shelf Science, 2013, 129: 2−10. doi: 10.1016/j.ecss.2013.05.021
    [4] Hu Lianbo, Zeng Kan, Hu Chuanmin, et al. On the remote estimation of Ulva prolifera areal coverage and biomass[J]. Remote Sensing of Environment, 2019, 223: 194−207. doi: 10.1016/j.rse.2019.01.014
    [5] Qi Lin, Hu Chuanmin, Xing Qianguo, et al. Long-term trend of Ulva prolifera blooms in the western Yellow Sea[J]. Harmful Algae, 2016, 58: 35−44. doi: 10.1016/j.hal.2016.07.004
    [6] Qi Lin, Hu Chuanmin. To what extent can Ulva and Sargassum be detected and separated in satellite imagery?[J]. Harmful Algae, 2021, 103: 102001. doi: 10.1016/j.hal.2021.102001
    [7] Hu Lianbo, Hu Chuanmin, He Mingxia. Remote estimation of biomass of Ulva prolifera macroalgae in the Yellow Sea[J]. Remote Sensing of Environment, 2017, 192: 217−227. doi: 10.1016/j.rse.2017.01.037
    [8] Hu Chuanmin, Li Daqiu, Chen Changsheng, et al. On the recurrent Ulva prolifera blooms in the Yellow Sea and East China Sea[J]. Journal of Geophysical Research: Oceans, 2010, 115(C5): C05017.
    [9] Xing Qianguo, Hu Chuanmin, Tang Danling, et al. World’s largest macroalgal blooms altered phytoplankton biomass in summer in the Yellow Sea: satellite observations[J]. Remote Sensing, 2015, 7(9): 12297−12313. doi: 10.3390/rs70912297
    [10] Nelson T A, Haberlin K, Nelson A V, et al. Ecological and physiological controls of species composition in green macroalgal blooms[J]. Ecology, 2008, 89(5): 1287−1298. doi: 10.1890/07-0494.1
    [11] Hu Chuanmin, He Mingxia. Origin and offshore extent of floating algae in Olympic sailing area[J]. Eos, Transactions American Geophysical Union, 2008, 89(33): 302−303. doi: 10.1029/2008EO330002
    [12] 施英妮, 石立坚, 夏明, 等. HJ-1A/1B星CCD传感器数据在黄东海浒苔监测中的应用[J]. 遥感信息, 2012, 27(2): 47−50.

    Shi Yingni, Shi Lijian, Xia Ming, et al. The application of HJ-1A/1B’s CCD data to entermorpha prolifera monitoring over the Yellow Sea and East Sea[J]. Remote Sensing Information, 2012, 27(2): 47−50.
    [13] Hu Chuanmin. A novel ocean color index to detect floating algae in the global oceans[J]. Remote Sensing of Environment, 2009, 113(10): 2118−2129. doi: 10.1016/j.rse.2009.05.012
    [14] Son Y B, Min J E, Ryu J H. Detecting massive green algae ( Ulva prolifera) blooms in the Yellow Sea and East China Sea using geostationary ocean color imager (GOCI) data[J]. Ocean Science Journal, 2012, 47(3): 359−375. doi: 10.1007/s12601-012-0034-2
    [15] Xing Qianguo, Hu Chuanmin. Mapping macroalgal blooms in the Yellow Sea and East China Sea using HJ-1 and Landsat data: Application of a virtual baseline reflectance height technique[J]. Remote Sensing of Environment, 2016, 178: 113−126. doi: 10.1016/j.rse.2016.02.065
    [16] 薛瑞, 吴孟泉, 刘杨, 等. 基于HJ-1A/1B的2014年黄海海域浒苔灾害时空分布[J]. 海洋科学, 2016, 40(7): 115−123.

    Xue Rui, Wu Mengquan, Liu Yang, et al. Spatial and temporal variability of Ulva prolifera in the Yellow Sea, China in 2014[J]. Marine Sciences, 2016, 40(7): 115−123.
    [17] 曾韬, 刘建强. “北京一号”小卫星在青岛近海浒苔灾害监测中的应用[J]. 遥感信息, 2009, 24(3): 34−37.

    Zeng Tao, Liu Jianqiang. The application of Beijing-1 micro satellite data to algae disaster monitoring in the sea of Qingdao[J]. Remote Sensing Information, 2009, 24(3): 34−37.
    [18] 刘锦超, 刘建强, 丁静, 等. HY-1C卫星CZI载荷的黄海绿潮提取研究[J]. 海洋学报, 2022, 44(5): 1−11.

    Liu Jinchao, Liu Jianqiang, Ding Jing, et al. A refined imagery algorithm to extract green tide in the Yellow Sea from HY-1C satellite CZI measurements[J]. Haiyang Xuebao, 2022, 44(5): 1−11.
    [19] He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016: 770−778.
    [20] Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481−2495. doi: 10.1109/TPAMI.2016.2644615
    [21] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[C]//18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer, 2015: 234−241.
    [22] Cui Binge, Zhang Haoqing, Jing Wei, et al. SRSe-net: super-resolution-based semantic segmentation network for green tide extraction[J]. Remote Sensing, 2022, 14(3): 710. doi: 10.3390/rs14030710
    [23] Yu Haifei, Wang Changying, Li Jinhua, et al. Automatic extraction of green tide from GF-3 SAR images based on feature selection and deep learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 10598−10613. doi: 10.1109/JSTARS.2021.3118374
    [24] Wang Zhongyuan, Fang Zhixiang, Liang Jianfeng, et al. Estimating Ulva prolifera green tides of the Yellow Sea through ConvLSTM data fusion[J]. Environmental Pollution, 2023, 324: 121350. doi: 10.1016/j.envpol.2023.121350
    [25] Shang Weitao, Gao Zhiqiang, Gao Meng, et al. Monitoring green tide in the Yellow Sea using high-resolution imagery and deep learning[J]. Remote Sensing, 2023, 15(4): 1101. doi: 10.3390/rs15041101
    [26] Shi Wei, Wang Menghua. Green macroalgae blooms in the Yellow Sea during the spring and summer of 2008[J]. Journal of Geophysical Research: Oceans, 2009, 114(C12): C12010.
    [27] Wang Mengqiu, Hu Chuanmin. Mapping and quantifying Sargassum distribution and coverage in the Central West Atlantic using MODIS observations[J]. Remote Sensing of Environment, 2016, 183: 350−367. doi: 10.1016/j.rse.2016.04.019
    [28] 苗珊珊. “长征”二号C运载火箭成功发射“海洋”一号C卫星[J]. 中国航天, 2018(9): 26.

    Miao Shanshan. The CZ-2C carrier rocket successfully launched the HY-1C satellite[J]. Aerospace China, 2018(9): 26.
    [29] 刘建强, 蒋兴伟, 王丽丽, 等. 海洋一号C、D卫星组网观测与应用[J]. 卫星应用, 2021(9): 19−26. doi: 10.3969/j.issn.1674-9030.2021.09.007

    Liu Jianqiang, Jiang Xingwei, Wang Lili, et al. Monitoring and application of the HY-1C and D satellites constellation[J]. Satellite Application, 2021(9): 19−26. doi: 10.3969/j.issn.1674-9030.2021.09.007
    [30] 李岩松, 赵慧洁, 李娜, 等. 基于中红外偏振的海面太阳耀光背景下的目标探测[J]. 中国激光, 2022, 49(19): 1910004. doi: 10.3788/CJL202249.1910004

    Li Yansong, Zhao Huijie, Li Na, et al. Detection of marine targets covered in sun glint based on mid-infrared polarization[J]. Chinese Journal of Lasers, 2022, 49(19): 1910004. doi: 10.3788/CJL202249.1910004
    [31] Wang Chen, Zhang Huaguo, Xu Qing, et al. Inversion of the refractive index of marine spilled oil using multi-angle sun glitter images acquired by the ASTER sensor[J]. Remote Sensing of Environment, 2022, 275: 113019. doi: 10.1016/j.rse.2022.113019
    [32] 刘建强, 曾韬, 梁超, 等. 海洋一号C卫星在自然灾害监测中的应用[J]. 卫星应用, 2020(6): 26−34.

    Liu Jianqiang, Zeng Tao, Liang Chao, et al. Application of HY-1C satellite in natural disaster monitoring[J]. Satellite Application, 2020(6): 26−34.
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  166
  • HTML全文浏览量:  66
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-15
  • 修回日期:  2023-06-13
  • 网络出版日期:  2023-12-27
  • 刊出日期:  2023-10-30

目录

    /

    返回文章
    返回